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The web is a widely-available open application platform, where anyone can freely inspect

a live program’s client-side source code and runtime state. Despite these platform ad-

vantages, understanding and debugging dynamic behavior in web programs is still very

challenging. Several barriers stand in the way of understanding dynamic behaviors: re-

producing complex interactions is often impossible; finding and comparing a behavior’s

runtime states is time-consuming; and the code that implements a behavior is scattered

across multiple DOM, CSS, and JavaScript files.

This dissertation demonstrates that these barriers can be addressed by new program

understanding tools that rely on the ability to capture a program execution and revisit

past program states within it. We show that when integrated as part of a browser engine,

deterministic replay is fast, transparent, and pervasive; and these properties make it a

suitable platform for such program understanding tools. This claim is substantiated by

several novel interfaces for understanding dynamic behaviors. These prototypes exem-

plify three strategies for navigating through captured program executions: (1) by visual-

izing and seeking to input events—such as user interactions, network callbacks, and asyn-

chronous tasks; (2) by retroactively logging program states and reverting execution back
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to log-producing statements; and (3) by working backwards from differences in visual

output to the source code responsible for inducing output-affecting state changes. Some

of these capabilities have been incorporated into the WebKit browser engine, demonstrat-

ing their practicality.
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Chapter 1

INTRODUCTION

The world wide web’s rise as the universal runtime environment has democratized the

development of documents, applications, and user interfaces. Unlike on most platforms,

web programs are transmitted in source form as hypertext markup language (HTML),

cascading style sheets (CSS), and JavaScript code. Using development tools included

with most web browsers, anyone can live-inspect and modify a client-side web program’s

source code and runtime states. Such live inspection facilities can dramatically shorten a

developer’s feedback loop as they create or fine-tune a web program’s visual elements

and behaviors.

Despite the advantages provided by live inspection, it is often no easier to under-

stand and debug programs written for the web platform than those written for any other

platform. Modern web programs are complex, interactive applications built using multi-

ple tools, frameworks, and languages. While originally intended to support hyperlinked

documents, web technologies such as HTML, DOM, JavaScript and CSS have evolved

over 20 years to become the building blocks for large, interactive, cross-platform appli-

cations. As a hodgepodge of accidentally mainstream technologies1, the web platform

suffers from significant incidental complexity. The combination of declarative styles and

rendering with imperative JavaScript code works to obfuscate a web program’s depen-

dencies and causal relationships. In practice, the complexity of a web program—like any

other program—is limited by a developer’s ability to understand and maintain these sys-

tems with available developer tools.

1The first version of JavaScript was written in 10 days by Brendan Eich at Netscape [54].
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1.1 The Problem

Existing developer tools are inadequate for understanding and debugging interactive be-

haviors in web programs. Several important tasks in this domain—such as reproducing

complex interactions and behaviors, finding runtime states related to a behavior, and lo-

cating the code that implements a behavior or visual effect—are especially difficult. Un-

derlying the difficulty of these tasks is the fundamental limitation that execution can only

proceed forwards. As a result, existing tools allow a developer to inspect current or future

program states in different executions, but not past program states from a single exe-

cution. To inspect a behavior using a tool, a developer must set up her tools—such as

breakpoints or logging—before the behavior actually happens. This places a considerable

“iteration tax” on debugging: to gather data about what happened, a developer must find

relevant pieces of source code, set up her tools, and reproduce the behavior once per tool

configuration. In the face of nondeterministic behavior, repeatedly reproducing the same

behavior after changing tool configurations is error-prone or impossible.

The fundamental limitation of forward-only execution reduces the usefulness of ex-

isting tools such as debuggers, profilers, or logging, and reduces the tasks that new tools

can hope to support. First, every tool use requires behavior reproduction, making a tool’s

output tightly coupled to a specific execution. Thus, tools that cause performance prob-

lems or halt an ongoing execution are infeasible to use while interactive behavior is being

demonstrated. Second, tools must be configured preëmptively without live feedback.

Most developer tools operate on specific lines of code, but a developer may not know

which lines of code implement an interactive behavior until it has already occured. It

often takes many iterations with some tools (i.e., breakpoint debugger) to find the right

place to use other tools (i.e., logging statements). Finally, tools do not directly support

navigating temporally backwards from causes to effects. A developer must observe ef-

fects, manually find possible causes, and gather additional data by setting up her tools

earlier in new execution.
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1.2 Addressing the Problem

To move beyond the current status quo of developer tools, tool creators must think be-

yond the current limitation of forward-only execution. What if it were possible to go

“back in time” and revisit any past program state from a single execution? Suddenly,

many of the conventions and restrictions embedded in the designs of traditional tools

become irrelevant. An execution is now an enormous corpus of runtime states, and a de-

veloper tool can be used retroactively after the original execution finishes to extract data

from this corpus. A debugger can step forward and backward; a breakpoint becomes a

trace of control flow over time; a logging statement becomes a trace of runtime state over

time; and a profiler aggregates control flow and timing data.

Consider the task of debugging an interaction in a video game: instead of manually re-

producing game behavior whenever different runtime data is desired, a developer could

play the game once. Then, she can go “back in time” at will to gather program states

that help understand specific program behaviors. As her understanding of the program

grows, she can quickly switch between retroactive developer tools without reproducing

the entire behavior again. This workflow avoids repetitious, error-prone gameplay and

decouples playing the game from interruptions such as setting up logging, turning break-

points on and off, or searching for relevant source code to instrument.

In this dissertation, I investigate how this retroactive approach to program understand-

ing can be realized through novel runtime techniques, user interfaces, and integrations

with new and existing developer tools. In particular, I claim the following thesis state-

ment:

The ability to revisit past program states enables new tools for understanding dynamic

behaviors in web programs, and browser engines can provide this capability through

fast, transparent, and pervasive deterministic replay.

I substantiate this claim by investigating two related lines of research: how browser
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engines can capture web program executions and reproduce past program states; and

how tools support a developer in finding past program states within a captured execu-

tion during program understanding tasks. Chapter 3 investigates how deterministic re-

play techniques can be used to capture executions of event-driven programs running on

high-level managed runtimes, such as a web program executing in a browser rendering

engine. Chapter 4 develops several programmatic interfaces for collecting and revisiting

past program states from a captured execution. These interfaces serve as a crucial linkage

between the low-level capabilities of a deterministic replay infrastructure and the data-

and time-oriented needs of retroactive developer tools. In order for a developer to act

upon past program states, it must be possible to quickly find relevant bits of information

among the vast corpus of runtime data produced during an execution. Chapters 5 and 6

present new retroactive developer tools that support several task-oriented strategies for

finding and navigating to relevant program states in a captured execution. Chapter 7 de-

scribes an exploratory user study that investigates how one of these retroactive tools is

used by developers during representative debugging tasks.

1.3 Definitions

This dissertation builds upon work from various disciplines and fields such as Human-

Computer Interaction (HCI), Program Analysis, Compilers, and Software Engineering.

Thus, it is useful to define and consistently use key terms that are otherwise prone to

misinterpretation.

Many terms exist to categorize people who perform programming: instructing a com-

puter (via code or other directives) to perform actions at a later time. This dissertation

refers to any such person with the generic term developer. A novice developer has a little

practice; a skilled developer has more than a little practice2; a professional developer is paid

for his or her programming activities. An end-user is the consumer of software produced

by a developer. An end-user programmer writes code only with the purpose of supporting a

larger task or goal. A tool developer creates tools for use by tool users, who are themselves
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developers.

This dissertation is primarily concerned with the family of tasks referred to as program

understanding: any process undertaken (typically by a developer) to develop an explana-

tion of how a program did execute, will execute, or will not execute. Specific program

understanding tasks include feature location: developing an explanation of what code im-

plements a specific behavior; and debugging: developing an explanation of undesirable

or unexpected behaviors. Various debugging and engineering-related terms also deserve

definition. A fault is a latent flaw in a system, such as an incorrect algorithm, design, or

implementation. An error is an incorrect or unexpected internal program state that may

lead to a failure. A failure is an undesirable program output that does not conform to

the program’s expected behavior. This dissertation uses the terms fault and defect inter-

changeably to refer to parts of program code that cause an error and/or failure. A bug

loosely refers to single or a combination of failure(s), fault(s), and/or defect(s); usage of

this vague term is generally avoided in this document.

The long history and evolution of the world wide web has led to many confusing,

similar terms. A web developer is a developer who produces web content. This disser-

tation uses the term web program3 to refer to any document consisting of HTML, CSS,

DOM, JavaScript, and related technologies that are viewable by a web browser. A web

browser—sometimes referred to as a user agent in web standards—is an end-user applica-

tion for viewing web content. A browser engine is a managed language runtime capable of

downloading, parsing, interpreting, and rendering untrusted web content, and is separate

from other web browser functionality such as bookmarks, tabs, and other user interface

elements. Finally, web developer tools are program understanding tools used by web devel-

opers. This dissertation mainly discusses web developer tools that are distributed as part

of a web browser.

2Where possible, scenario-relevant modifiers such as successful and unsuccessful are preferred in place of
subjective or demographic-based terms such as senior, novice, and skilled.

3In other contexts, web programs are also referred to as web pages, web content, web applications, and
other terms to emphasize program characteristics such as complexity and interactivity. This document
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1.4 Contributions

This dissertation introduces several major contributions that extend the state of the art in

runtime techniques and program understanding tools:

• Techniques for fast, pervasive and transparent deterministic replay of event-driven

programs in managed languages (Section 3.2).

• A successful instantation of these replay techniques within the WebKit rendering

engine (Section 3.3).

• The first categorization and description of important sources of nondeterminism in

a production web browser (Section 3.3).

• An algorithm for revisiting any executed statement within a captured execution

(Section 4.1.1).

• Invariants and runtime techniques for detecting replay errors and failures (Sec-

tion 4.3).

• A timeline visualization of a captured execution that support navigating via top-

level input events (Section 5.2).

• An interface for retroactively logging runtime states and revisiting their originating

execution instants (Section 5.3).

• The first user study examining the benefits, drawbacks, and design concerns for

interactive record/replay user interfaces (Chapter 7).

uses the single term web program and modifies it as necessary to convey the intended population of pro-
grams.
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Figure 1.1: Major parts and chapters of this dissertation.

• Algorithms for efficiently detecting (Section 6.4.1), serializing (Section 6.4.2), and

comparing (Section 6.4.3) visual states over time.

• An algorithm for establishing causality between visual changes, state changes, and

JavaScript code (Section 6.4.4).

• An interface for feature location based on comparing output and state changes (Sec-

tion 6.3.1).

1.5 Outline

The remainder of this dissertation is organized as shown in Figure 1.1. Following this

section is Chapter 2, which surveys prior work in the two lines of research that this disser-

tation investigates: capturing executions and reproducing past program states; and tools
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that aid a developer in finding and using past program states during program under-

standing tasks. The second part investigates a technical approach for capturing web pro-

gram executions and extracting past program states from captured executions. Chapter 3

describes the Dolos deterministic replay infrastructure. Chapter 4 describes extensions to

Dolos that support extracting past program states, and implement other important fea-

tures used by retroactive developer tools. The third part investigates severals tools that

aid a developer in finding and using past program states during program understanding

tasks. It describes Timelapse and Scry, two program understanding tools that embody

three different strategies for navigating captured recordings: via inputs (Section 5.2), via

logged outputs (Section 5.3), and via visual state changes (Chapter 6). Chapter 7 presents

the first user study that explores how replay interfaces are used during debugging tasks.

The final part of this document sketches several directions for future research (Chapter 8)

and presents the conclusions of this document (Chapter 9).
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Chapter 2

RELATED WORK

In this chapter, I survey prior work in the two lines of research that this dissertation ex-

tends: capturing executions and extracting program states; and developer tools for find-

ing and using program states during program understanding tasks.

2.1 Capturing Executions

The ability to revisit past program states within a single execution is a key enabler of the

retroactive approach to program understanding as proposed by this dissertation. Since

contemporary computer hardware only supports forward execution, the common ap-

proach to revisiting past program states is to recreate them indirectly. Instead of executing

backwards, tools execute forwards in such a way that these states can be recreated.

Prior work that captures and recreates program states can be divided into two ap-

proaches: deterministic replay and post-mortem trace analysis. Tools based on deter-

ministic replay recreate program states on-demand by exactly reëxecuting a captured

program execution and extracting the desired live program state. Tools based on post-

mortem analysis recreate program states by reconstructing them from a detailed trace of

program operations collected during an execution.

2.1.1 Deterministic Replay

Deterministic replay is a widely-studied technique [41, 50] that recreates a specific execu-

tion by capturing and reusing all sources of nondeterminism that affect how the program

executes. This dissertation focuses on the utility of deterministic replay for debugging

nondeterministic systems [79, 113]. Deterministic replay has also been used to replicate
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state between nodes in fault-tolerant systems [11, 22, 23, 26], replicate an entire execution

to hot-backups [170], save executions for security auditing purposes [52], and other pur-

poses. Research in the systems community focuses on deterministic replay of distributed

systems [43, 85] and concurrent and parallel programs [37]; adding support for deter-

ministic replay to hardware, virtual machines [52], operating systems [13], runtimes [10],

languages [109, 151, 157], and applications [49, 65, 150, 162]. Others have explored novel

applications of deterministic replay to new domains [34, 77, 118]. Few of these systems

are widely used, and even the most robust commercial replay tools [113, 170] are designed

for expert use via debugger commands (discussed in Section 2.1.3).

Some prior work exists that investigates the use of deterministic replay for replicating

and debugging web program behavior. FireCrystal [123] is an extension for Firefox [112]

that captures and replays DOM events on an isolated copy of the web program in order

to recreate past visual states. WaRR [5] is a general-purpose web replay infrastructure

based on WebKit; it captures and replays DOM events inside the rendering engine using

hooks provided by the Selenium [163] plugin for WebKit. Mugshot [109] embodies a

cross-platform, library-based approach to deterministic replay for web programs. It is

packaged as a JavaScript library that can be injected into any running web program, and

adds a simple playback interface overlay to the running web program.

“Language-level” deterministic replay—running a modified program on an unmodi-

fied operating system or application runtime, usually to achieve platform independence—

is generally incompatible with the use of breakpoint debuggers and other privileged de-

veloper tools [122, 175]. One issue is that these approaches often modify a program us-

ing bytecode or source-to-source transformations (Section 2.2.2). Without a coordinat-

ing instrumentation framework (Section 2.2.3), these transformations are not composable

and can accidentally change the target program’s semantics or impact performance. A

more fundamental limitation of this approach approaches is that they don’t have access

to all sources of nondeterminism that affect a sandboxed web program’s execution. A

sandboxed web program (using the GDB debugger’s terminology [58], an inferior process)
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cannot interact with privileged JavaScript debuggers (a superior process), so a replay sys-

tem implemented in the inferior process is unusable while the breakpoint debugger has

halted the program. High-fidelity replay of JavaScript is not possible with “user-space”

libraries and source instrumentation because not all APIs can be mediated, and many

sources of nondeterminism—such as timers, animations, and resource loading—cannot

be controlled from outside of the rendering engine.

Deterministic replay is sometimes too deterministic for certain use cases. Fully de-

terministic execution works against a developer if she wishes to reuse nondeterministic

inputs on a different program version [34, 67, 77, 118] or intentionally diverge a replayed

execution to explore alternate possibilities. Probes (Section 5.3) obviate the need to mod-

ify the program when inserting logging (the most common reason to alter a program

during program understanding). Other work has investigated intentional divergence as

an important use case. Scribe [88] is a multicore deterministic replay system designed

to “go live” from the end of a captured execution; Dora [168] extends Scribe to mean-

ingfully exclude portions of a recording that are affected by divergence. Another line of

work attempts to deterministically reproduce outputs from anonymized logs [40], partial

runtime state [75], or minimal replay logs [2]. By giving up on exact-fidelity determinism,

these systems can re-execute more quickly by executing less code.

2.1.2 Post-mortem Approaches

The alternative to deterministic replay systems are post-mortem tools. These tools gather

exhaustive traces of execution at runtime and provide affordances for querying, analyz-

ing, or visualizing the traced behavior after the program has finished executing. This

section discusses several trace-based systems that are designed for program understand-

ing tasks.

Trace-based approaches to reconstructing program states have been used to support

back-in-time debugging of x86 binaries.. Amber [120] and Nirvana [16] are two tools
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for efficiently collecting, storing, and indexing traces from executions. Both tools use

dynamic binary rewriting frameworks like Valgrind [117] to instrument and capture a

detailed log of register operations, and memory operations, and control flow. Nirvana

employs sophisticated compression mechanisms and partial coalescing to achieve low

overhead while the program executes, but must re-simulate execution to produce accu-

rate results. Amber incurs high capturing overhead but precomputes indexes of memory

effects and requires no re-execution. Tralfamadore [97] captures a low-level unindexed

trace at runtime; offline, it runs a dynamic analysis over the trace in a streaming pipeline

that successively transforms the trace into higher-level events that are meaningful to a

user.

Trace-based approaches have also been used for higher-level languages. The Omni-

scient Debugger for Java (ODB [101]) was the first trace-based omniscient debugger for

Java programs. It heavily instruments the Java Virtual Machine (JVM) bytecode to record

a trace of all memory activity and control flow. It uses information in the trace to populate

views inside an integrated development interface (IDE) within value histories, remateri-

alized local variables, and a call stack. The omniscient debugger TOD [131] improves

on ODB by incorporating modern database indexing and query optimization techniques

and partial deterministic replay. STIQ [130] further improves performance with opti-

mizations for random memory inspection, causality links between reads and writes, and

bidirectional debugger commands (Section 2.1.3). In order to recreate visual output for

post-mortem debugging, Whyline [82] uses domain-specific instrumentation of user in-

terface toolkits in order to save a trace of relevant toolkit invocations.

Trace-based techniques are generally avoided for JavaScript programs because the out-

put of web programs is highly visual in nature and capturing a trace in memory can

quickly make an application become unusably slow. Two exceptions are JSMeter [133]

and DynJS [137], which both instrument the browser itself to collect a detailed trace of

JavaScript execution for offline simulation.



13

2.1.3 Navigating Captured Executions

In order for deterministic replay to serve as the basis for retroactive developer tools, it

must be possible to navigate to statements, events, and relevant program states within

a captured execution. This section discusses different means for low-level navigation

through captured executions.

Text-based commands are often the only interface for controlling back-in-time debug-

gers or deterministic replay infrastructures [113, 169, 170], and often supplement visual

interfaces [101]. In 1990, Tolmach and Appel [165] first described the reverse-step and

reverse-continue commands in a debugger for the ML language. Some seminal work for

imperative debuggers is Boothe’s description of efficient counter-based bi-directional de-

bugging algorithms [21], which includes “reverse” versions of the debugger commands

step-into, step-out, continue, and watchpoint. Arya et al. have recently proposed [7] al-

gorithmic improvements to reverse-watchpoint based on decomposing large debugger

commands [169] like continue into a sequence of step-over and step-into commands.

These improvements are orthogonal to any specific replay or checkpointing strategy, as

long as a stepping debugger operates similarly.

Timelapse’s use of timelines and seekable outputs is specifically designed for casual

use during program understanding tasks. It draws on a long tradition [69] of graphi-

cal history visualizations such as those used extensively in the Chronicle [62] tool. Few

deterministic replay tools can seek execution directly to specific logged outputs without

auxiliary use of breakpoints. The YingYang [107] live programming system is one excep-

tion; however, it depends on a restricted programming model where all operations are

undoable and commutative, and does support interactive programs. Web browsers and

other high-level application platforms are able to relate rendered UI elements to their cor-

responding source implementation or runtime objects, but this is typically limited to the

currently visible output of the program.

DejaVu [77] combines interfaces for replaying, inspecting, and visualizing a computer
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vision kernel program over time. It decouples video inputs from outputs so new versions

of the kernel can be tested against the same inputs. DejaVu assumes a deterministic,

functional kernel so that “checkpointing” and replaying the program is a matter of re-

executing the kernel from a specific frame of the input stream.

Post-mortem, trace-based investigation tools such as Whyline [82], TOD [131], and

ODB [101] support navigating through traces by selecting simulated visual output, con-

sole output, or previous values of objects. Rather than using the selected output as a target

for re-execution, these tools search for the selected instant over a large trace, and display

it in the context of related information such as a matching call stack or local variables.

2.2 Extracting Program States

This dissertation builds on the deterministic replay approach, which is dependent on ad-

ditional methods for extracting program states from live executions produced on-demand.

This section reviews important aspects of runtime data extraction: how to specify, imple-

ment, compose, and choose data-gathering instrumentation. Many of these aspects were

first investigated in the context of dynamic analysis techniques [8] or aspect-oriented pro-

gramming [78], but are equally applicable in other contexts.

2.2.1 Specifying Instrumentation

The ways in which data-collecting instrumentation are used varies widely between lan-

guages, tool chains, application domains, and use cases. Dynamic analysis techniques

tend to contain the most sophisticated instrumentation techniques, because they primar-

ily rely on runtime data [8]. Two defining characteristics of instrumentation are its speci-

fication mechanism: how instrumented source code and data is specified; and its collection

mechanism: how a base program is modified to gather data. Specification mechanisms

greatly affect the complexity of implementing a particular dynamic analyses or technique,

while collection mechanisms greatly affect how instrumentation impacts performance.
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There are a variety of declarative and imperative mechanisms for specifying what

code or data should be instrumented. Aspects [78] have been used to declaratively spec-

ify instrumentation, especially for coarse-grained analyses in high-level languages such

as Java [129, 131, 143] and JavaScript [100, 164]. However, aspects were not designed

for instrumentation, so aspect languages have been extended to simplify common tasks

like instrumenting basic blocks [47], sharing state across join points [105], and cheaply

accessing static and dynamic context at runtime. For greater power, analyses must re-

sort low-level bytecode manipulation libraries [12] to suit their needs. With any of these

mechanisms, an analysis must not perform side-effecting operations on the instrumented

program’s data; this can make some analyses much more difficult to write.

Shadow values—duplicated program values that exist in a parallel address space for

instrumentation purposes—are a powerful mechanism for implementing complex online

dynamic analyses. A dynamic analysis (only one) can add and modify custom anno-

tations in the shadow values as the program accesses the corresponding program val-

ues. Valgrind [117] implements shadow registers and shadow memory for x86 binaries.

Jalangi [148] implements shadow values for JavaScript by wrapping objects within user-

specified segments of JavaScript into a tuple of the application value and the shadow

value. Uninstrumented code uses normal application values. ShadowVM [106] is an

asynchronous, isolated virtual machine (VM) that runs analysis code in a separate thread

or process. In addition to providing shadow values, it provides strong guarantees of iso-

lation and allows an analysis to be profiled and optimized independently of the target

program.

2.2.2 Inserting Instrumentation

Source instrumentation is the technique of instrumenting programs by inserting instru-

mentation directives directly into the program’s source code. Source instrumentation is

rarely used in traditional computing domains due to the lack of source code for arbitrary
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program binaries. However, in the domain of web programs, programs are transmitted

exclusively in source form and standardized bytecodes or binaries don’t exist1. Thus,

the vast majority of dynamic analysis tools for web programs [1, 108, 109, 121, 138, 148,

164] are implemented using source instrumentation. To instrument arbitrary web pro-

grams, these tools intercept incoming JavaScript sources using a reverse proxy [119]. They

then parse and modify JavaScript sources using JavaScript abstract syntax tree (AST) li-

braries [66, 68, 114, 115], and pass the modified program to the browser.

Source instrumentation has severe drawbacks that make it unsuitable for use with

existing developer tools that require a developer to view the resulting code. Transformed

source code is effectively obfuscated, rendering the code jumbled in source code editors.

A breakpoint debugger is of little use because it cannot distinguish application code from

instrumentation code. Control flow, allocations, and other dynamic behaviors are also

perturbed because instrumentation and application code execute at the same execution

level. Lastly, source instrumentation incurs high performance overhead during rewriting

and at runtime, and is ill-equipped to handle the dynamic features of JavaScript [137]

such as eval [139] and aliasing of native methods.

In most runtime environments, bytecode instrumentation [12, 82] and dynamic binary

translation [16, 117] are the standard mechanisms for modifying programs for analysis

purposes. Many dynamic analysis and instrumentation frameworks [12, 16, 105, 117, 148,

164] exist to reduce the engineering effort of instrumenting code at such a low level. Gen-

erally speaking, frameworks provide a discrete set of instrumentation callbacks (memory

read/writes, function call/return, system calls, allocations, etc.) or they provide a declar-

ative API for mutating specific AST locations or bytecode sequences. Bytecode instru-

mentation and dynamic binary rewriting can be made compatible with debuggers, profil-

ers, and other tools. For example, Valgrind implements an in-process remote debugging

1Recently, major browser vendors have convened the WebAssembly community group [172], with the
goal of standardizing a compressed binary AST format for JavaScript code [27]. This proposal would
reduce networking and parsing overhead, but would not simplify source instrumentation, which already
operates at the AST level.
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server [132] for GDB which translates debugger commands to work on instrumented code

and additionally exposes values of shadow memory and shadow registers.

Bytecode-level instrumentation of JavaScript programs is relatively uncommon. Di-

rectly instrumenting a web browser’s rendering engine or JavaScript runtime is inher-

ently browser-specific, and requires much greater knowledge of the runtime environ-

ment. However, the approach has significantly better performance and can gather data

from the virtual machine that is unavailable to JavaScript code [17, 137, 139].

2.2.3 Composing and Scoping Instrumentation

In order for multiple analyses to observe behaviors simultaneously, their respective in-

strumentation must be composable and not interfere with other analyses. Clearly, naively

instrumenting low-level bytecode or source code is not composable because there is no

way to distinguish instrumentation from client code. Researchers of aspect languages

have long been concerned with unexpected interactions between aspects that use the

same join points. Mechanisms such as stratified execution [159, 160] prevent aspects from

advising other aspects. Ansaloni et al. [6] discuss recent work and open problems in this

space, using a running example of three composed dynamic analysis: a calling context

profiler, a basic block profiler, and an allocation profiler.

One important principle for reducing the space and runtime overhead of instrumenta-

tion is to only collect information that’s actually needed. To limit the scope of instrumen-

tation, prior work investigates the use of static and dynamic contexts to selectively instru-

ment code or collect data, respectively. Reflex [158] supports spatial and temporal filters

of behavioral reflection. Other tools adaptively add and remove dynamic instrumentation

to running programs in response to user commands or execution events [20, 33, 126, 136].

However, most instrumentation frameworks (with the notable exception of DTrace [33])

are not dynamic: they assume that only one analysis is active at any given time, that the

set of active analyses is constant over the program’s execution, and that instrumentation
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is applied equally to all code.

2.2.4 Decoupling Execution and Instrumentation

Recently, researchers have investigated techniques for running a dynamic analysis “of-

fline” by decoupling the instrumentation for an analysis from a live execution. This

dissertation refers to the strategy of running dynamic analyses on a replayed execu-

tion [38, 146] as retroactive analysis. More common in the literature is the strategy of

post-hoc trace querying [60, 120, 179] and analysis [96, 129, 130, 131, 133, 137], which

this dissertation refers to as post-mortem analysis because access to a live execution is not

necessary to perform the analysis. Several projects [16, 39, 130, 148, 179] combine trace-

based, query-based and replay-based approaches to achieve interactive response times

for common back-in-time queries. The common idea is to save only an index of a pro-

gram trace’s activity, and perform partial replay from a checkpoint to re-materialize a

full-fidelity execution trace when necessary.

2.3 Designing Developer Tools

While the technical aspects of implementing low-overhead replay, instrumentation and

analyses are challenging and well-studied, their value to a developer ultimately hinges

on the effectiveness of the tool with which they interact. Every tool developer hopes that

their tool is effective, so why do some tools have a large impact, while others are never

used? Researchers in fields such as psychology, sociology, human-computer interaction

(HCI), ergonomics and computer science have developed several theories and models

to account for program comprehension and tool use from a cognitive perspective. This

section connects these traditional research results to more recent research that focuses on

characterizing developers’ information needs, and how these questions motivate compre-

hension tool research. Later, this section reviews related work
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2.3.1 Cognitive Models of Comprehension and Tool Use

Researchers have long sought to understand the cognitive mechanisms that underly pro-

gram comprehension and related activities such as debugging. Détienne [48] provides

a comprehensive history of cognitive models of program comprehension. Researchers

originally modeled program comprehension as a monolithic activity patterned after text

comprehension, using concepts such as chunking, top-down and bottom-up comprehen-

sion to account for developer’s various strategies for reading code. von Mayrhauser and

Vans’s integrated meta-model [171] is representative of influential cognitive models from

the 1980’s and early 1990’s. Storey [152], Storey et al. [153] provides an insightful catalog

of cognitive design elements and design implications for visualization and tool design

that arise from these major theories.

In his dissertation, Walenstein [173] adapts the theory of distributed cognition [72] to

the domain of software engineering to model exactly how comprehension tools become

useful. He focuses specifically on the ways in which the cognitive tasks of software devel-

opment are reconfigured and redistributed by the introduction of developer tools. Using

this framing, he proposes to judge usefulness of a developer tool on the basis of how it is

able to redistribute cognition between the tool and the developer. For example, by keep-

ing a navigable history of search results, an IDE can offload the significant cognitive effort

that would be required for the developer to maintain the same history.

2.3.2 Information Needs and Developers’ Questions

In writing about cognitive questions and design elements for software visualizations, Pe-

tre et al. [127] raise critical questions about the purpose, design, and interpretation of

visualizations. They argue that tool designers must know what programmers actually do

and ask in practice, so that visualizations and other tools support rather than conflict with

these natural representations. Hence, researchers have focused on understanding com-

mon modes of developing software [84, 93], collaborating, seeking information [25, 70],
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describing implicit knowledge [35], and questions during software maintenance [149].

While cognitive models tend to abstract away from detailed examples of information, tool

builders necessarily must design for specific use cases and capabilities. Programmers’

questions are the crucial link between cognitive models of comprehension and tools that

can enhance a programmer’s capabilities. Regardless of the specific theory of model of

program understanding, all models require information—whether as evidence that tests a

hypotheses, as data that solidifies mental models, or as a way to reflect and make explicit

the implicit boundary of what the programmer does and does not know.

In the past 20 years, researchers have shifted from developing large-scale cognitive

models and theories to investigating specific aspects of development. While developing

the Integrated Meta-Model, von Mayrhauser and Vans [171] began making connections

between cognitive models, program understanding tasks and subtasks, and specific in-

formation needs formulated as questions. These information needs were gathered from a

talk-aloud protocol as part of a study wherein professional developers fixed a bug.

Since von Mayrhauser and Vans’s original study, other researchers have used sim-

ilar study designs to understand developers’ practices during code navigation [94, 95]

and information-seeking [25, 83, 128, 149], and problem-solving strategies. Most relevant

to this dissertation, researchers have catalogued common types of questions, including

reachability questions [89, 92], hard-to-answer questions [90] and questions about output

and causality [82]. These questions form a comprehensive account of a tool’s capabilities

from the perspective of its users; many tool papers (including this dissertation) devote

a substantial amount of their motivation to considering how these questions could be

answered by new capabilities and designs.

2.4 Understanding Dynamic Behavior

By providing appropriate user interfaces and using good visual encodings of data, devel-

oper tools can provide tremendous leverage during program understanding tasks. The

remainder of this chapter reviews key aspects of developer tools, including common vi-
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sual encodings of runtime behavior and some considerations for specific domains related

to this dissertation.

2.4.1 Visualizing Dynamic Behaviors

Visualization is a large field with many applications to program comprehension. This

section focuses on visualizations of dynamic behaviors, static and dynamic control flow,

live execution, and ways in which visualizations are incorporated in development envi-

ronments and developer workflows.

At the lowest level, many tools expose dynamic behavior of specific expressions and

statements by augmenting text editors with visualizations. These include popovers, back-

ground and foreground color shading [103], context menus [82, 144], inline gutter/scrollbar

widgets [103, 144], runtime values [82, 103], or links to other views with information

about specific instances [82, 101]. These visualizations can be used to highlight multi-line

units of code, but this can quickly become unmanageable in the presence of namespaces,

anonymous event handlers, and other language features that cause definitions and side-

effecting statements to be frequently juxtaposed. For example, if two functions are nested

in JavaScript, it is unclear whether a statement highlighted in the inner function repre-

sents execution of the inner function or instantiation of the inner function as the outer

function execution.

Visualizations of control flow or causality must relate many source elements scattered

throughout code that cannot fit into a single source editor view. Graph-oriented visu-

alizations [91] and sequence diagrams [82] are common ways of showing these Graphs

and sequence diagrams are inherently distinct in form from source code, so visualizations

must also include contextual hints (such as hyperlinks or a call stack) to remind the user

of the context of each source element.

An important dimension in visualizing dependencies and relationships is spatial orga-

nization: how elements are arranged in space, and how this arrangement implicitly con-
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veys relationships. For example, a horizontal timeline of multithreaded execution [166]

instantly implies temporal dependencies among events generated by different threads,

even if these are not necessarily accurate. A vertically-oriented call stack visualization [63]

can exploit the convention of a stack growing downward to imply the relationship be-

tween callers and callees. The VIVIDE programming environment [156] uses an horizon-

tal, infinitely-scrolling tape of connected editor windows to show past and current IDE

views of a program. Lastly, the Code Canvas line of work [24, 45, 46] explores an infinite

two-dimensional pan-and-zoom canvas for arbitrary spatial organization of editors and

runtime state. This approach is promising for sharing code investigations with others, but

seems difficult to integrate with standard IDE conventions and can become cluttered. The

Light Table IDE2 originally supported arbitrary positioning of editors on a single canvas,

but has since reverted back to the dominant tabbed editor interface.

Developers frequently switch among multiple levels of detail and abstraction to better

suit their information needs. SHriMP Views [154] were an early exploration of providing

multiple levels of detail within the same editor. Other research has used multiple levels of

detail to explain causality relationships for JavaScript events [1]. Some visualization tools

specifically target discovery of high-level trends over the entire execution [44, 55, 74, 131,

142, 166]. Similarly, Röthisberger proposed [142] a query tool in the IDE to drive online

partial dynamic instrumentation.

2.4.2 Visualizing and Exploring Recordings and Traces

In contrast to the dearth of interactive deterministic replay tools, there have been many

tools [82, 131] to visualize, navigate, and explore execution traces3 generated by an instru-

mented program. Execution traces are several orders of magnitude larger than recordings

of nondeterminism and contain very low-level details. Thus, the only way to understand

them is to use elaborate search, analysis, and visualization tools. While Timelapse visual-

2Light Table: https://lighttable.com

https://lighttable.com
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izes an execution as the temporal ordering of its inputs (Section 5.2), trace-based debug-

ging tools [82, 166] infer and display higher-level structural or causal relationships ob-

served during execution. Timelapse’s affordances primarily support navigation through

the recording with respect to program inputs, while trace-based tools focus directly on

aids to program comprehension (such as supporting causal inference or answering ques-

tions about what happened [82]).

Unfortunately, the practicality of many trace-based debugging tools is limited by their

performance on modern hardware and the size of generated execution traces. Profilers,

logging, tracing libraries [33] and other lightweight uses of instrumentation have accept-

able performance because they capture infrequent high-level data or perform sampling.

In contrast, heavyweight fine-grained execution trace collection introduces up to an order

of magnitude slowdown [82, 120]. Generated traces and their indices [130, 131] are very

large and often limited by the size of main memory.

2.4.3 Supporting Behavior Dissemination

Deterministic replay systems that support dissemination of behaviors have only been

widely deployed as part of video game engines [49]. Recordings of gameplay are arti-

facts shared between users for entertainment and education. These recordings are also a

critical tool for debugging video game engines and their network protocols [162]. In the

wider software development community, bug reporting systems [59] and practices [184]

emphasize the sharing of evidence such as program output (e.g., screenshots, stack traces,

logs, memory dumps) and program input (e.g, test cases, configurations, and files). De-

velopers investigate bug reports with user-written reproduction steps.

While this dissertation focuses on the utility of deterministic replay systems for de-

bugging, such systems are also useful for creating and evaluating software. Prior work

has used capture/replay of real captured data to provide a consistent, interactive means

3Execution traces consist of intermediate program states logged over time, while Dolos’s recordings con-
sist only of the program’s inputs.
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for prototyping sensor processing [34, 118] and computer vision [77] algorithms. More

generally, macro-replay systems for reproducing user [163] and network [161] input are

used for prototyping and testing web programs and other user interfaces. Dolos record-

ings (Chapter 3) contain a superset of these inputs; it is possible to synthesize a macro

(i.e, automated test case) for use with other tools. The JSBench tool [138] uses this strat-

egy to synthesize standalone web benchmarks. Derived inputs may improve the results

of state-exploration tools such as Crawljax [108] by providing real, captured input traces.

2.5 Feature Location

2.5.1 Locating Features using Visual Output

Scry (Chapter 6) is uncommon among feature location tools in that uses pixel-level visual

states as input specifications for a feature. Tools for selecting features based on their

output are particularly useful for user interfaces or graphically intensive software such as

video games, web programs [36], and visualizations. This is because many features (and

bugs) have obvious visual manifestations which are easier to find than a feature’s small,

subtle internal states. Visually-oriented runtime environments such as web browsers and

the Self VM [167], have long supported the ability to introspect interface elements from

the program’s current visual output and vice-versa. Scry extends this capability to also

support inspecting and comparing snapshots of past interface states.

2.5.2 Explaining How Interactive Behaviors Work

Scry follows a long line of research [152] that aims to help a developer comprehend spe-

cific program features or behaviors. Recent work for user interfaces has focused on in-

ferring behavioral models [1, 108, 110], logging and visualizing user inputs and runtime

events [30, 123], and using program analysis to produce causal explanations of behav-

iors [82, 148]. Scry shares the same reverse-engineering goals as FireCrystal [123], which

also logs and visualizes DOM mutations that occur in response to user interactions. How-
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ever, FireCrystal reveals all mutation operations on a timeline without any filtering, which

quickly overwhelms the user with low-level details. Scry supports a staged approach to

comprehension by presenting self-contained input/output snapshots and only showing

the mutation operations necessary to explain a single difference between snapshots.

Scry’s example-oriented explanations are similar to those produced by Whyline [82].

Whyline suggests context-relevant comprehension questions that it is able to answer,

whereas Scry enhances a user’s existing information-seeking strategies by providing other-

wise-inaccessible information. Whyline and other tools based on dynamic slicing [177]

may provide more comprehensive and precise explanations than Scry, but require expen-

sive runtime instrumentation that limits the situations in which these tools can be used.

In a different approach to making short explanations, recent work on observation-based

slicing [19, 180] proposes to minimize inputs to a rendering algorithm while preserving

a subset of the resulting visual output. Scry could use this approach to reduce snapshots

by discarding apparently “ineffective” style properties that have no visual effect.
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Chapter 3

DETERMINISTIC REPLAY FOR WEB PROGRAMS1

Many program understanding questions that a developer might ask [80, 90, 149] can

be answered using program states, but gathering program states is difficult given the lim-

itations of current tools. As discussed in Section 1.1, developer tools are currently limited

to inspecting current and future program states of multiple executions, rather than past

states within a single execution. To gather past program states, a developer must con-

figure her tool prior to the behavior’s occurrence, reproduce the behavior with the tool

enabled, and then finally obtain the desired program states from the tool. This tedious,

multi-step iteration cycle requires her to repeatedly reproduce the program behavior she

is inspecting, which can be time-consuming and error-prone [184]. In the case of inter-

active programs, even reproducing a failure can be difficult or impossible: failures can

occur on mouse drag events, be time-dependent, or simply occur too infrequently to eas-

ily reach a program state suitable for debugging the underlying fault.

Deterministic replay is a runtime technique that can capture a single program exe-

cution as it executes, and then automatically re-execute it repeatedly and automatically,

without requiring manual user interaction. With deterministic replay, a developer would

need to manually interact with the program just once. Using retroactive tools (Chapters 5

and 6) that automatically gather past program states, a developer could investigate pro-

gram behavior without stopping to manually reproduce an interaction whenever past

states were necessary.

Deterministic replay techniques have great potential, but have not been widely adopted.

Prior deterministic replay systems for web programs (Section 2.1.1) have major shortcom-

1Contributions in this chapter are described in part in Burg et al. [30].
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ings: they do not integrate well with breakpoints, logging, and other developer tools; they

often have poor performance; and they do not have sufficient fidelity to replay complex

web programs. The choice of deterministic replay over tracing for revisiting past pro-

gram states is critical to the goal of enabling retroactive versions of existing developer

tools, which generally operate on live executions rather that serialized program states.

However, deterministic replay techniques cannot fulfill this vision if they are slow, ex-

clude other tools, or cannot exactly recreate an execution.

This chapter describes Dolos, a novel deterministic replay infrastructure for web pro-

grams that addresses the shortcomings of prior work. To ensure deterministic execution,

Dolos captures and reuses user input, network responses, and other nondeterministic

inputs as the program executes. It does this in a purely additive way—without imped-

ing the use of other tools such as debuggers—by implementing deterministic replay as a

rendering engine feature. This chapter begins with some necessary background material

(Section 3.1) and then introduces the design (Section 3.2) and instantiation (Section 3.3) of

Dolos. The following chapter (starting on page 52) describes extensions to Dolos that sup-

port extracting program states, error detection, recording serialization, and other abilities

that enable the retroactive developer tools described in Chapters 5 and 6.

3.1 Background

This section introduces important background concepts: what web programs are, how

rendering engines execute web programs, how rendering engines and browsers are ar-

chitected, and how this impacts deterministic replay.

3.1.1 Web Programs

Web programs are event-driven, interactive, and highly visual programs typically down-

loaded in source form over a network connection. Once its resources are parsed and eval-

uated, a web program’s execution is driven by user input, asynchronous tasks, network
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traffic, and other events. Interactions are programmed using JavaScript, an imperative,

memory-safe, dynamically-typed scripting language. Web programs make extensive use

of platform APIs to access persistent state, make network requests, programmatically ren-

der visual output.

The execution model of web programs mirrors that of typical graphical user interface

(GUI) frameworks. Work performed by web programs is scheduled cooperatively in a

single-threaded event loop, and execution is naturally divided into a series of event loop

turns. An event loop processes each turn of work sequentially. Worker threads can per-

form parallel computation and communicate with the main program via message pass-

ing. A web program can communicate with other web program instances via message

passing, but are otherwise isolated from other contexts.

As an evolution of a static document format, web programs do not have explicit

boundaries of scope and extent like those associated with processes in modern operating

systems. Web programs can embed sub-programs inside <iframe>, <frame>, and <svg>

elements; the tree formed by transitively closing over this hierarchy of web programs is

referred to as a program’s frame tree (collectively, a page). The means of communication

between parent and child programs in the frame tree depends on their origins. In some

cases they can directly access each other’s heap data, and in other cases they may only

communicate via message passing. To simplify the situation for the purposes of determin-

istic replay, we consider the scope of a single execution to encompass an entire frame tree.

An execution begins when the root node of the frame tree (hereafter, the main frame) initi-

ates a navigation to a new document. An execution ends when the main frame initiates a

navigation to a different document. Thus, the extent of a single execution is between two

navigations of the main frame.
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3.1.2 Rendering Engines

The core functionality of a web browser is referred to as a rendering engine. Rendering

engines are complicated execution environments that produce a web program’s visual

output. A rendering engine processes inputs from the network, user, and timers; exe-

cutes JavaScript; computes page layout; paints the document’s visual representation into

layers; composites multiple layers into a flat image, and renders the image to the screen.

The rendering engine schedules asynchronous computation using a cooperative, single-

threaded event loop. Features that are ancillary to a web program’s execution, such as

bookmarks and a browser’s address bar, are provided by browser applications instead of

the rendering engine.

3.1.3 Features, Ports, and Platforms

Rendering engines are usually designed to support multiple operating systems (hereafter,

platforms), browsers, and application platforms (hereafter, ports). For example, the WebKit

rendering engine is used by the Cocoa toolkit (Mac and iOS), GTK toolkit (Mac OS X,

Windows, Linux), and EFL toolkit (Enlightenment); the Blink rendering engine is used

by the Chrome browser (Mac OS X, Windows, Linux), Opera browser, and many other

applications. Some rendering engine ports expose separate public APIs, which allow

external programs (hereafter, embedders) to embed the rendering engine and customize its

settings and behavior in predefined ways.

How a web program executes is highly dependent on the specific rendering engine

used to execute it. To support a variety of uses, rendering engines aggressively modu-

larize capabilities and features, allowing some features to be enabled, disabled, or cus-

tomized at compile-time or runtime. Most JavaScript-accessible APIs are standardized,

but many lack common test suites, leading to subtle interoperability issues. Many ren-

dering engines expose nonstandard APIs, new input modalities, and embedder-specific

functionality. To use available features without depending on them, web programs often
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perform feature detection—programmatically testing for existence of specific features—and

alter their execution based on their execution environment.

3.1.4 Browser Architecture

Modern browser architectures [135] are designed primarily with performance and secu-

rity concerns in mind. Servo [4], WebKit, and Blink/Chromium use a multi-process model

to enforce least privilege, isolate different web programs, and provide coarse-grained par-

allelism. Low-privilege tasks such as executing JavaScript, rendering/painting web con-

tent, graphics compositing, networking, tool interfaces, and persistent state storage run in

their own child processes and communicate with a parent process via message-passing.

Each child process is isolated using operating system sandboxing; if one child process

crashes due to a failure, other processes are unaffected.

Multi-process architecture has several implications that make deterministic replay eas-

ier to achieve. Strict interfaces at process boundaries help to reveal potentially nondeter-

ministic data flows between major browser and engine components. Messages between

processes cannot reference shared mutable state, so they must fully and exactly charac-

terize inputs which are often nondeterministic. A multi-process architecture also ensures

that access to persistent state, network, and other nondeterministic external resources is

virtualized, making it much easier to make these resources behave in a deterministic man-

ner. Without a multi-process architecture, many of these invasive abstractions (strong in-

terfaces, non-shared state, virtualized resources) must be reimplemented as prerequisites

for deterministic replay.

3.2 Design

The remainder of this chapter describes the design and implementation of Dolos, a de-

terministic replay infrastructure for web programs. The primary purpose of Dolos is to

enhance existing workflows (Chapter 5) and enable new developer tools (Chapter 6) by
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making it possible to revisit past program states within a single execution.

Concretely, the design of Dolos supports these use cases with following requirements:

1. Low overhead. Recording must introduce minimal performance overhead, because

many web programs are performance-sensitive. Replaying must be fast so that users

can quickly revisit past program states.

2. Exact re-execution. Recordings must exactly reproduce observable web program

behavior when replaying. Replaying should not have effects on the network, per-

sistent state, or other external resources.

3. Non-interference. Deterministic replay must not interfere with the use of tools such

as breakpoints, profilers, element inspectors, and logging. (Source-to-source instru-

mentation in particular is disallowed by this requirement.)

4. Deployability. It should be possible to casually use deterministic replay functional-

ity without special hardware, installation, configuration, or elevated user privileges.

These requirements induce significant design constraints that have not been fully ad-

dressed by prior work (further discussed in Section 2.1.1). The closest points in the design

space of deterministic replay techniques are those developed for operating systems [13]

and virtual machines [52]. Like these systems, Dolos provides an execution environment

on which arbitrary programs can be captured and replayed without modifications. Dolos

must mediate access to nondeterministic resources and APIs while allowing nondeter-

ministic and deterministic programs to execute side-by-side.

3.2.1 Types of Nondeterminism

Dolos achieves low overhead by effectively virtualizing sources of nondeterminism and

otherwise executing a web program using the rendering engine’s normal code paths.
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From the rendering engine’s point of view, the web program just so happens to make the

same requests every time; from the web program’s point of view, the rendering engine

just so happens to behave the same way every time.

Compared to other execution environments [73, 113, 170], web program executions

are easier to capture and replay in some aspects, and more difficult in others. The single-

threaded execution model, cooperative scheduling, and memory safety of web programs

make it unnecessary to record thread schedules, instruction counts, and low-level hard-

ware/register states. On the other hand, the plethora of high-level client APIs, low-level

platform APIs, modes of interaction, and complexities of retrofitting a virtual machine

make it very difficult to find and address all sources of nondeterminism that affect execu-

tion.

Nondeterminism manifests in two ways as a web program executes. Table 3.1 pro-

vides an overview of sources of nondeterminism that are common to all web rendering

engines. Environmental inputs are values returned by nondeterministic browser APIs as

they are called by JavaScript code. Web programs use these APIs to detect device charac-

teristics, access persistent storage, and interact with external resources. Event loop inputs

are nondeterministic events that drive execution by evaluating new code, dispatching

DOM events, or running JavaScript callbacks directly. Event loop tasks are received by

the rendering engine, enqueued into the main event loop, and later executed. Most event

loop inputs originate from outside of the rendering engine, and consume an entire event

loop turn.

Nondeterminism originates from both internal and external sources [13]. In rendering

engines, internal nondeterminism arises when the rendering engine itself needs to sched-

ule event loop tasks; if the tasks can transitively cause JavaScript to execute, then the

contents and ordering of these tasks with respect to other event loop inputs is a source

of nondeterminism. Section 3.3.3 discusses some examples of internal nondeterminism

encountered in the WebKit rendering engine.

External nondeterminism originates from outside of the rendering engine; in a multi-
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Input Classification DOM Events & APIs

Keyboard strokes Event Loop keyup, keypress, keydown

Mouse input Event Loop mouseover, click

Scroll wheel Event Loop scroll, mousewheel

Page focus/blur Event Loop focus, blur

Window resize Event Loop resize

Document navigation Event Loop unload, pagehide

Timer callbacks Event Loop setTimeout, Promise

Asynchronous events Event Loop animation events

Network response Event Loop AJAX, images, data

Random numbers Environment Math.random

Browser properties Environment window.navigator

Current time Environment Date.now

Resource cache Environment (none)

Persistent state Environment document.cookie

Policy decisions Environment beforeunload

Table 3.1: Major sources of external nondeterminism in rendering engines.

process browser architecture, these correspond to messages sent between the rendering

process and other processes. External nondeterminism can manifest as both event loop

inputs and environmental inputs. Most user interactions are examples of external nonde-

terminism that is entered into an event loop. When a user types characters, their browser

forwards keystroke events to the rendering engine; the rendering engine queues the in-

put event into its event loop and later acts upon the input when all prior inputs have

been handled. Examples of environmental external nondeterminism include application-

specific policies and persistent states. When a user clicks on a link, the rendering engine

first asks the browser whether the proposed navigation is allowed by the browser’s se-
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curity policy before proceeding. Data storage for persistent state (cookies, local storage,

etc.) is managed by the browser and accessed as needed by the rendering engine.

3.2.2 Intercession Mechanisms

Dolos uses three mechanisms to mediate sources of nondeterminism during capturing

and replaying. The capture/inject mechanism intercepts event loop inputs when capturing

an execution, and later injects the captured inputs during re-execution. The save/restore

mechanism takes a snapshot of an initial state when capturing, and restores the state

snapshot when replaying. Memoization works at the function call level to save and reuse

the results of each invocation. Below, I describe how each of these is deployed to control

common sources of nondeterminism in rendering engines.

Dolos uses capture/inject mechanisms exclusively to control event loop inputs. This

mechanism has two responsibilities: to ensure the same computations are enqueued and

processed by the rendering engine’s event loop on capture and replay; and to prevent

any “live” event loop inputs from being processed during playback. For example, if a

user started typing as a web program is being replayed, the web program should not

process the user’s keyboard events because new interactions with the program would

likely cause execution to diverge. Capture/inject mechanisms can intercept and inject

event loop inputs either when they are enqueued or as they are processed. Dolos takes

the latter approach for reasons described in Section 3.3.1.

Dolos uses both save/restore and memoization mechanisms to control environmen-

tal inputs. Save/restore can be used in cases where an initial state—such as a random

number seed—can be cheaply and completely saved when capturing begins and restored

when playback begins. Once the initial state is restored, subsequent calls to nondeter-

ministic APIs based on this initial state do not need to be handled because execution is

assumed to be deterministic. Memoization can also be used to control the same sources

of nondeterminism by saving and reusing the values returned every time a related non-
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deterministic API—such as Math.random()—is invoked by JavaScript code. In the case of

random numbers, saving the random seed will always require saving less data with the

same deterministic effect. In other cases, such as per-program persistent database stores,

the memoization approach requires less space if the size of the initial state is large and

the size of memoized values is small (and the nondeterministic function is invoked infre-

quently). In many cases, memoization is more straightforward to implement in existing

rendering engines if there is not an existing mechanism for restoring an initial state.

3.2.3 Recording and Input Structure

Dolos recordings contain the data necessary to cause a deterministic execution. This data

is organized hierarchically in a way that mirrors the structure of execution. At the top

level, a recording session consists of one or more segments that correspond to a single

web program execution, as defined in Section 3.1.1. Each segment is a self-contained web

program, such that the execution it represents can be rearranged, added, or removed

from a recording without affecting determinism of other segments2. At the next level of

hierarchy, each segment contains a sequence of event loop inputs. The first elements of

a segment typically represents the initial main frame navigation, actions to save/restore

initial state, and then other event loop inputs as observed during capturing. At the lowest

level of the hierarchy, each event loop input contains zero or more memoized inputs. Each

memoized input belongs to an event loop input that corresponds to the event loop turn

when the memoized input was saved or reused.

3.3 Implementation

Dolos instantiates the deterministic replay strategies outlined above in the context of Web-

Kit [174], a popular rendering engine and browser toolkit. WebKit was chosen because

2This segmentation scheme is also useful as a crude checkpointing mechanism: since a segment does
not depend on the execution of earlier segments, playback can begin from any segment. Checkpointing
is further discussed in Section 3.4.4.
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it contains the most widely-deployed rendering engine (WebCore) and web developer

tools (Web Inspector). Dolos is implemented by modifications to WebKit’s C++ and Java-

Script codebase, and can be used as a drop-in rendering engine replacement for Safari by

adjusting the dynamic library load path. This section describes implementation details

that are specific to the instantiation of Dolos within WebKit. Many of the implementa-

tion choices described in this section may apply to other browsers and replay systems,

but none are essential to the basic design of the deterministic replay infrastructure out-

lined above. These implementation strategies have been refined through multiple proto-

types; The design that this chapter describes is realized by the replay-staging prototype

(Section A.1.5). Each intercession mechanism and component of the capture/replay in-

frastructure has been redesigned several times. Appendix A provides some details about

previous designs that were altered or abandoned.

3.3.1 Capturing and Replaying Executions

Dolos’ strategy for capturing event loop inputs is to save them after they are dequeued

from the event loop and before they are executed, rather than as they are enqueued into

the event loop. Correspondingly, during playback Dolos recreates the actions of event

loop inputs by re-executing (instead of re-enqueuing) them in order. In effect, Dolos cap-

tures the subset of the work performed in the rendering engine’s event loop that can

possibly run JavaScript code or impact the program’s determinism. During playback,

that same subset of work is initiated by Dolos without going through the event loop. The

main benefit of this scheme is that executing event loop inputs is synchronous and only

spans a single event loop turn. This makes certain functionality—such as pausing play-

back, aborting playback, or detecting unexpected execution—much easier to implement.

Alternatives that require asynchronous event loop simulation, such as re-enqueuing event

loop inputs, significantly complicate the replay engine’s internal state machine and pro-

vide few benefits in return.
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For any given event loop input, there may be multiple levels at which one could cap-

ture and inject the event. For example, when a user clicks the mouse, a series of steps

occur: first, a handleMousePress message is sent to rendering engine from the parent process;

second, the user input event is hit-tested against the view hierarchy to find potential event

targets; third, the user input is translated into multiple DOM events such as mousedown,

click, dblclick, or dragstart, depending on the target element and prior inputs; finally, each

DOM event is dispatched to elements within the DOM tree, which may cause registered

JavaScript event handlers to execute.

Unlike other some prior work that explores deterministic replay, Dolos attempts to

capture event loop input events as early as possible in the processing pipeline outlined

above. Mugshot [109] and other tools that rely on source instrumentation [123, 138] typi-

cally capture inputs later in the pipeline, either prior to hit-testing3 or when inputs events

are interpreted and dispatched as DOM events. Capturing DOM events is more diffi-

cult because it requires serializing event data and the element in the DOM tree to which

the element was dispatched. This approach also has lower execution fidelity: rendering

engines can perform arbitrary actions prior to dispatching related DOM events, such as

moving form field focus, interacting with an input method editor (IME), or other state

changes. By contrast, the strategy Dolos uses requires minimal memory use, introduces

minimal runtime overhead, and is easy to implement because it copies simple, uninter-

preted data structures before they are processed by the rendering engine pipeline. There

is no need for Dolos to serialize the event target’s position within the document tree be-

cause hit testing is deterministic.

3.3.2 External Nondeterminism

Dolos captures user input events and navigation events as they are sent to the rendering

process using a capture/inject mechanism. Each message is saved to the active recording

3Guo et al. [65] report on the space and time benefits of memoizing application-level API calls instead of
low-level system calls [145].
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segment when capturing; during playback, each message is redelivered to the rendering

engine through the same code paths as the original message. “Live” messages during

playback, such as a user typing, are not delivered to the rendering engine to avoid diver-

gence. WebKit uses platform-provided event loop implementations to handle incoming

messages from multiple processes. Thus, the exact interleavings that Dolos records are

determined in part by the underlying event loop implementation, and are generally not

deterministic.

Dolos captures network traffic similarly to how it captures user input events. In

WebKit, external resources—such as HTML, JavaScript, and images—are loaded asyn-

chronously and in parallel. As each resource is downloaded, the networking process

sends status update messages to the rendering process. The rendering engine uses these

messages to generate placeholders, dispatch DOM events, or parse and run new Java-

Script code. When capturing, Dolos saves these status update messages, their HTTP head-

ers, and associated raw data. When replaying, Dolos silently blocks the web program’s

network requests from reaching the network process, and redelivers status update mes-

sages to simulate real network traffic. For example, when loading images asynchronously

on Flickr, Dolos saves images as opaque byte buffers split across multiple “data received”

status update messages. When replaying, Dolos redelivers status update messages with

saved image data, and never communicates with Flickr servers.

The DOM provides several mechanisms that allow web programs to schedule asyn-

chronous work, such as window.setTimeout(), window.requestAnimationFrame(), and the Promise

API. Similar to other event loop inputs described above, Dolos captures and injects these

callbacks as they are executed. During playback, Dolos directly executes callbacks in the

observed order (without using the event loop) and prevents new callbacks from being

scheduled during playback.

Environmental sources of nondeterminism are handled using of memoization and

save/restore mechanisms, according to the implementation complexity and space require-

ments of each method. At the time of writing, most DOM APIs, such as window.navigator,
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window.screenX, window.localStorage and window.cookie, are handled by adding memoization

to the code that marshals data between JavaScript and C++. Cookies are an instruc-

tive case for whether to memoize or save/restore nondeterministic values. Most calls

to window.cookie return the same value every time, suggesting that memoization wastes

space. However, at the time of writing, cookie storage is handled by the browser instead

of the rendering engine, so saving and restoring cookie state from within the rendering

engine would require significant refactoring. Since repeated values in a recording can be

interned (when stored in-memory) or compressed (when serialized), using memoization

to handle cookies does not cause a significant increase in space usage.

For environmental nondeterminism handled through memoization, Dolos intercepts

calls from the rendering engine to the underlying nondeterministic platform or port APIs

instead of memoizing calls to nondeterministic JavaScript functions. For example, Do-

los does not record the return value of JavaScript’s Date.now() function; instead, Dolos

memoizes the JavaScript engine’s calls to the currentTimeMS() platform API inside its im-

plementation of the Date.now() function.

3.3.3 Internal Nondeterminism

Because Dolos ensures full determinism of JavaScript, it must take an expansive, pes-

simistic view of what constitutes nondeterminism. Since simply executing JavaScript can

cause divergence, Dolos must mediate all code paths that directly execute JavaScript or

indirectly dispatch DOM events (and thus giving event handlers written in JavaScript a

chance to execute). WebKit’s rendering engine often uses single-shot timers to enforce

asynchronous dispatching of DOM events. For example, load and error DOM events are

dispatched asynchronously in the main event loop after an image or stylesheet is success-

fully parsed. Internally, WebKit uses asynchronous timers to defer the event dispatch.

Dolos handles these internal asynchronous mechanisms in the same way that it controls

public APIs for scheduling asynchronous work in the browser event loop.
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3.4 Evaluation

To the best of our knowledge, Dolos is the first deterministic replay infrastructure that

is deeply integrated into a rendering engine. With any new approach, we must wonder:

is this way any better? Is replay faster or more correct? Is it more work to implement?

What are its fundamental and incidental limitations? This section characterizes the Dolos

approach to replay in terms of performance, replay fidelity, and scalability. The focus

here is on the technical aspects of replay; later chapters demonstrate how Dolos can be

extended (Chapter 4) and used as the basis for retroactive developer tools (Chapters 5

and 6).

3.4.1 Fidelity

The Dolos infrastructure attempts to reproduce4 identical, deterministic JavaScript execu-

tions when capturing and replaying. There is no guarantee regarding number of layout

reflows or paints due to time compression or internal rendering engine nondeterminism.

The determinism of these computations is unimportant because visual output cannot af-

fect the determinism of JavaScript computation. It is possible for JavaScript code to syn-

chronously query the results of computed layout. Methods that perform such queries,

such as Element.offsetLeft, implicitly suspend all other parsing and JavaScript execution

until layout results have been updated. Thus, several layout runs may be coalesced, but

results will always appear deterministic from the point of view of JavaScript code. Paint-

ing and graphics compositing are not observable from client-side JavaScript, and thus are

similarly not addressed.
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3.4.2 Performance

In my experience over the past 4 years, Dolos scales well to real-world interactive web

programs without significantly impacting the user experience. Dolos only saves nonde-

terministic inputs when capturing an execution, so the recordings are very small and can

be easily transferred and replayed on other computers. This section provides a historical

snapshot5 of Dolos’ performance and maintainability characteristics. Subsequent proto-

types (Appendix A) use the same architecture for capturing and replaying, but may be

somewhat faster because the WebKit rendering engine continues to receive general per-

formance optimizations.

Little effort has been spent thus far to optimize the replay infrastructure; despite this,

capture and replay have negligible performance impacts. Table 3.2 describes performance

characteristics of Dolos in a variety of modes and sample web programs. All numbers

report the geometric mean of 10 runs (except for interactive runs, which were recorded

once but replayed 10 times). The standard deviation (computed via arithmetic mean)

was always less than 10% of the geometric mean. Dolos cleared network resource caches

between executions to avoid memory and disk cache nondeterminism. In measurements

of execution time, local copies of benchmarks were used to avoid nondeterminism caused

by network latency and contention. Recording overhead and the amount of data collected

scales with user events, network responses, and uses of environmental inputs, not CPU

time.

Recording has almost no time overhead: execution times are dominated by the sub-

ject program. Dolos’s record/replay performance slowdown is unnoticeable (< 1.1×)

for interactive workloads and modest (≤ 1.65×) for non-interactive benchmarks without

any significant optimization efforts. Replaying at 1× speed is marginally slower than a

4Section 4.3 describes several runtime mechanisms that can detect when and where execution has di-
verged.

5All measurements and numbers in this section were obtained in Spring 2013 using the timelapse-git
prototype, as described in Section A.1.3.
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normal execution due to extra work performed by Dolos, and seeking (fast replaying) is

much faster because it elides user and network waits from the recorded execution.

While being created or replayed, recordings are stored in-memory and consume mod-

est amounts of memory (first column in the data size section of Table 3.2). When seri-

alized, the recordings are highly compressible. A recording’s length is limited only by

main memory; in user studies (Chapter 7), users attempted to minimize recording length

to reduce the number of inputs that must be later searched, and rarely created recordings

that exceeded a couple of minutes.

3.4.3 Scalability of the Approach

Dolos’s design scales to new platforms, ports, and sources of nondeterminism, and rep-

resents a tiny addition to the rendering engine’s codebase. The timelapse-git prototype

of Dolos (Section A.1.3) consists of 7.6K source lines of code (SLOC), distributed across

74 new files and 75 modified files. For comparison, WebKit contains about 1.38M SLOC.

Intercession mechanisms are typically installed at existing module boundaries, such as

within the cross-language bindings between DOM and JavaScript, or at the rendering

engine’s process boundaries. Implementing Dolos required minimal changes to WebKit’s

architecture. Cases where clear boundaries already existed—such as user inputs, network

traffic, and random numbers—made it easy to deploy intercession mechanisms. More

substantial efforts were required in cases that lacked these boundaries, such as splitting

execution into segments and handling internal nondeterminism.

At the code level, I have spent a lot of time to reduce the amount of code necessary to

represent and control sources of nondeterminism. The name, type, and data members for

each nondeterministic input are described declaratively in a JSON specification file; the

build system automatically generates most “boilerplate” C++ code that is not unique to

any input. Figures 3.1 and 3.2 show these specifications for the current time (memoized),

random number seed (save/restore), and resource data received (event loop) nondeter-
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ministic inputs. For each event loop input, Dolos additionally requires a hand-written

EventLoopInput::dispatch method that encapsulates actions to take during playback to sim-

ulate an event loop input (Figure 3.3). Lastly, for each input, Dolos must insert an inter-

cession mechanism into existing code. Figures 3.4, 3.5 and 3.6 show example uses of these

intercession mechanisms for the same inputs listed above.

3.4.4 Limitations

Dolos is the first deterministic replay infrastructure for the web that attempts to be com-

pletely deterministic. This design goal is the fundamental reason why deterministic re-

play is a suitable foundation for retroactive developer tools (Chapter 4, Chapter 5, Chap-

ter 8). It is also a very difficult goal to achieve and has been the source of many com-

promises and tradeoffs. This section describes some of the limitations inherent to the

fully-deterministic playback approach taken by Dolos.

Limited Checkpointing

Unlike most prior research into deterministic replay, Dolos explicitly does not try to create

intermediate checkpoints to accelerate random-access seeking times. However, Dolos can

begin playback from any segment in a recording session, so this acts as a coarse-grained

checkpointing mechanism. In initial user studies (Chapter 7), web program executions

were usually short enough (and playback fast enough) that always replaying from the

beginning was not too burdensome when using input and output-oriented navigation.

For longer recordings, or in situations where fast feedback is desired—such as “step-

backward” debugger commands (Section 2.1.3)—checkpoints would be much more use-

ful. Prior work has investigated client-side state migration [104] and snapshotting the

JavaScript heap at the virtual machine (VM) level [10]. Neither of these approaches is

directly applicable to Dolos. Neither addresses how to control the rendering engine’s in-

ternal nondeterminism (Section 3.3.3), or how to serialize internal rendering engine states
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that affect web program execution. Imagen [104] relies on source instrumentation and

requires interposition on key DOM APIs, which can break existing web content, ren-

der debuggers useless, and prevent JavaScript engines from performing optimizations.

Tardis [10] serializes the JavaScript heap efficiently, but does not save the state of the

DOM. Further research is needed to efficiently create intra-execution checkpoints that

can be used by Dolos.

Scope of Determinism

Dolos only ensures deterministic execution for client-side portions of web programs. It

records and simulates client interactions with a remote server, but does not directly cap-

ture server-side state. Tools that link client- and server-side execution traces [181] may

benefit from the additional runtime context provided by a Dolos recording.

Dolos cannot control the determinism of local, external software components such as

Flash, Silverlight, or other plugins. As plugins are sandboxed in their own process and

interact with the rendering engine via well-defined APIs, Dolos could capture and repro-

duce the effects of a plugin on the web program using capture/inject and memoization

mechanisms. During playback, the rendering engine would not be able to actually load

and run the plugin content, since it may perform arbitrary computation.

The Dolos prototype does not address all known sources of nondeterminism6, such as

the Touch, Battery, Sensor, Screen, or Clipboard APIs, among others. There are no concep-

tual barriers to supporting these features: they are implemented in terms of standardized

DOM events and interfaces, making them relatively easy to interpose upon using mecha-

nisms described in Section 3.2.2. Each new program input requires local changes to route

control flow through a mechanisms and new code to marshall the input’s data. Event

loop inputs additionally require code to inject the input event during playback. The de-

sign documentation for the web replay feature [29] tracks handled and unhandled sources
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of nondeterminism in mainline WebKit.

Rendering engines provide many APIs that are can be called nondeterministically by

browsers, but do not affect web program determinism. For example, WebKit’s rendering

engine includes APIs for usability features like native spell-checking, in-page search, and

accessibility. Dolos does not attempt to control these nondeterministic APIs because these

features do not affect the execution of the web program, and a developer may wish to use

such features differently during playback.

Generalizability

Dolos’s record/replay strategy relies on having good places to virtualize sources of non-

determinism. Rendering engines or execution environments without clear boundaries

will require greater engineering efforts to support deterministic replay. For example, the

Gecko rendering engine used by the Firefox browser [112] is architected as dozens of de-

coupled components whose instances are shared between multiple web pages. Gecko is

also a primarily single-process rendering engine. This design makes it easy to extend the

browser and rendering engine, but difficult to capture and replay a specific web program

in isolation from other web programs. Placing intercession mechanisms is also more dif-

ficult, as there are fewer existing boundaries between the browser and rendering engine.

3.5 Summary

This chapter adapts classical deterministic replay techniques to the domain of web pro-

grams: visual, event-driven programs written in high-level managed languages. Dolos is

one instantiation of this approach for the WebKit rendering engine. Together, the design

and instantiation of Dolos make the following contributions:

1. A software architecture for integrating deterministic replay into modern browser

6A somewhat outdated audit of nondeterministic APIs is available on at the following address:
https://github.com/burg/timelapse/wiki/Note-sources-of-nondeterminism

https://github.com/burg/timelapse/wiki/Note-sources-of-nondeterminism
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rendering engines.

2. An enumeration and categorization of the sources of nondeterminism that impact

how a web program executes.

3. Case studies illustrating how three mechanisms can efficiently interpose on impor-

tant classes of nondeterministic inputs.

4. Evidence that deterministic replay has negligible space and time overheads for in-

teractive web programs.
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Figure 3.1: Input specifications for GetCurrentTime and SetRandomSeed. Each input specifica-

tion lists the input’s name, intercession mechanism type, and data members.

Figure 3.2: Input specification for DidReceiveData. Input specifications can reference arbitrary

C++ data types in describing data members, provided that serialization routines for the data type

have been implemented.
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Figure 3.3: A dispatch implementation for DidReceiveData. Dispatching can access any inter-

nal rendering engine state, and must complete synchronously. This method finds an appropriate

resource and synthesizes a callback using data from a buffer.

. . .

Figure 3.4: Code that interposes on the new Date() API. The top half saves or fetches a memo-

ized timestamp from the current recording. The bottom half shows the full implementation of

Date.[[Constructor]]; replay-related code is highlighted in blue.
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Figure 3.5: Code that saves and restores the initial random seed. This method is called whenever

a new web program execution begins (i.e., a top-level document or iframe).
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Figure 3.6: Code that captures an input for incoming resource data. Code within the

ENABLE(WEB REPLAY) guard captures the relevant data for the callback and creates an event loop

input with an isolated copy of the received resource data. The corresponding dispatch method

executed during playback (Figure 3.3) calls this method again using the saved data.
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Chapter 4

REPLAY EXTENSIONS AND APPLICATIONS1

Retroactive developer tools are distinguished by their ability to go “back in time” to

reveal past program states. This ability is really the combination of two distinct capabil-

ities: the capability to capture the essence of a specific execution, and the capability to

extract and revisit program states within a captured execution. The Dolos determinis-

tic replay infrastructure (Chapter 3) fulfills the former capability. This chapter describes

extensions2 to Dolos that fulfill the latter capability by supporting navigation within a

captured execution and automated extraction of program states.

This chapter also describes other ancillary extensions to Dolos that support robust,

fault-tolerant deterministic replay. While Dolos is designed to ensure completely deter-

ministic replay, this is a top-level quality goal for its instantiations, rather than a guarantee

of the Dolos design. Web browsers are large, complex pieces of software with many input

and output modalities that involve nondeterminism. Thus, a deterministic replay infras-

tructure for such a system is likely to contain a large number of known and unknown

faults where replay support is inadequate. Automatically detecting errors and handling

any resulting failures is critical when using replay systems in real-world situations. These

capabilities are also generally useful for finding and diagnosing faults in the Dolos infras-

tructure.

1The results in this chapter appear in part in Burg et al. [30] and Burg et al. [31]. Some features were
upstreamed to WebKit and shipped in Safari 8; see Section A.1.5 for details.

2These additional features are referred to as extensions because they do not impact the architecture or
intercession mechanisms used by Dolos. However, these features are not dynamic extensions [99] that
can be toggled; rather, they are extra features added to Dolos itself.
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4.1 Navigating to Program States

In order for a developer to jump back in time to specific values or statements, it must be

possible to uniquely identify any executed statement and re-execute back to a given state-

ment using commands provided by Dolos and a breakpoint debugger. This section intro-

duces timepoints as the key abstraction for referring to a specific execution of a statement.

Timepoints are used by Timelapse to implement debugger bookmarks (Section 4.1.2) and

time-indexed outputs (Section 5.3); these uses are described in the relevant chapters.

4.1.1 Uniquely Identifying Executed Statements

A timepoint is a unique temporal address for a single execution of a statement (hence-

forth, an execution instant). Timepoints are a tuple consisting of four pieces of data: the

current recording segment’s offset, the preceding event loop input’s offset, the source

code location (file, line number, and column number), and an execution ordinal. The first

two elements identify a specific event loop turn in which the timepoint occurred; the sec-

ond two elements identify a single statement and a single execution of that statement. All

of this data is readily available during capturing and playback except for the execution

ordinal. An execution instant’s ordinal can be obtained in two ways: by associating an

increment-on-execute counter with each statement, or by counting breakpoint pauses at

a statement since the previous event loop turn. Counters are automatically installed for

statements that are known to be output-producing, such as console.log and document.write;

counters for arbitrary statements can be added as-needed3.

Dolos re-executes up to a timepoint in three phases. First, Dolos uses the recording

segment offset and event loop input offset to replay to the preceding event loop input.

Then, Dolos installs an increment-on-execute counter (described below) just prior the

timepoint’s statement; finally, execution is suspended by the debugger when the counter

3There is no conceptual reason why counters could not be maintained for every statement or basic block
in the web program. These restrictions reflect the performance limitations of the current breakpoint-based
implementation described below.



54

is incremented n times.

Counters are currently implemented using JavaScript breakpoint actions that are hid-

den from the user interface. Emitting these counters directly into the program’s bytecode

would permit much faster execution if the counter must be incremented many times,

with the tradeoff of greater engineering effort. While breakpoints are a useful mecha-

nism for suspending execution and collecting infrequent data, their use incurs a signifi-

cant (10×) performance overhead4. This slowdown can negate the interactive qualities of

retroactive tools, which may lead a developer to use them in a more cumbersome batch-

oriented manner. In its current form, Dolos uses several strategies to minimize the use

of breakpoints. When replaying to a timepoint, Dolos completely disables the JavaScript

debugger until playback has reached the preceding event loop input. Then, Dolos in-

stalls a counter by setting a single breakpoint at the timepoint’s statement. This limits

breakpoint-induced slowdowns to the single event loop turn that contains the timepoint.

4.1.2 Debugger Bookmarks

Whenever a developer wants to repeatedly inspect two or more program states using a

debugger’s state inspection tools, she must first suspend execution at an execution in-

stant using timepoints, breakpoints, and/or debugger commands (Section 2.1.3). Debug-

ger bookmarks are a Dolos extension for saving and quickly restoring execution instants

reached via debugger commands for which the associated timepoint is not known. A

debugger bookmark consists of a base timepoint (corresponding to when the debugger

first pauses) and a list of debugger commands (step-into, step-over, etc.) that can be

executed to reach the execution instant from the timepoint. A fresh “replay log” of de-

bugger commands is preëmptively captured for the duration of each event loop input.

To re-execute up to a debugger bookmark, Dolos seeks to the bookmark’s timepoint, and

then simulates commands from the debugger replay log. Debugger bookmarks make it

4The mere presence of breakpoints deoptimizes emitted bytecode and prevents most adaptive optimiza-
tions such as inline caches.
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possible to initiate a dynamic analysis from any state during playback and revert back to

the initial state after an analysis has complete.

4.2 Extracting Program States

A captured execution contains an enormous corpus of ephemeral runtime data that is

only available as execution proceeds. This data includes both operations—user events,

callbacks, control flow, program operations, visual output—as well as aggregate data, such

as the state of the stack and heap, profiling information, and logged values.

The main difficulty in working with this data is that it is produced as a side-effect of ex-

ecution; extracting data inherently requires re-execution. If a captured execution is being

replayed non-interactively5, then this is not a problem. In contrast, retroactive developer

tools are used directly by humans, whose expectations raise interesting questions. How

can tools extract program states at interactive rates? How can tools extract states without

disrupting task context?

4.2.1 Scanning Algorithms6

As a developer’s information needs change, retroactive tools should be able to collect

different program states using different sets of instrumentations. To support this, Do-

los provides a scanning command that automatically re-executes a contiguous region of

the captured execution with instrumentation enabled. This command allows a tool to

asynchronously collect past program states without reimplementing common low-level

tasks, such as scheduling playback. It also allows for data collection to be virtualized in

environments where background scanning is possible (see Section 4.2.2).

The scanning algorithm is illustrated by cases in Figure 4.1. Scanning has two design

5This dissertation focuses on interactive, developer tool-oriented uses of deterministic replay. Section 8.4
describes several batch, non-interactive use cases for deterministic replay.

6The scanning algorithm presented here was originally created as a CSE 503 course project, and has been
improved and generalized since then.
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constraints: execution should return to the initial timepoint (to restore the tool user’s task

context), and redundant re-execution should avoided when possible (to make scanning

fast). Scanning is agnostic to the particular instrumentation approach; the scanning com-

mand delegates enabling and disabling instrumentation to the caller, invoking these oper-

ations at appropriate times during playback. In common cases (Figure 4.1(a–d)), scanning

requires instrumented re-execution up to and over the specified region, and normal re-

execution back to the starting timepoint. In the degenerate case (Figure 4.1(e)) where the

starting timepoint is within the specified region and instrumentation cannot be enabled

at the starting timepoint7, some redundant execution is necessary to return to the starting

timepoint.

As a relatively late feature addition to Dolos, scanning has only been used sparingly

by the tools in this dissertation. I used scanning to implement proactive detection of

breakpoint pauses (surfaced as Breakpoint Radar in Section 5.2.4) and automated collec-

tion of probe samples (Section 5.3). It was also used in experiments to gather profiling

data retroactively over a user-selected region. As future work, it could be used by Scry

(Chapter 6) to capture past visual states.

4.2.2 Virtualizing State Extraction

A significant limitation of extracting program states from recordings is that a tool user

must idly watch as the web program is re-executed during scanning. Ideally, this data

collection would be performed in a background rendering engine process, without control-

ling execution of the foreground web program. If extraction of program states be virtu-

alized, then asynchronous, parallel, or distributed scanning algorithms could accelerate

extraction of these states and enable a less disruptive user experience.

This section discusses prerequisites for virtualizing the extraction of program states,

7Breakpoints and probes can be modified any time and take effect immediately. Bytecode instrumen-
tation of JavaScript requires recompiling all code blocks, which can only be done when the call stack is
empty (i.e., at the beginning or end of an event loop turn). Source instrumentation of JavaScript happens
when scripts are initially parsed, and thus requires re-execution from the start of a recording segment.
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Figure 4.1: Diagrams showing different cases of the scanning algorithm. Each diagram represents

a recording with 2 segments and 6 event loop turns; hash marks denote event loop turn bound-

aries, and vertical rules denote recording segment boundaries. Red arrows denote instrumented

execution, gray arrows denote uninstrumented execution, and numbers denote sequencing of re-

execution commands. The target region (shaded in gray) must always be covered by instrumented

execution, and execution must return to the starting execution instant (blue diamond).

and sketches how an asynchronous “worker” architecture might work. Implementing

and evaluating this design in WebKit requires substantial engineering, and is left to future

work.

The requirements for splitting the extraction of program states are similar to the re-

quirements when programming with libraries that implement task and data parallelism [98].

Specifically:



58

• Data collection should be divisible (i.e., segregated by event loop turn) so that differ-

ent workers can efficiently split re-execution of the specified region.

• Collected data should be combinable so that data from different regions can be col-

lated together and redundant data can be deduplicated.

• Collected data should be serializable so that data collected by other processes or ma-

chines can be remitted to the retroactive tool’s process on the developer’s machine.

Figure 4.2 shows a proposed design for virtualized extraction of program states. At

an architectural level, a primary process coordinates the instrumented re-executions per-

formed by one or more worker processes. As program states are collected by specific

agents8 during re-execution, they generate state update messages which are replicated

back to the corresponding agent in the primary process. When data is collected locally in

the primary process, state update messages do not need to be replicated.

4.3 Mitigating Replay Faults

Web browsers contains many sources of nondeterminism, and invariably, not all of them

are handled properly by a research prototype like Dolos. Adding code to control all

sources of nondeterminism is a huge engineering effort for any runtime. Rendering

engines receive many code changes per day, and a nontrivial fraction of these changes

introduce or modify sources of nondeterminism. In many cases—such as obsolete or

experimental APIs or configurations—adding replay support is simply not that impor-

tant. Thus, waiting until “everything works” is a not a good strategy for building out

and adopting deterministic replay in production-quality runtimes. Instead, implemen-

tors should build deterministic replay systems incrementally and anticipate that errors or

8The Web Inspector [175] developer tool suite splits its functionality into multiple agents that instrument
distinct parts of the rendering engine. Some agents include those for the Timeline, DOM modifications,
JavaScript Debugger, Scry, Profiler, and Local Storage.
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Figure 4.2: Diagram of a proposed architecture for virtualized extraction of program states.

failures may occur during capture and replay, and design mechanisms to detect these er-

rors and safely recover or abort playback. This section explains invariants and oracles that

Dolos uses to detect and mitigate a fault’s corresponding errors (benign divergence) and

failures (JavaScript divergence). For consistency, in this section I refer to a lack of control

over a specific source of nondeterminism as a fault/defect within Dolos, following the

definitions in Section 1.3.

Dolos considers a replay error to have occurred when an execution differs in any re-

spect that could potentially cause JavaScript code to execute in a divergent way. All er-

rors represent a defect in Dolos’ handling of nondeterminism. However, most errors are

“harmless”: JavaScript still executes the same way because the nondeterminism was in-

consequental to the execution (i.e., a user input event fired DOM events for which there

were no event listeners). These occurrences of “benevolent nondeterminism” can be

safely ignored by a tool user, but are very useful clues to a tool developer when isolat-

ing defects in the replay infrastructure. To match these expectations, the error detection

techniques in this section are only performed in debug builds of Dolos. In normal builds,
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Dolos attempts to continue playback as long as possible, stopping only when JavaScript

code requests invalid memoized inputs from the replay log.

Dolos detects some replay errors by capturing additional bookkeeping during captur-

ing and replaying. Dolos uses a variety of deterministic metrics that can be cheaply sam-

pled, such as DOM node counts, DOM event dispatch counts, and API call counts. Dolos

samples these metrics before every event loop turn and looks for discrepancies between

the data collected during capturing and replaying. In practice, collecting metrics once per

event loop turn is cheap and provides sufficient detail to quickly isolate errors to the pre-

ceding event loop inputs. In the past few years, metrics comparisons have helped me find

and address obscure sources of nondeterminism, such as unintentional interactions with

the resource cache, asynchrony in the HTML parser, initial window dimensions, default

form element focus state, and improper delivery of event loop inputs to nested <iframe>

elements.

Dolos detects other replay errors by checking critical invariants whenever JavaScript

code begins to execute, or as a simulated event loop turn finishes. Recall that any event

loop input that causes JavaScript code to execute is considered nondeterministic and must

be captured and replayed by Dolos. During playback, these event loop inputs are dis-

patched in order to initiate processing by the rendering engine. Thus, Dolos checks the

invariant during playback that whenever JavaScript code executes, there should exist an initi-

ating event loop input that is currently being synchronously dispatched by Dolos. If the opposite

is discovered—that JavaScript is running with an unknown initiating event loop input—

then this is evidence of unhandled nondeterminism. In the past two years, this invariant

has detected the majority of unhandled nondeterminism. Another invariant is that pro-

cessing of an event loop input should always require the same number of memoized inputs. If a

different number memoized inputs are requested, this is evidence of more significant un-

handled nondeterminism that caused JavaScript execution to diverge. Violations of this

invariant are more difficult to debug because the error that caused the mismatch might

have happened much earlier in the execution.
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4.4 Summary

This chapter presents several extensions to the core deterministic replay infrastructure

of Chapter 3 that make it suitable for use by retroactive developer tools in real-world

scenarios. With these extensions, Dolos can be used to extract and navigate to program

states in a captured execution. Together, the extensions in this chapter make the following

contributions:

• A scheme for uniquely identifying and re-executing to any executed statement.

• An algorithm for quickly collecting program states from a captured execution using

arbitrary instrumentation.

• A design for distributing the collection of past program states to worker processes.

• Invariants and oracles that can detect replay errors and failures.
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Chapter 5

INTERFACES FOR NAVIGATING CAPTURED EXECUTIONS1

The techniques for collecting past program states described in previous chapters dra-

matically change the problems that tool creators face: rather than runtime data being

scarce and difficult to collect, runtime data is now abundant and requires the use of vi-

sualization and retrieval techniques to avoid information overload. This chapter investi-

gates interfaces that expose these new capabilities and runtime states in ways that enable

a developer to more easily answer her own questions about program behavior.

The techniques of previous chapters make it possible to automatically reproduce be-

haviors, but reproducing a behavior is just one sub-task in a complex program under-

standing task. To make further progress, a developer uses tools to satisfy her information

needs (Section 2.3.2) and answer her questions about program behaviors. Since runtime

states are abundant, retroactive developer tools are primarily concerned with finding rele-

vant program states, visualizing program states over time, and navigating between relevant

program states.

This chapter describes two retroactive developer tools that exemplify complimentary

approaches for navigating through a captured execution2. Timelapse (Section 5.2) is a

timeline-oriented visualization that allows a developer to navigate a recording via its in-

put events. Data probes (Section 5.3) are an alternative interface that allows a developer to

retroactively log program states and navigate via these ad-hoc logged states. The chapter

begins by presenting design issues applicable to any replay interface, and then introduces

each design and its implications using running examples.

1The results in this chapter appear in part in Burg et al. [30] and Burg et al. [31]. Some features were
upstreamed to WebKit and shipped in Safari 8; see Section A.1.5 for details.

2I particularly focus on navigation as a lens for understanding changes in a developer’s program un-
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5.1 Controls for Capture and Playback

A user of a retroactive tool should always know whether the web program they are look-

ing at is being captured, replayed, or suspended, and why. The replay system’s state is

significant because it determines what other operations and capabilities are available. For

example, Dolos ignores “live” user inputs during replaying; if there were no visual indi-

cation that playback is in progress, then the browser may simply appear to be buggy or

stuck because it seemingly ignores all user input. To surface system state, this chapter’s

prototypes use a combination of page overlays (such as dimming the inspected page or

adding a colored border), enabling or disabling commands (visualized through the but-

tons described in this section), and visualization-specific aids such as animations.

Another usability issue is the matter of how to communicate replay errors and failures

(Section 4.3), and how to proceed if an error is recoverable. Timelapse logs a warning

to the console when known-unsupported nondeterministic APIs are used. If a replay

failure occurs (i.e., Dolos detects divergence of JavaScript execution), a dialog appears

that allows the user to abort playback, continue using best-effort playback, or file a bug

using the created recording as a failing test case.

A tool for revisiting past program states must expose controls for starting and stopping

the capture or playback of an execution. Like prior work [109, 170], both of the retroactive

developer tools presented in this chapter expose VCR-like buttons (seen at the bottom of

Figure 5.1) that control the basic operation of the replay infrastructure. Below, I enumerate

each button and its purpose.

• The “record” button (Figure 5.1(6)) starts and stops recording. When initially pressed,

Dolos will restart (i.e., reload) the current web program and begin capturing its ex-

ecution. During capturing, a developer can interact with the web program to re-

derstanding processes. Recent applications of information foraging theory (IFT) to program understand-
ing [57, 95] provide a deeper examination of navigation as one of the key observable actions during
development tasks. Despite the obvious connections to IFT, the user interface designs in this chapter
were not explicitly motivated by recent IFT work; this would be an interesting avenue for future work.
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produce behaviors of interest. Pressing the record button again will finalize the

recording and suspend execution immediately.

• The “play/pause” button (Figure 5.1(7)) initiates or suspends playback depending

on the current replay system state. By default, the play button will resume or restart

playback at 1× speed to simulate the timings captured in the original execution. The

pause button will halt further dispatch of event loop inputs by Dolos, effectively

starving the web program of further events. When paused or during playback, the

web program does not accept live inputs.

• The “lock/unlock” button (not pictured3) indicates whether or not live user inputs

are being processed by the rendering engine. During capturing, the button is always

unlocked, indicating live inputs are being captured; during playback, the button is

usually locked to indicate that live inputs are being ignored. Pressing the locked

button disables Dolos’ input blocking functionality, allowing a user to intentionally

diverge execution during playback by feeding it new user input events.

• The “eject” button (not pictured) allows a developer to discontinue capturing or

playback with the currently-loaded recording. As the replay infrastucture can only

load one recording at a time, this disc player metaphor clearly communicates the

state of the replay system.

To get a sense for how these basic replay controls outlined above might be used in real

development tasks, we conducted a small pilot study with our first prototype interface

(Figure A.1, p. 132). Using contextual inquiry, we found that developers primarily used

the prototype to isolate buggy output and to quickly reach specific states when work-

ing backwards from buggy output towards its root cause. Towards these ends, several

3The lock button was removed from later prototypes. In user studies, users did not understand its
purpose. Later prototypes adopted the “eject” button, which implicitly performs an unlock if clicked
while locked.
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common use cases emerged: “play and watch”; isolating output using random-access

seeking; stepping through execution in single-input increments, and reading low-level

input details or logged output.

5.2 Navigating Executions via Input Events

The basic replay controls outlined above allow a developer to capture an execution and

replay linearly, but in many situations, a developer wants to seek non-linearly through an

execution to specific behaviors or interactions. Timelapse is a retroactive developer tool

that provides a time series visualization of a captured execution. Timelapse uses discrete

timelines to visualize classes of event loop inputs over time, and a linked data table to

reveal low-level details about each input event. A developer can use these interactive vi-

sualizations of program inputs to replay up to interesting points in the recording, and then

use the debugger or other tools to further understand program behavior. The remainder

of this section explains Timelapse’s visual encodings, interface design, and interactivity,

and then walks through Timelapse’s functionality using a running example.

5.2.1 Interface Design

Timelapse visualizes a captured execution’s nondeterministic inputs over time using mul-

tiple timeline widgets (Figure 5.1). Timelines are appropriate for visualizing executions

because they can compactly summarize time series data, such as past program states and

inputs. Timelines of execution have been a core feature of the Web Inspector [175] for

a long time. Compared to these existing timelines which visualize traces of execution

events, Timelapse’s timelines support navigation to past execution instants in the record-

ing by interacting with data points in the visualization. As the first interface built atop of

Dolos, Timelapse also served a dual purpose during development as a window into the

inner workings of Dolos, showing detailed information about each event loop input and

other diagnostics, which are not discussed further.
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Figure 5.1: The Timelapse tool interface presents multiple linked views of recorded program

inputs. Above, the timelines drawer (1) is juxtaposed with a detailed view of program inputs (2).

The recording overview (3) shows inputs over time with a stacked line graph, colored by category.

The overview’s selected region is displayed in greater detail in the heatmap view (4). Circle sizes

indicate input density per category. In each view, the red cursor (5) indicates the current replay

position and can be dragged. Buttons allow for recording (6), 1× speed replay (7), and breakpoint

scanning (8). Details for the selected circle (9a) are shown in a side panel (9b).
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Timelapse’s timelines use a simple visual encoding to summarize inputs over time on

a single axis. Each timeline represents a category of event loop inputs, such as network,

asynchronous work, and user events; each timeline maintains its own color scheme. The

x-axis is used as a linear time scale; each input is plotted according to its timestamp. Cir-

cles are used to encode the density of inputs per unit time; circle radius is determined

using static buckets. Slight variations in transparency are also used as a redundant en-

coding of input density. Single circles can be clicked to see their constituent inputs, or

double-clicked to seek execution to the first input within that circle.

In addition to heatmap-like timelines, Timelapse uses a linked overview and details

table to support zooming, filtering, and details on demand. During playback, a red cursor

in the timelines and details table surfaces the current progress of execution. The red cursor

can also be dragged and dropped in the overview, timelines, or details table to seek to

specific inputs. The rest of this section motivates Timelapse’s user interface elements and

interactions by example.

5.2.2 Example: (Buggy) Space Invaders

Steph, a new hire at a fictitious game company, has been asked to fix a bug in a JavaScript

version of the Space Invaders video game4. In this game, the player moves a defend-

ing ship and shoots advancing aliens. The game’s implementation is representative of

modern object-oriented interactive web programs: it uses timer callbacks, event-driven

programming, helper libraries, and responds to user input. The game contains a defect

that allows multiple player bullets to be in flight at a time; there is only supposed to be

one player bullet at a time (Figure 5.2).

Steph is unfamiliar with the Space Invaders implementation, so her first step towards

understanding and fixing the multiple-bullet bug is to figure out how to reliably repro-

duce it. This is difficult because the failure only occurs in specific game states and is

4Space Invaders: http://matthaynes.net/playground/javascript/glow/spaceinvaders/

http://matthaynes.net/playground/javascript/glow/spaceinvaders/
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Figure 5.2: Screenshots of normal and buggy Space Invader game mechanics. Only one bullet

should be in play at a time (shown on left). Due to misuse of library code, each bullet fires two

asynchronous bulletDied events instead of one event when it is destroyed. The double dispatch

sometimes enables multiple player bullets being in play at once (shown on right). This happens

when two bullets are created: one between two bulletDied events, and the other after both events.

influenced by execution conditions outside of her control, such as random numbers, the

current time, or asynchronous network requests. To reproduce the bug without Time-

lapse, Steph would have to multitask between playing the video game and writing down

reproduction steps. Once she establishes reliable reproduction steps, she could then use

breakpoints to further understand the bug. But, breakpoints might themselves affect tim-

ing, making the failure harder to trigger or requiring modified reproduction steps.

Using Timelapse, Steph begins capturing program behaviors by pressing the “record”

button (Figure 5.1(6)). Then, she plays the game until the failure manifests, and then she

presses the button again to stop capturing. Once capturing stops, a timeline of the entire

execution appears.
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To find code that’s relevant to the failure, Steph needs to know which specific user

input—and thus which event handler invocations—caused the second bullet to appear.

After she finishes creating the recording, an overview of the captured execution is dis-

played (Figure 5.1(2)). First, Steph plays back the recorded execution to confirm that it

was captured correctly and to find the relevant section of the recording. Immediately af-

ter she sees the failure manifest, she pauses playback. She then adjusts the zoom interval

(Figure 5.1(3)) to contain the last few keystrokes prior the paused time, and filters out

non-keyboard inputs. With only a few candidate inputs, she advances playback a single

keyboard input event at a time until a second bullet is added to the game board. Then,

she seeks execution backward by one keystroke. At this point, she is confident that the

code which created the second bullet ran in response to the current keystroke, and can

use other tools (such as logging or breakpoints) to debug the event handler.

Without Timelapse, it would not be possible for Steph to isolate the failure to a specific

keystroke in this way. She would have to simultaneously enter keystrokes and use the

debugger; the latter would mask the failure because the timing of keystrokes is critical to

reproducing the failure. Instead, she would have to insert logging statements, repeatedly

reproduce the failure to generate logging output, and scrutinize logged values for clues

leading towards the root cause.

5.2.3 Navigation Aid: Debugger Bookmarks

Having tracked down the second bullet to a specific user input, Steph now needs to inves-

tigate what code ran, and why. Using a Dolos extension called debugger bookmarks (Sec-

tion 4.1.2), Steph saves several bookmarks at positions in the recording that she wants to

quickly revert back to, such as the keystroke that caused the second bullet to appear or

an important program state reached via the debugger. Debugger bookmarks support the

concept of temporal focus points [76, 149], which are useful when a developer wants to

revisit information—such as the program’s state at a breakpoint hit—that is only available
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at certain points of execution.

With traditional tools such as a breakpoint debugger, Steph must explore an execu-

tion with debugger commands such as “step into”, “step over”, and “step out”. This is

frustrating because these commands are irreversible, and Steph would have to manually

reproduce the failure multiple times to compare multiple program states or the effects of

different commands.

5.2.4 Navigation Aid: Breakpoint Radar

Once Steph finds the code that creates bullets, she needs to understand why some key-

strokes fire bullets and others do not. Breakpoint radar is a Timelapse feature (built using

the data scanning algorithm described in Section 4.2) that automatically scans potential

breakpoint hits over the entire execution. Detected breakpoint hits are visualized on a

separate timeline (Figure 5.3(3a)). Steph can easily see which keystrokes created bullets

and which did not. Steph first adjusts the zoom interval to include keystrokes that did and

did not trigger the failure. Then, she sets a breakpoint inside the Bullet.create() method

and records and visualizes when it is actually hit during the execution using the breakpoint

radar feature.

Using a breakpoint debugger, Steph would need to repeatedly set and unset break-

points in order to determine which keystrokes did or did not create bullets. To popu-

late the breakpoint radar timeline, Steph would have to manually hit and continue from

dozens or hundreds of breakpoints, and collect and visualize breakpoint hits herself. For

this particular defect, breakpoints interfere with the timing of the bullet’s frame-based an-

imations, so it would be nearly impossible for Steph to pause execution when two bullets

are in flight.
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Figure 5.3: Timelapse’s visualization of debugger status and breakpoint history, juxtaposed with

the existing Sources panel and debugger (1). A blue cursor (2) indicates that replay execution is

paused at a breakpoint, instead of between user inputs (as shown in Figure 5.1). Blue circles mark

the location of known breakpoint hits, and are added or removed automatically as breakpoints

change. A side panel (3b) shows the selected (3a) circle’s breakpoints. Shortcuts allow for jumping

to a specific breakpoint hit (4) or source location (5). Debugger bookmarks (6) are set with a button

(7) and replayed to by clicking (6) or by using a drop-down menu (8).
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5.2.5 Interacting with Other Debugging Tools

Once Steph localizes the part of the program responsible for the multiple bullets, she still

needs to isolate and fix the root cause. To do so, Steph uses debugging strategies that do

not require Timelapse, but nonetheless benefit from it. Timelapse is designed to be used

alongside other debugging tools such as breakpoints5, logging, and element inspectors;

its interface can be juxtaposed (Figure 5.3) with other tools.

Through code inspection, Steph observes that the creation of a bullet is guarded by a

flag indicating whether any bullets are already on the game board. The flag is set inside

the Bullet.create() method and cleared inside the Bullet.die() method. To test her intuition

about the code’s behavior, she inserts logging code and captures a new execution to see

if the method calls are balanced. The logging output in Figure 5.4 is synchronized with

the replay position: as Steph seeks execution forward or backward, logging output up to

the current instant is displayed. Logging output is cleared when a fresh execution begins

(i.e., Timelapse seeks backwards) and then populated as the program executes normally.

Steph has discovered that the multiple-bullet defect is caused by the bulletDied event

being fired twice, allowing a second replacement bullet to be created if the bullet “fire”

key is pressed between the two event dispatches. In other words, the failure is triggered

by firing a bullet while another bullet is being destroyed (by collision or leaving the game

board).

Timelapse provides an interface for capturing and replaying input events that deter-

mine an execution, eliminating the need for Steph to repeatedly reproduce the Space

Invaders failure. Timelapse allows Steph to interactively navigate within the captured

recording via its event loop input events. Steph can revisit past program states by first

replaying to the proceeding event loop input event, and then using other developer tools

such as breakpoints. Chapter 7 presents an exploratory user study to discover the benefits

5To prevent breakpoints from interfering with tool use cases, Timelapse tweaks breakpoints in several
ways: breakpoints are always disabled when recording or seeking, and enabled during real-time play-
back.
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Figure 5.4: Screenshots of the logging output window and the defect’s manifestation in the game.

Steph added logging statements to the die and init methods. At left, the logging output shows the

order of method entries, with the blue circle summarizing 3 identical logging outputs. According

to the last 4 logging statements (outlined in red), calls to die and init are unbalanced. At right,

three in-flight bullets correspond to the three calls to Bullet.init.

and barriers of the Timelapse interface as described in this section.

5.3 Navigating Executions via Logged Runtime States

The Timelapse interface supports non-linear navigation within a captured execution, but

navigating to specific program states is still cumbersome. To suspend execution at a spe-

cific program point, a developer must isolate and replay to the preceding input, and then

switch to using a breakpoint debugger to drive execution to a specific statement.

According to several studies [83, 141] (and common sense), it is easier for a developer

to navigate an execution via its outputs, rather than by its inputs. A program’s outputs are

often closely related to important program states, and developers often work backwards

from outputs when attempting to understand runtime behavior [82]. To this end, this
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section develops a second retroactive tool designed around the idea of output-oriented

navigation. In contrast to Scry (Chapter 6)—which supports navigating through an ex-

ecution via visual outputs—this section supports navigating through an execution via

textual outputs produced by logging program states.

When investigating a program’s outputs, a developer may wish to jump to the instant

when a logged output was created. Time-indexed outputs are a user interface feature de-

signed to provide this capability. Time-indexed outputs enable a developer to see the

logged output they want to investigate and, with a single click, jump to the exact moment

in the captured execution when a program statement that produced the output. By re-

ducing the task of reproducing program states to only require a single click, time-indexed

outputs make it possible for a developer to easily navigate between task-relevant instants

of execution without disruptive context switches. Behind the scenes, each time-indexed

output is tagged with a Dolos timepoint (Section 4.1.1) which uniquely identifies the state-

ment execution that produced a specific output.

During debugging tasks, a developer may spend a significant fraction of their time

inserting logging statements in source code in order to inspect runtime state at specific

program points. Data probes allow a developer to retroactively add logging statements to

a captured execution without editing program text and without re-executing the program.

Using data probes, a developer can interactively discover, compare, and navigate to in-

teresting program states in the past or the future without excessive planning or manual

effort. A data probe may have multiple probe expressions that are evaluated and logged to

produce new time-indexed outputs. Like a breakpoint, a probe is placed at a single state-

ment in the program; when the statement executes, the probe’s expressions are evaluated

to create probe samples. Probe expressions can capture a wide range of values, including

scalars such as numbers or strings, or non-scalar values, such as arrays, objects, or in the

case of the web, DOM elements. Data probes and probe samples are saved across mul-

tiple playbacks of a captured execution. Probes are currently implemented as a special

breakpoint action that evaluates the probe’s expressions.
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Figure 5.5: The probes interface while debugging DOMTris.

5.3.1 Interface

The probes user interface (Figure 5.5) supports comparing, relating, and navigating to

probe samples. The probes sidebar (Figure 5.7(c)) persists collected samples for all sub-

sequent playbacks of the recording. This allows a user to stitch together a map of probe

samples across the whole recording without necessarily replaying it contiguously with a

specific set of data probes. The probes sidebar groups probe samples by call site to sup-

port comparisons. Probe samples are also printed to the console in execution order to

provide a navigable, time-synchronized log. During playback, the console shows output

produced up to the current instant, but not later outputs captured in a previous playback.

Time-indexed outputs do not require a new user interface. Whenever a developer

wishes to replay back to a time-indexed output, she simply double-clicks on the relevant

logged output in the console or other windows that display console output. rather, ex-

isting mechanisms for logging runtime states now additionally tag logged outputs with

timepoints.
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Figure 5.6: The Color Picker widget. When the G color component is adjusted downward (left),

the R component unexpectedly changes (right).

5.3.2 Example

Time-indexed outputs and data probes are designed to automate the tedious, error-prone

tasks of suspending execution and logging specific program states within a captured

recording. This section uses a program maintenance task to demonstrate advantageous

uses of probes and time-indexed outputs.

Color Picker6 is a jQuery plugin that implements a color picker widget for RGB (red,

green, blue) and HSV (hue, saturation, valence) color spaces. Karla, a fictional developer,

uses the widget in her web program. She is investigating a bug that manifests itself when

a user manipulates the color picker’s color component sliders (Figure 5.6). Each slider

should adjust the value of one red, green, or blue (RGB) component independently of the

other two components, but sometimes moving one slider incorrectly affects more than

one component. The bug is caused by unnecessary rounding in the algorithm that con-

verts values between RGB and HSV color spaces. Understanding and fixing this bug is

difficult for several reasons: reproducing the bug requires manual user interaction; the

wrong results appear only sporadically and are not persistent; and it is hard to isolate

and investigate specific computations, such as a single event handler execution.

6Colorpicker: http://www.eyecon.ro/colorpicker/

http://www.eyecon.ro/colorpicker/
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a b c

Figure 5.7: Using data probes to revert execution to relevant program states. In (a), Karla inspects

the captured recording to find the moveIncrement drag event handler (highlighted). In (b), she adds

two data probes (at lines 127 and 131) to log how color component values changed. In (c), she re-

verts execution directly to a probe sample (top, selected row) that immediately precedes erroneous

component values (below, highlighted).

Karla starts by using a record/replay tool (such as Dolos) to capture a recording that

demonstrates the steps to reproduce the Color Picker bug. This recording makes further

reproduction simple by allowing Karla to quickly jump to the input just prior to the fail-

ure, but she still must explore the thousands of lines of code that execute after this input

using traditional debugging tools. She still must set breakpoints to suspend execution at

specific lines of code, which is tedious because the program must be re-executed to test

whether the breakpoints were positioned correctly. Logging program states is similarly

laborious: to log color component changes, Karla has to edit the widget’s source code,

rebuild and re-deploy the program, capture a new recording, and then view the logged

outputs.

Data probes and time-indexed outputs simplify Karla’s investigation of the buggy in-

teraction. To create a foothold for observing runtime behavior, Karla uses data probes

to log RGB values as they change, since past component values are not stored or logged
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Figure 5.8: Probe samples ordered temporally in console output. The selected row (green) shows

both G and B components changing at the same time. Karla double-clicks on the preceding probe

sample to suspend execution prior to the faulty event handler’s execution.

to the console. After using the built-in timelines view (Figure 5.7(a)) to see what code

executed during the recording, she guesses that the moveIncrement handler may contain

the RGB values she wants to log. To see the effects of each drag event, Karla adds data

probes before and after the handler modifies color components (at colorpicker.js:127

and colorpicker.js:131, as seen in Figure 5.7(b)). These data probes capture the value

of the expressions color.r, color.g, and color.b (Figure 5.7(c)) each time the associated line

executes. Karla then replays the recording again to generate new probe samples. As

the recording is replayed, the probe sidebar (Figure 5.7(c)) begins to populate with probe

samples. Looking at temporally-ordered probe samples in the console (Figure 5.8), Karla

quickly sees a few instances where multiple components changed in a single drag event.

To better understand what happened, Karla wants to inspect the program states lead-

ing up to a suspicious probe sample. Since all probe samples are also time-indexed out-

puts, Karla can suspend execution immediately before the offending drag event handler

by double-clicking on a probe sample collected at that time (Figure 5.7(c) and Figure 5.8).

From that instant of execution, she can use the debugger to step into the event handler

and work towards the root cause with the aid of actual runtime values. With time-indexed

outputs and data probes, she’s likely able to do this much faster and more systematically

than with breakpoints and logging alone.
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5.4 Summary

This chapter presents two retroactive developer tools that support different navigation

patterns by using the replay and state extraction capabilities of Dolos. Timelapse is a

timeline-oriented visualization that enables a developer to navigate a captured execution

via its event loop inputs. Data probes enable a developer to retroactively log ad-hoc pro-

gram states and navigate directly to program states. These prototypes make the following

contributions:

• Two visualizations of a captured execution that support navigating via top-level

actions.

• An interface for retroactively logging runtime states and revisiting their execution

context.

• Examples of tools that use timepoints, scanning, and other abstractions introduced

in Chapter 4.
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Chapter 6

EXPLAINING VISUAL CHANGES IN WEB INTERFACES1

The previous chapter presented two retroactive tools that enable a developer to nav-

igate a captured execution via its inputs or via logged program states. However, both of

these methods of navigation require familiarity with the web program’s source code to be

truly useful. If a developer is inspecting unfamiliar code, then they still must add multi-

ple probes to try and find relevant source code. Before they can use tools like breakpoints

and debugger bookmarks, a developer must spend considerable effort to find relevant

code.

This chapter develops an alternative mode of navigating captured executions that re-

quires less up-front knowledge of relevant source code. Instead of requiring a developer

to identify important inputs or logged states, Scry—the tool developed in this chapter—

allows a developer to directly select and compare specific visual output examples. Once

a developer has identified state differences, she can look at a list of execution instants that

are causally related to the state difference. In this way, the retroactive tool of this chapter

augments other retroactive tools in this dissertation by providing a powerful means for

finding relevant program states and excution instants.

6.1 Motivation

Web developers increasingly look to existing designs for inspiration [53], to learn about

new practices or APIs [25], and to copy and adapt interactive behaviors for their own

purposes [155]. Web programs are particularly conducive to reuse because web pages are

widely available, distributed in source form, and inspectable using tools built into web

1The results in this chapter appear in part in Burg et al. [32].
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browsers.

Unfortunately, when a developer finds an interactive behavior within a third-party

web program that they want to reuse (e.g., a nicely designed widget, a parallax effect,

or a slick new scrolling animation), finding the code that implements the behavior is a

challenging process [86]. Locating this code typically involves at least three tasks. First, a

developer identifies a behavior’s rendered outputs and speculates about the internal states

that produce them; second, she observes changes to these outputs over time to find their

internal states; third, she searches the source of the client-side web program to find the

JavaScript source code that implements the behavior.

Even if all of these tasks go well, extracting the implementation of the desired behavior

might require repeated experimentation and inspection of the running site. More often,

the web’s combination of declarative cascading style sheets (CSS) imperative JavaScript,

opaque Document Object Model (DOM) API, and notoriously complex layout/rendering

algorithms makes the feature location task prohibitively difficult. Moreover, as web pro-

grams become more powerful, they have also become more complex, more obfuscated,

and more abstract, aggravating these challenges.

While prior work has investigated feature location techniques for statically-typed,

non-dynamic languages, no prior work comprehensively addresses the specific difficul-

ties posed by the web. (1) Isolating the output, internal state and source code for single

widget on a web page is difficult due to hidden and non-local interactions between the

DOM, imperative JavaScript code, and declarative CSS styles. Some prior work has ad-

dressed this by revealing all hidden interactions [123], but this obfuscates critical example-

relevant details in a flood of low-level information. (2) Web developers can view program

states and outputs over time by repurposing tools for logging, profiling, testing, or deter-

ministic replay [5, 30, 109], but none of these tools is designed to compare past states, and

they cannot limit data collection to specific interface elements or behaviors. (3) No prior

work exists that can attribute changes in web page states to specific lines of JavaScript

code. Instead, web developers often resort to using breakpoints, logging, or browsing
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program text in the hope of finding relevant code [30, 95]. In other programming envi-

ronments, research prototypes with this functionality all incur run-time overheads that

limit their use to post-mortem debugging [71, 82, 120].

To address these gaps, I developed Scry, a reverse-engineering tool that enables a web

developer to (1) identify visual states in a live execution, (2) browse and compare rel-

evant program states, and (3) jump directly from state differences to the JavaScript code

responsible for the change. To locate an interactive behavior’s implementation using Scry,

a developer first identifies a web page element to track. Whenever the selected interface

element is re-drawn differently, Scry automatically captures a snapshot of the element’s

visual appearance and all relevant internal state used to render it. Scry presents an in-

teractive diff interface to show the CSS and DOM differences that caused any two visual

states to differ, overlaying inline annotations to compactly summarize CSS and DOM

changes between two visual states. When a developer clicks an annotation, Scry reveals

the operations that caused the output change and the corresponding JavaScript code that

performed the operation. Scry supports these capabilities by capturing state snapshots,

logging a trace of relevant mutation operations, and tracking dependencies between oper-

ations. The result is a powerful, direct-manipulation, before-and-after approach to feature

location for the web, eliminating the need for developers to speculate about and search

for relevant code.

This chapter begins with an illustration of how Scry helps a developer as they lo-

cate the code that implements a mosaic widget. Then, it explains the design rationale and

features of Scry’s user interface, and it describes Scry’s snapshotting, comparison, and de-

pendency tracking techniques. It concludes by presenting several real-world case studies

and limitations of the approach.

6.2 Example: Understanding a Mosaic Widget

To illustrate Scry in use, consider Steph, a fictitious contract web developer who is over-

hauling a non-profit organization’s web presence to be more engaging and interactive.
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Figure 6.1: A picture mosaic widget2 that periodically switches image tiles with a cross-fade

animation. It is a jQuery widget implemented in 975 lines of uncommented, minified JavaScript

across 4 files. Its output is produced using the DOM, CSS animations, and asynchronous timers.

While browsing another page2, she finds a compelling picture mosaic widget (Figure 6.1)

that might work well on the non-profit’s donors page. To evaluate the widget’s techni-

cal suitability, she needs a high-level understanding of how it is implemented in terms

of DOM and CSS manipulations and the underlying JavaScript code. In particular, she

wants to know more about the widget’s cross-fade animation: its dependencies on spe-

cific DOM and CSS features, its configurability, and ease of maintenance. At this point,

Steph is only superficially familiar with the example: how it looks visually and a vague

intuition for what it does operationally. She is unfamiliar with the example’s source code,

and she does not desire a complete understanding of it unless absolutely necessary.

Existing developer tools provide several approaches for Steph to reverse-engineer the

mosaic widget to gain this understanding, but all of these are ill-suited for her task. She

could search through the page’s thousands of lines of source code for functions and event

handlers relevant to the mosaic and then try to comprehend them. Steph is unlikely to

pursue this option as it is extremely time-consuming, and it might not aid her evaluation.

She could inspect the page’s output to see its related DOM tree elements and active CSS

2 The mosaic widget was found on the following page: https://www.mozilla.org/en-US/mission/

https://www.mozilla.org/en-US/mission/
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rules, but this only shows the page’s current state and does not explain how the page’s

DOM tree or styles were constructed. She could use source-level tools (e.g., execution

profiler, logging, breakpoints) to see what code actually executes when the widget ani-

mates. However, the efficient use of these tools requires a priori awareness of what code

is relevant, and Steph is unfamiliar with the example’s code.

Using Scry, Steph can identify the mosaic’s relevant visual outputs, compare internal

states that produced each output, and jump from internal state changes to the responsi-

ble JavaScript code. Instead of guessing about program states and searching static code,

Steph’s workflow is grounded by output examples, captured DOM and CSS states, and

specific lines of JavaScript code. Steph starts by finding the mosaic’s corresponding DOM

element using the Web Inspector, and then tells Scry to track changes to the element (Fig-

ure 6.2(a)). As mosaic tiles update, Scry captures snapshots of the mosaic’s internal state

and visual output. After several tile transitions, Steph stops tracking and browses the

collected snapshots to identify visual states before, during, and after a single tile changes

images (Figure 6.2(b)).

Steph now wants to compare these output examples to see how their internal states

differ as the cross-fade effect progresses. To do so, she selects two screenshots from the

timeline (Figure 6.2(b)). For each selected screenshot, Scry shows the small subset of the

page’s DOM (Figure 6.2(b)) and CSS (Figure 6.2(c)) that determines the mosaic’s visual

appearance at that time. By viewing the specific inputs and outputs of the browser’s ren-

dering algorithm at each instant, Steph can figure out how the mosaic widget is structured

and laid out using DOM elements and CSS styles. To highlight dynamic behaviors, Scry

visualizes differences between the states’ DOM trees and CSS styles (Figure 6.2(c)). See-

ing that the tiles’ background-image and opacity properties have changed, Steph now knows

which CSS and DOM properties the mosaic uses to implement the cross-fade.

To find the code that causes these changes, Steph compares the DOM trees of the

initial state and mid-transition state, noticing that the new tile initially appears under-

neath the original tile, and the original tile’s opacity style property differs between the two
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Figure 6.2: An overview of the Scry workflow for localizing visual changes. Steph first uses the

Web Inspector to go from the mosaic’s visual output to its DOM elements. Then, she uses Scry

to track changes to the mosaic element (a), select different visual states to inspect (b), and see

the DOM tree (c) and CSS styles (d) that produced each visual state. To jump to the code that

implements interactive behaviors, Steph uses Scry to compare two states and then selects a single

style property difference (d). Scry shows the mutation operations responsible for causing the

property difference (e), and Steph can jump to JavaScript code (f) that performed each mutation

operation.
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states. When she selects the new tile’s DOM element, Scry displays a list of JavaScript-

initiated mutation operations that created and appended DOM elements for the new tile

(Figure 6.2(d)). To see how the tile’s opacity property is animated, she clicks on its diff

annotation and sees JavaScript stack traces for the state mutations that animate the style

property (Figure 6.2(e,f)). Steph now knows exactly how the widget’s JavaScript, DOM,

and CSS code works together to animate a tile’s cross-fade transition. If Steph wants to

modify the animation code, she now knows several places within the code from which to

expand her understanding of the program.

6.3 A Staged Interface for Feature Location

User interfaces for searching and understanding code can quickly become overwhelm-

ing, displaying large amounts of source code to filter, browse, and comprehend [144].

Scry’s interface simplifies this work by identifying and supporting three distinct activities

through dedicated interfaces: (1) the user identifies the behavior’s major visual states, (2)

she builds a mental model of how visual outputs are related to internal states, and (3) she

explores how multiple internal states are connected via scripted behaviors. This section

first describes and justifies this output- and difference-centric workflow; then, it explains

how Scry’s design supports a web developer during each of these feature-location activi-

ties.

6.3.1 Design Rationale

I designed Scry to directly address the information overload a developer encounters when

performing feature location tasks [144]. Scry’s design differs from traditional feature lo-

cation tools in two fundamental ways: (1) Scry represents program states by their visual

output whenever possible, and (2) Scry promotes a staged approach to feature location

by iteratively showing more detailed information. I explain each of these points below.
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Figure 6.3: Scry’s timeline interface. Multiple screenshots of a tracked element are shown in the

timeline strip (a). When the developer selects an output example from the timeline, Scry shows

three views for it: (b) the element’s visual appearance, (c) its corresponding DOM tree, and (d)

computed style properties for the selected DOM node.

Representing Interface States as Screenshots

Scry’s user interface removes much of the guesswork from feature location, by using vi-

sual outputs as the primary basis for identifying and comparing an interactive behavior’s

intermediate internal states. Scry shows multiple output examples for an element along

with the internal states (CSS styles and DOM elements) used to render each output (Fig-

ure 6.3). A user browses internal states by selecting the corresponding screenshots that

each internal state produces. This output-based, example-first design is in contrast to the

traditional tooling emphasis on static, textual program representations. During feature

location tasks, browsing program states via output examples is a better match for what

the user knows (a visual memory of a page’s output) and what they lack but are seeking

(knowledge of relevant state and code). Output examples are also more readily available:

visual states are easier for developers to recognize and compare than internal states or

static code, and output often changes in response to distinct and memorable user actions.
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Performing Feature Location in Stages

Scry’s interface allows a developer to pursue specific feature location tasks in relative

isolation from each other. When a user wants to identify outputs, relate outputs to in-

ternal states, or connect state changes to source code, Scry provides only the information

appropriate to each task.

To see the internal states that produced a single visual output, a developer can do so

without considering scripted behaviors and other interactions. While most interactive be-

haviors are scripted with JavaScript3, ultimately an element’s visual appearance is solely

determined by its CSS styles and a DOM tree. Thus, to see how one visual state is pro-

duced, it is sufficient to understand the CSS and DOM that were used to render it. To

support this task, Scry juxtaposes each screenshot with its corresponding DOM tree and

computed CSS style properties (Figure 6.3).

To direct a user towards the internal states (CSS and DOM) responsible for visual

changes, Scry’s interface visualizes differences between two screenshots and their corre-

sponding DOM and CSS states (Figure 6.4). Sometimes, inspecting the internal state and

visual output of single visual state is insufficient for a useful mental model of how internal

inputs affected visual output. If the user has a weak understanding of CSS or layout algo-

rithms, or if the interface element is excessively large or complex, then it may be difficult

to localize a visual effect to specific CSS styles and DOM elements. To prompt a user to

test their mental model against a small, understandable example, Scry juxtaposes small

changes in internal state with the corresponding visual outputs. These differences also

reveal the means by which JavaScript code is able to transition between different visual

states.

To help a user understand how state differences came to be and what code was respon-

sible, Scry explains how each DOM and CSS difference came to be in terms of abstract mu-

3Simple interactions can be programmed entirely within declarative style rules using CSS animations,
transitions, and pseudo-states (i.e, :hover, :focus) to specify keyframes. Scry can track these internal state
changes even though no JavaScript is involved.
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tation operations that modify CSS styles or the DOM tree. Each mutation operation serves

a dual purpose: it jointly explains how internal state changed, and also provides a start-

ing point from which users can plug in their own search and navigation strategies [95]

to find other relevant code upstream from the mutation operation. Initially, the user is

presented with a list of recorded operations for one state difference; the user can browse

these operations to understand how the state changed. Once the user wants to see the

source code responsible for these mutation operations, they click on a specific operation

to see where it was performed. Many mutation operations originate from source code

(Figure 6.5), such as JavaScript function calls or assignments that cause some change to

the DOM or CSS. Since these mutations may happen indirectly—for example, by adding

a class, setting node.innerHTML, or by changing styles from JavaScript—there can be multiple

JavaScript statements responsible for a change.

6.3.2 Capturing Changes to Visual Appearance

Scry automatically tracks changes to a user-specified DOM element’s appearance and

summarizes the element’s output history with a series of screenshots. To start tracking an

element, a developer first locates a target element ofinterest, using existing tools such as an

element inspector or DOM tree viewer. Once the developer issues Scry’s “Start Tracking”

command (Figure 6.2(a)), Scry immediately begins capturing a log of mutation operations

for the entire document. When Scry detects changes in the target element’s visual appear-

ance, it captures a state snapshot and adds a screenshot to the target element’s tracking

timeline. (I later explain how these tracking capabilities are implemented.)

The element tracking timeline (Figure 6.3(a)) is Scry’s primary interface for viewing

and selecting output examples. It juxtaposes these output examples—previewable screen-

shots of the target element—with existing timelines for familiar run-time events such as

network activity, script execution, page layout, and asynchronous tasks. Timelines show

events on a linear time scale and can be panned, zoomed, and filtered to focus on specific
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Figure 6.4: Scry’s interface for comparing visual state snapshots. Two screenshots are selected

in the timeline, and their corresponding CSS styles and DOM trees appear below. Differences

are highlighted using inline annotations; here, the opacity style property has changed. Additions,

removals, and changes are highlighted in green, red, and purple, respectively.

interactions or event types.

6.3.3 Relating Output to Internal States

Scry’s snapshot interface enables a developer to learn how an element’s visual appearance

is rendered by juxtaposing inputs and outputs of the browser’s rendering algorithm4. Af-

ter a developer has captured relevant output states of the target element, she then selects

a single screenshot from the timeline (Figure 6.3(a)) to see more details about that visual

state. The visual output, DOM subtree, and computed CSS styles for a single visual state

are shown together in the snapshot detail view (Figure 6.3). To help a developer under-

stand how the visual output was rendered, the visual output and CSS views are linked

to the DOM tree view’s current selection. When a developer selects a DOM element (Fig-

ure 6.3(c)), Scry shows the element’s matched CSS styles (Figure 6.3(d)).

4Scry does not directly explain causal relationships between inputs and outputs in the style of Why-
line [82]. Instead, Scry helps a developer, who has a working understanding of CSS-based layout, by
providing concrete data against which they can validate their mental model of layout.
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6.3.4 Comparing Internal States

Using Scry’s comparison interface (Figure 6.4), a developer can quickly compare internal

states of two relevant output examples to learn why the examples were rendered differ-

ently. Scry automatically discards CSS styles that are overridden in the rule cascade. Thus,

the differences in two snapshots’ input data—its CSS styles and DOM tree—are sufficient

to explain differences in their output data.

The comparison interface (Figure 6.4) consists of two side-by-side snapshot interface

views with additional annotations to indicate the nature of their differences. Additions

are annotated with green highlights, and only appear within the temporally-later snap-

shot. Removals are annotated with red highlights, and only appear within the earlier

snapshot. Modifications—a combination of an addition and removal for the same style

property or DOM attribute—appear in purple highlights for both snapshots. Elements

whose parent has changed are highlighted in yellow, and elements whose matched CSS

styles have changed are rendered in bold text. As with the single snapshot view, a devel-

oper can inspect a DOM tree element to see its matching CSS styles and position within

visual output. In the comparison tool, the view state of both sides is kept in sync so that

the element is selected (if present) in both snapshots. This allows the developer to easily

compare CSS styles and DOM states without having to recreate the same view for the

other snapshot.

6.3.5 Relating State Differences to JavaScript Code

To complete the link from output examples to JavaScript, Scry computes which mutation

operations were responsible for producing specific CSS or DOM state differences. To view

the mutation operations for a difference, a developer selects a colored highlight from the

comparison interface (Figure 6.4(a)). Then, Scry changes views to show the difference

alongside a list of mutation operations (Figure 6.5(b)) that caused the difference. Each

operation includes a JavaScript stack trace that shows the calling context for the mutation
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Figure 6.5: Scry’s interface for showing the operations that were responsible for a change. The left

pane (a) shows a single difference being investigated (the second added <div>). The center pane

(b) shows a list of mutation operations that caused the change. When an operation is selected,

Scry shows a source code preview (c) and call stack (not shown) for the operation.

operation (Figure 6.5(c)). Using this link, a developer can find pieces of code related to a

single visually-significant difference.

6.4 Implementation

Scry’s functionality is realized through four core features: detecting changes to an ele-

ment’s visual output; capturing input/output state snapshots; computing fine-grained

differences between state snapshots; and capturing and relating mutation operations to

state differences.

6.4.1 Detecting Changes to Visual Output

A central component of Scry’s implementation is the state snapshot, which represents the

state of a particular DOM element at a particular point in a program’s execution. Before I

discuss the data a state snapshot contains and how it is captured, I first discuss how Scry

decides when to capture a snapshot of a distinct visual state.

Scry differs from prior work [123] in that it “observes” actual rendered visual output
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to detect changes to specific interface elements. When visual output significantly differs,

Scry captures and commits a state snapshot. While many input state mutations may occur

while JavaScript is running on the page, it is essential to Scry’s example-oriented work-

flow that it only captures states that are visually distinct and are relevant to the target

element.

To detect these distinct visual states, Scry intercepts paint notifications from the browser’s

graphics subsystem and applies image differencing to the rendered output of the DOM

element selected by the user. If the painted region does not intersect the selected ele-

ment’s bounding box, then Scry knows the element was not updated; if the target ele-

ment’s bounding box differs from its previously observed bounding box, then a snapshot

is taken, as its location has moved. To check for output changes, Scry renders the target

element’s subtree into a separate image buffer and then compares the image data to the

most recent screenshot. If the bitmaps have nontrivial differences5 then Scry takes a full

state snapshot of the target element and commits it as a distinct visual state.

Rendering and comparing an element’s DOM subtree in isolation is surprisingly dif-

ficult due to two features of CSS: stacking contexts and transparency. Stacking contexts

allow an element’s back-to-front layer ordering to be changed by CSS properties such as

opacity, transform or z-index. In practice, this can cause ancestor elements to be rendered

visually in front of descendant elements and occlude any subtree changes. Scry mitigates

this by not rendering ancestor elements and visualizing the target element’s bounding

box before tracking it. This strategy has shortcomings, however: descendant elements

frequently allow ancestor elements to “shine through” transparent regions in order to

provide a consistent background color. If ancestors are not rendered, then screenshots

will lack the expected background color. To work around this, Scry retains screenshots of

the target element with and without ancestor elements if they differ; the background-less

5To compute image differences, Scry computes the mean per-pixel intensity difference over the entire
bitmap, and uses a threshold of 1% maximum difference. This allows for minor artifacts arising from
sub-pixel text rendering and other nondeterministic rendering behavior.
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version is used to detect visual changes, while the background-included version is shown

to the user.

6.4.2 Capturing State Snapshots

When Scry decides to capture a state snapshot, it gathers many details to help a developer

understand the state of the selected element in isolation from the rest of the page. Snap-

shots consist of the screenshot of the element’s visual state in bitmap form, the subtree of

the DOM rooted at the target element, and the computed style for each tree element. Snap-

shots are fully serialized in order to isolate past visual state snapshots from subsequent

mutation operations.

An element’s computed style describes the set of properties and values that are ulti-

mately passed forward (but not necessarily used) in the rendering pipeline to influence

visual output. In order to trace computed style property values back to specific style

rules, inline styles, and mutation operations, Scry performs its own reimplementation of

the CSS cascade that tracks the origin of each computed style property. Computed style

properties originate from one of four sources: declarative style rules, explicit inline styles,

CSS animations, and inherited properties. In order to later deduce why a style property

has changed, Scry saves the CSS rules and specific rule selectors that match each node in

the snapshot.

The current Scry implementation does not attempt to capture all of a page’s view state

(scroll positions, keyboard focus, etc.) or external constraints (window size, locale) in

state snapshots. The only exceptions are the CSS pseudo-states :hover and :focus because

they are frequently used by interactive behaviors. If changes to the page’s view state

cause the target element’s appearance or bounding box to change, then Scry will commit

a new state snapshot, but it will not have sufficient information to explain how the outputs

differ in terms of inputs. Prior experiences collecting view states for deterministic replay

purposes (Section 3.3.3) has demonstrated that these view state inputs can be easily and
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Input affected Data affected JavaScript API / change origin

DOM Tree Structure Node.appendChild

Node Attributes Node.className

Node Content Node.textContent

Bulk Subtree Node.innerHTML

CSS Style Rules various

Inline Styles Element.style

Animated Properties animation CSS property

Legacy Attributes Element.bgcolor

View State Scroll Positions user, Node.scrollOffset

Mouse Hover user

Keyboard Focus user

Environment Window Size operating system

Table 6.1: Input mutation operations. View State and Environment are not currently supported

in Scry, but are listed for completeness.

cheaply collected. Insomuch as these inputs affect the set of active CSS rules, they can be

treated similarly to inherited style attributes on the target element that may have global

effects.

6.4.3 Comparing State Snapshots

Scry’s usefulness as a feature location tool hinges on its ability to compute comprehensible

state changes between snapshots and relate these to concrete mutation operations and

JavaScript code. To precisely compare two snapshots, Scry compares each snapshot’s 1)

captured DOM subtrees and 2) computed styles. In the remainder of this section, I refer

to the two snapshots being compared as the pre-state and post-state.
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DOM Trees

Scry compares DOM subtrees and computes change summaries on a per-node basis. To

compute an element’s change summary, Scry first finds the element in both snapshots.

To do this, Scry associates a unique, stable identifier with each DOM node at run time

to make it possible to find the same node in two snapshots via a hash table lookup. If

Scry finds the corresponding nodes in both snapshots it summarizes differences in their

parent-sibling relationships, attributes, and computed styles. A node that appears in only

one snapshot is reported as added or removed, and a node whose parent changed or

whose order among siblings changed is reported as moved. This strategy identifies many

small, localized changes (Table 6.2) that are straightforward to explain in terms of low-

level mutation operations (Table 6.1). Moreover, these summaries correspond to the types

of changes that developers are accustomed to reading in text diff interfaces, making them

familiar and easy to comprehend.

An alternative strategy for comparing subtrees is to globally summarize changes using

tree matching algorithms [86] or tree edit distance algorithms [18]. I found these to be un-

suitable for linking small state changes back to JavaScript code. Tree matching algorithms

compute per-node similarity metrics, but do not try to attribute per-node dissimilarities to

mutation operations. Edit distance algorithms do not directly produce per-node change

summaries, and describe mutations using a minimal sequence of abstract tree operations.

Web pages’ mutation operations do not correspond to tree edit script operations: real edit

sequences are often not minimal (for example, repeated mutations of a node’s class at-

tribute should not be coalesced) and include redundant but useful operations (such as

replacing a subtree by assigning to Node.innerHTML).

Computed Styles

To compute differences between a single node’s computed styles in the pre-state and post-

state, Scry uses set operations on CSS property names. To determine which properties
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Input affected Change type Cases

DOM Node Existence node-added, node-removed

Relationships parent-changed, ordinal-changed

Attributes attribute-changed, attribute-added, attribute-

removed

CSS Property Existence property-added, property-removed

Direct Styles value-changed

Indirect Styles origin-changed

Table 6.2: Possible cases for per-node change summaries produced by comparing state snapshots.

Similar cases are shown the same way in the user interface, but are summarized separately to

simplify the task of finding a corresponding direct mutation operation.

were added or removed, it computes the set difference. Property names present in both

snapshots are compared to detect whether their property values or origins differ.

6.4.4 Explaining State Differences

When a user selects a specific state difference to see what code was responsible, Scry

presents a sequence of JavaScript-initiated mutation operations that caused the difference.

Scry computes this causal chain on-demand in three steps. First, using the affected node’s

change summary, Scry finds a single direct operation within its operation log that produces

the node’s expected post-state. Second, Scry finds multiple prerequisite operations which

the direct operation depends on. Lastly, the operations are ordered and presented in the

user interface as a causal chain connecting the node’s pre-state and post-state.

As a starting point, I first discuss the mutation operations that Scry captures as raw

material for producing causal chains. Then, I detail the specific strategies that Scry uses to

identify the code responsible for a change: (1) how to identify direct operations for node

changes and simple style changes; (2) how to find direct operations that indirectly cause
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computed styles to change via style rules; (3) and how to compute dependencies between

mutation operations.

Capturing Mutation Operations

The web exposes a large, overlapping set of APIs to effect changes to visual appearance by

mutating rendering inputs. This section enumerates these input mutation operations that

Scry must log and relate to state differences. Scry instruments APIs and code paths for

each of the input mutation operations listed in Table 6.1. While tracking a target element,

Scry saves a log of these mutation operations for later analysis. At the time that each

mutation operation is logged, if the operation is performed by JavaScript code, Scry also

captures a call stack, to help the developer link state differences to JavaScript code causing

the mutation, and the upstream code and event handlers that caused it to execute.

Mutation operations as defined by Scry (Table 6.1) closely mirror the most commonly

used DOM and CSS APIs. These operations can be used to explain changes to DOM state,

and changes to computed style properties that originate from style rules (whose rules

match and un-match as the DOM tree changes). Scry also captures mutation operations

from other computed style property change origins, such as an element’s animations and

inline styles set from JavaScript code.

Finding Direct Operations for DOM Changes

For a specific state change (Table 6.2), Scry scans backwards through the operation log

to find the most recent operation related to the state change. The most recent operation

that mutates state into the post-state is the change’s direct operation; other prerequisite

operations are separately collected as the direct operation’s dependencies (described be-

low). For attribute differences, Scry finds the most recent change to the attribute. For tree

structure differences, Scry determines what operations could have caused the change and

finds the most recent one with the correct operands. For example, if a node’s ordinal rank
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among its siblings differs, then Scry looks for operations that inserted or removed nodes

from its parent.

Finding Direct Operations for Style Changes

Scry uses origin-specific strategies to find direct operations for a computed style prop-

erty change. If a property originates from an inline style that was set from JavaScript,

Scry simply scans backwards for a mutation operation that directly assigned that inline

style. If a property originates from a declarative CSS animation or transition, then the

browser rendering engine automatically changed the property value, triggered by an el-

ement gaining or losing an animation property from its computed style. In this case, the

user wants to know where the originating animation property came from, so Scry finds the

direct operation that caused the animation property to change.

If a property originates from a style rule, then Scry must determine which of the el-

ement’s matched rules changed and relate that to a DOM difference. Properties can be

added or removed when rules start or stop matching the element. Changes to a prop-

erty’s value may happen when rules either match or un-match and change the results of

the CSS cascade. Therefore, Scry analyzes how a node’s matched rules and selectors dif-

fer between snapshots to find what caused different rules to match. To change result of

the CSS cascade, either a rule must stop matching and “lose” the property, or a rule must

start matching and “win” the property. If the losing rule is not present in the post-state,

then Scry looks for state differences between the snapshots that could cause the selector

to no longer match. For example, if the rule div.hidden { display: none; } stopped

matching a <div> element, then Scry deduces that a differing class attribute caused the

rule to stop matching.
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Computing Dependencies between Mutation Operations

To provide the user with a sequence of operations that transform the pre-state into the

post-state, Scry must compute dependencies between mutation operations. This is sim-

ilar to the notion of an executable program slice: the operation sequence must preserve a

specific behavior (cf. a slicing criterion), but it is permissible for it to over-approximate

and include irrelevant operations. Reducing the operation trace length (cf. slice size) for

a state change simply makes it easier for a human to browse and comprehend how the

change occurred. Note that these dependencies only ensure that the mutation operations

preserve the specific state changes captured in the pre-state and post-state6.

Scry computes an operation dependency graph on-demand as a user selects pre-state

and post-state snapshots. To produce a causal chain for a change, Scry finds the change’s

direct operation in the dependency graph, collects operations its transitive closure, and or-

ders operations temporally. Dependencies for operations between the pre-state and post-

state are computed in three steps: first, operations are indexed by their node operands.

Second, Scry builds a directed acyclic graph with operations as nodes and causal de-

pendencies between operations as directed edges. Operations that do not explicitly de-

pend on other operations implicitly depend on the pre-state. Scry processes operations

backwards starting from the post-state; each operation’s dependencies are resolved in a

depth-first fashion before processing the next most-recent operation. Finally, when all

operations have been processed, graph nodes with no outgoing edges (i.e., depend on no

other operations) are connected to a node representing the pre-state.

Operations that mutate node attributes and inline styles require the operand nodes

and attributes to exist. For example, an attribute-removed operation depends on the existence

of a node n and attribute a to remove. If neither n or a existed in the pre-state, then

the operation’s dependencies include the subsequent mutation operations that created n

6Since JavaScript can access DOM state and layout results, there are untracked control and data depen-
dencies between JavaScript and inputs. We leave dynamic slicing of JavaScript dependencies to future
work.
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and/or a. Similarly, operations that change the structure of the DOM (append-child, set-

parent, replace-subtree, etc.) require all of their operands to exist.

6.4.5 Instantiation

Scry is implemented as a set of modifications to the WebKit browser engine [174] and its

Web Inspector developer tool suite [175]. Further details about the Scry prototype are

available in Section A.1.6. To provide the element tracking user interface, Scry extends

the Web Inspector with a new screenshot timeline, snapshot detail and comparison views,

and integrations between difference summaries and other parts of the interface. Scry also

tracks dependencies for mutation operations and finds direct mutation operations in the

JavaScript-based frontend. Element screenshots, DOM tree snapshots, style snapshots,

and mutation operations are gathered through direct instrumentation of WebKit’s Web-

Core rendering engine and sent to the Web Inspector frontend. Scry tabulates computed

styles in C++ with full access to the rendering engine’s internal state.

6.5 Practical Experience with Scry

Despite the rise of a few dominant client-side JavaScript programming frameworks, web

developers use DOM and CSS in endlessly inventive ways that tool developers cannot

fully predict. In our experience, even when Scry’s results are diluted by idiosyncratic

uses of web features, it is still helpful for at least some parts of a feature location task. This

section presents several short case studies that illustrate Scry’s strengths and weaknesses,

motivating future work.

6.5.1 Expanding Search Bar

A National Geographic web article7 contains a navigation bar with an expanding search

field. When the user clicks on the magnifying glass icon, a text field appears and grows

to a reasonable size for entering search terms. Without Scry, this behavior is difficult to
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investigate because the animation lasts less than a second, and intermediate animation

states are not displayed or persisted.

To understand this widget, we used the Web Inspector’s “Inspect” chooser to locate

the search icon element in the DOM tree browser. We then started tracking the element

with Scry and interacted with the widget to start its animation. Upon browsing captured

screenshots, we saw that the text field’s width and opacity both changed. We compared

two snapshots with Scry and saw that separate CSS transition properties were applied to

different tree elements. We clicked on the animated property value and Scry presented

a list of mutation operations, revealing that a click event handler had added a .expanded

class to the root element of the widget to trigger an animated transition. In this example,

Scry was particularly helpful in two cases: (1) it captured intermediate animated property

values which are normally not possible to see in the inspector; and (2) Scry was able to

trace the cause of the entire animation back to a single line of JavaScript code that changed

an element’s class name.

6.5.2 A Tetris Clone

A Tetris-like game8 uses DOM elements and CSS to render the game’s board and interface

elements. To understand how the board is implemented using CSS, we used Scry to track

changes to the main playing area. As we played the game, Scry took full snapshots of the

game board. By inspecting the DOM of each snapshot, it became apparent that the game

board is implemented with one container element per row and multiple square-shaped

<div>s per row to form pieces. When we compared two board states that had no pieces in

common, we unexpectedly found that Scry identified two squares on the board as being

the same. After following mutation operations into the JavaScript implementation, we

discovered that the Tetris game uses an “object pooling” strategy. To produce shapes on

the game board using squares, the game reuses a fixed set of DOM elements and explicitly

7National Geographic, Forest Giant.
http://webplatform.adobe.com/Demo-for-National-Geographic-Forest-Giant/browser/src/

http://webplatform.adobe.com/Demo-for-National-Geographic-Forest-Giant/browser/src/


103

positions them using inline styles. Scry’s confusion arose because the game board states

happened to reuse the same square elements from the object pool.

From this example, we learned that although Scry’s current implementation expects

that each allocated DOM element has a consistent identity, many applications violate

this expectation. Some client-side rendering frameworks such as React [56] expose an

immediate-mode API called the virtual DOM. Client JavaScript implements draw() meth-

ods that fully recreate a widget’s DOM tree and CSS styles using the virtual DOM. Behind

the scenes, React synchronizes the virtual and real DOM using a fast tree edit algorithm,

reusing the same elements to produce visual output for unrelated model objects that hap-

pen to use the same HTML tag names. A similar problem arises with frameworks that

re-render a component by filling in an HTML string template and overwriting the com-

ponent’s prior DOM states by setting the target element’s innerHTML property. In this case,

Scry shows the target element’s entire subtree as being fully removed and re-added. Scry

doesn’t try to match similar nodes, but could be extended to fall back to using more re-

laxed similarity-based metrics [86] instead of strict identity when re-finding DOM ele-

ments.

6.5.3 A Fancy Parallax Demo

In the past few years, browsers added support for applying 3D perspective transforms to

elements using CSS. The fancy parallax demo9 discussed here is representative of pages

that use scroll events and transforms to implement parallax and infinite scrolling effects.

For this page, we wanted to learn how an element’s position is computed in response to

scrolling events. We used Scry to track an animated paragraph of text as it moved around

when we scrolled the page. From a single DOM tree snapshot, we could see that CSS

transform-related properties were set on all elements subject to scroll-driven animations.

8Tetris Clone. http://timothy.hatcher.name/tetris/
9Fancy Parallax Demo. http://davegamache.com/parallax/

http://timothy.hatcher.name/tetris/
http://davegamache.com/parallax/
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We compared two snapshots to find the source of changes to the transform properties, and

were always led back to the same line of JavaScript code. Looking upstream in the stack

trace, it appeared that a JavaScript library interprets the single scroll position change and

imperatively updates the transform style property for dozens of elements. We could not

discover (using Scry) where the animation configurations for each element were specified.

From this example, we learned that Scry is of limited use for localizing code when

the endpoints of JavaScript—where it directly interfaces with rendering inputs—are not

easily distinguishable. Such megamorphic callsites to browser APIs are common when a

web page calls DOM APIs indirectly through utility libraries. A simple solution would

be to automatically disambiguate very active callsites based on their calling context, or

allow the user to hide library code (known as “script blackboxing” in some browsers).

However, for this example, simply filtering the stack traces would not lead a user to the

configuration data for a parallax animation. A better solution would be to extend Scry’s

capabilities to include tracking of control and data dependencies through JavaScript [148].

This would require a very different technical approach, since Scry instruments native

browser APIs rather than JavaScript code.

6.6 Limitations and Future Directions

Scry is a first step towards demystifying the complex, hidden interactions between the

DOM, CSS layout, JavaScript code, and visual output. The capabilities that this chapter

describes validate the interface concept; other explanatory capabilities could be added

without significantly altering Scry’s staged, example-oriented workflow. In particular, I

see two promising directions for future work: expanding the scope and accuracy of Scry’s

explanations, and tracking an element’s changes backward (rather than only forward) in

time.

Scry treats the layout/rendering pipeline as a black box, but users often want to know

how single style properties are used (or not) within the pipeline. Within the design space

of black-box approaches, it would be straightforward to extend Scry to further minimize
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rendering inputs using observation-based slicing [19]. Concretely, Scry could delete indi-

vidual style properties from a snapshot if the resulting visual output does not differ [180].

Even with a minimal set of inputs, a more involved “white-box” approach to explaining

layout [116] would still be extremely useful. By adding more instrumentation to browser

rendering engines, Scry could be extended to directly answer why and why-not ques-

tions [81, 82, 116] about how inputs are used or how outputs are derived as they funnel

through the increasingly complex layout algorithms of modern web browsers.

Scry can explain DOM or CSS differences in terms of mutation operations, but it does

not track the upstream dependencies in JavaScript code that caused the mutation oper-

ations. Scry could be extended with recent work on JavaScript slicing [148] and event

modeling [1] to extend its explanations to show an uninterrupted causal chain [82] be-

tween user inputs and events, JavaScript state and control flow, mutation operations, and

changes to layout inputs and outputs. This would produce explanations of changes that

would be both more complete and more precise.

Given a target element, Scry can track its future visual states as a developer demon-

strates the behavior of interest by interacting with the page. However, in fault localization

tasks a developer often wants to see what went wrong in the past that produced a buggy

state in the present. To gather past states of an element, Scry could build on recent de-

terministic replay frameworks for web programs [30] to collect snapshots and trace data

from earlier instants of the execution. Prior work has demonstrated the feasibility of such

an “offline dynamic analysis” [38, 39, 148], but none has integrated this technique into a

user interface or web browser.

6.7 Summary

Scry demonstrates a new output example-driven method for identifying relevant source

code and program states. These elements are quite difficult to identify with traditional

developer tools, but are straightforward to locate using Scry. This speaks to the power

of task-specific retroactive tools: not only are they more efficient to use for specific tasks,
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they open new possibilities for using other retroactive developer tools that operate upon

lines of source code, such as probes and time-indexed outputs.

Scry makes several important contributions to the state of the art:

• Algorithms for efficiently detecting (Section 6.4.1), serializing (Section 6.4.2), and

comparing (Section 6.4.3) visual states over time.

• An algorithm for establishing causality between visual changes, state changes, and

JavaScript code (Section 6.4.4).

• An interface for feature location based on comparing output and state changes (Sec-

tion 6.3.1).
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Chapter 7

HOW DEVELOPERS USE TIMELAPSE1

Prior work [52, 109, 145] asserts the usefulness of deterministic record and replay for

debugging, but few deterministic replay tools have user interfaces, and none of them

have ever been evaluated with real uses. To test these assumptions and discover missing

infrastructure and developer tool features, I decided to put retroactive tools into the hands

of professional web developers. The cold reality of having real users—if just for a few

hours at a time—generated a large amount of concrete feedback about the user interface

ideas embodied in the Timelapse prototype. I also found out the hard way just how

difficult it is to support all sources of nondeterminism used by modern web programs.

This chapter presents a small, formative user study that investigates when, how, and

for whom record/replay tools are beneficial. A secondary purpose was to demonstrate

that Dolos was robust enough that external developers could pick up the tool and actually

use it without encountering performance or usability problems. This initial study just

covers Timelapse (Section 5.2); additional studies for Dolos, Scry, or probes have not been

performed at this time, but would be interesting future work.

The study that involved Timelapse had two specific research questions:

RQ 1 How does Timelapse affect the way that developers reproduce behavior?

RQ 2 How do successful and unsuccessful developers use Timelapse differently?

7.1 Study Design

I recruited 14 web developers to participate in the study, 2 of which were used in pilot

studies to refine the study design. Each participant performed two tasks. The study

1The results in this chapter appear in part in Burg et al. [30].
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used a within-subjects design to see how Timelapse changed the behavior of individual

developers. For one task, participants could use the standard debugging tools included

with the Safari web browser. For the other task, they could also use Timelapse. To mitigate

learning effects, I randomized the ordering of the two tasks, and randomized the task for

which they were allowed to use Timelapse.

The goal of this study was to explore the variation in how developers used Timelapse,

so the tasks needed to be challenging enough to expose a range of task success. To balance

realism with replicability, I chose two tasks of medium difficulty, each with several inter-

mediate milestones. Based on the study’s results, this short-duration exploratory study

was still sufficiently difficult to capture the variability in debugging and programming

skill among web developers.

7.2 Participants

I recruited 14 web developers in the Seattle area. Each participant had recently worked

on a substantial web program. One half of the participants were developers, designers,

or testers. The other half were researchers who wrote web programs in the course of their

research. I did not control for participants’ prior experience with the jQuery or Glow

libraries, which were used by the programs being debugged.

7.3 Programs and Tasks

7.3.1 Space Invaders

One program was the Space Invaders game from our earlier example scenario. The pro-

gram consists of 625 SLOC in 6 files (excluding library code) and uses the Glow Java-

Script library2. I chose this program for two reasons: its extensive use of timers makes it a

heavy record/replay workload, and its event-oriented implementation is representative

of object-oriented model-view programs, the dominant paradigm for large, interactive
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Figure 7.1: The Colorpicker widget.

web programs.

I asked participants to fix two Space Invaders defects. The first was an API mismatch

that occurred when I upgraded the Glow library to a recent version while preparing the

program for use in our study. In prior versions, a sprite’s coordinates were represented

with x and y properties; in recent versions, coordinates are instead represented with left

and top properties, respectively. After upgrading, the game’s hit detection code ceases to

work because it references the obsolete property names. The second defect was described

in the motivating example and was masked by the first defect.

7.3.2 Colorpicker

The other program was Colorpicker3, an interactive widget for selecting colors in the RGB

and HSV colorspaces (see in Figure 7.1). The program consists of about 500 LOC (exclud-

ing library and example code). The widget supports color selection via RGB (red, green,

blue) or HSV (hue, saturation, value) component values or through several widgets that

visualize dimensions of the HSV colorspace.

2Glow JavaScript Library: http://www.bbc.co.uk/glow/
3Colorpicker widget: http://www.eyecon.ro/colorpicker/

http://www.bbc.co.uk/glow/
http://www.eyecon.ro/colorpicker/
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I chose this program because it makes extensive use of the popular jQuery library,

which—by virtue of being highly layered, abstracted, and optimized—makes reasoning

about and following the code significantly more laborious.

The Colorpicker task was to create a regression test for a real, unreported defect in

the Colorpicker widget. The defect manifests when selecting a color by adjusting an RGB

component value, as shown in Figure 7.1. If the user drags the G component (left panel,

orange), the R component spontaneously changes (right panel, red). The R component

should not change when adjusting the G component. The bug is caused by unnecessary

rounding in the algorithm that converts values between RGB and HSV color spaces. Since

the color picker uses the HSV representation internally, repeated conversions between

RGB and HSV can expose numerical instability during certain patterns of interaction.

I claim that both of these faults are representative of many bugs in interactive pro-

grams. Often there is nothing wrong with the user interface or event handling code per

se, but faults that are buried deep within the application logic are only uncovered by user

input or manifest as visual output. The faults in the Space Invaders game are caused by

incorrect uses of library APIs, but manifest as broken gameplay mechanics. Similarly, the

Colorpicker fault exists in a core numerical routine, but is only manifested ephemerally

in response to mousemove DOM events.

7.4 Procedure

Participants performed the study alone in a computer lab. Participants were first in-

formed of the general purpose and structure of the study, but not of our research ques-

tions to avoid observer and subject expectancy effects. Immediately prior to the task

where Timelapse was available, participants spent 30 minutes reading a Timelapse tuto-

rial and performing exercises on a demo program. In order to proceed, participants were

required to demonstrate mastery of recording, replaying, zooming, seeking, and using

breakpoint radar and debugger bookmarks. Participants could refer back to the tutorial

during subsequent tasks.
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Each task was described in the form of a bug report that included a brief description of

the bug and steps to reproduce the fault. At the start of each task, the participant was in-

structed to read the entire bug report and then reproduce the fault. Each task was consid-

ered complete when the participant demonstrated their correct solution. Participants had

up to 45 minutes to complete each task. They were not asked to think aloud4. I stopped

participants when they had demonstrated successful completion to us or exceeded the

time limit.

After both task periods were over, I interviewed participants for 10 minutes about

how they used the tool during the tutorial and tool-equipped task and how they might

have used the tool on the other task. I also asked about their prior experience in bug

reproduction, debugging, and testing activities. Participants who completed the study

were compensated for their time.

7.5 Data Collection and Analysis

I captured a screen and audio recording of each participant’s session, and gathered timing

and occurrence data by reviewing the video recordings after the study concluded.

Our tasks were both realistic and difficult so as to draw out variations in debugging

skill and avoid imposing a performance ceiling. I measured task success via completion

of several intermediate task steps or critical events. For the Space Invaders task, the steps

were: successful fault reproduction, identifying the API mismatch, fixing the API bug,

reproducing the rate-of-fire defect, written root cause, and fixing the rate-of-fire defect.

For the Colorpicker task, the steps were: successful fault reproduction, written root cause,

correct test form, identifying a buggy input, and verifying the test.

I measured the time on task as the duration from the start of the initial reproduction at-

tempt until the task was completed or until the participant ran out of time. I recorded the

count and duration of all reproduction activities and whether the activity was mediated

4In an earlier formative study, I solicited design feedback by using a think aloud protocol. I did not do
so in the present study to avoid biasing participants’ work style.
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by Timelapse (automatic reproduction) or unmediated (manual reproduction). Repro-

duction times only included time in which participants’ attention was engaged on repro-

duction, which I determined by observing changes in window focus, mouse positioning,

and interface modality.

7.6 Results

Below, I summarize our findings of how Timelapse affects developers’ reproduction be-

havior (RQ1) and how this interacts with debugging expertise (RQ2).

Timelapse did not reduce time spent reproducing behaviors. There was no signifi-

cant difference in the percentage of time spent reproducing behaviors across conditions

and tasks. Though Timelapse makes reproduction of behaviors simpler, it does not fol-

low that this fact will reduce overall time spent on reproduction. I observed the opposite:

because reproduction with Timelapse was so easy, participants seemed more willing to

reproduce behaviors repeatedly. A possible confounding factor is that behaviors in these

tasks were fairly easy to reproduce, so Timelapse only made reproduction less tedious,

not less challenging. I had hoped to test whether Timelapse is more useful for fixing

more challenging bugs, but were forced to reduce task difficulty so that I could retain a

within-subjects study design while minimizing participants’ time commitment.

8–25% of time was spent reproducing behavior. Even when provided detailed and

correct reproduction steps, developers in both conditions spent up to 25% (and typically

10–15%) of their time reproducing behaviors. Participants in all tasks and conditions re-

produced behavior many times (median of 22 instances) over small periods. This suggests

that developers frequently digress from investigative activities to reproduce program be-

havior. These measures are unlikely to be ecologically valid because most participants

did not complete all tasks, and time spent on reproduction activities outside of the scope

of our study tasks (i.e., during bug reporting, triage, and testing) is not included.

Expert developers incorporated replay capabilities. High-performing participants—

those who successfully completed the most task steps—seemed to better integrate Time-
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lapse’s capabilities into their debugging workflows. Corroborating the results of previous

studies [124, 141], I observed that successful developers debugged methodically, formed

and tested debugging hypotheses using a bisection strategy, and revised their assessment

of the root cause as their understanding of the defect grew. They quickly learned how

to use Timelapse to facilitate these activities. They used Timelapse to accelerate famil-

iar tasks, rather than redesigning their workflow around record/replay capabilities. In

the Colorpicker task, participant 1 used Timelapse to step through each change to the

widget’s appearance to isolate a buggy RGB value. Participants in the control condition

appeared to spend much more time finding this buggy value, since they had to isolate

a small change by interacting carefully with the widget. Participant 11 used Timelapse

to compare program state before and after each call in the mousemove event handler, and

then used Timelapse to move back and forth in time when bisecting the specific calls

that caused the widget’s RGB values to update incorrectly. Participants in the control

condition appeared to achieve the same strategy more slowly by interleaving changes to

breakpoints and manual reproduction.

Timelapse distracted less-successful developers. Those who only achieved partial

or limited success had trouble integrating Timelapse into their workflow. I partially at-

tribute this to differences in participants’ prior debugging experiences and strategies. The

less successful participants used ad-hoc, opportunistic debugging strategies; overlooked

important source code or runtime state; and were led astray by unverified assumptions.

Consequently, even when these developers used Timelapse, they did not use it to a pro-

ductive end.

7.7 Discussion and Summary

In our study, developers used Timelapse to automatically reproduce program behavior

during debugging tasks, but this capability alone did not significantly affect task times,

task success, or time spent reproducing behaviors. For developers who employed system-

atic debugging strategies, Timelapse was useful for quickly reproducing behaviors and
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Figure 7.2: A summary of task time and success per condition and task. Box plots show

outliers (points), median (thick bar), and 1st and 3rd quartiles (bottom and top of box,

respectively). There was no statistically significant difference in performance between

participants who used standard tools and those who had access to Timelapse.

navigating to important program states. Timelapse distracted developers who used ad-

hoc or opportunistic strategies, or who were unfamiliar with standard debugging tools.

Timelapse was used to accelerate the reproduction steps of existing strategies, but did not

seem to affect strategy selection during our short study. As with any new tool, it appears

that some degree of training and experience is necessary to fully exploit the tool’s bene-

fits. In our small study, the availability of Timelapse had no statistically significant effects

on participants’ speed or success in completing tasks. Figure 7.2 shows task success and

task time per task and condition. In future work, I plan to study how long-term use of

Timelapse during daily development affects debugging strategies. I also plan to investi-

gate how recordings can improve bug reporting practices and communication between

bug reporters and bug fixers.
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Chapter 8

FUTURE WORK

Recordings produced by deterministic replay systems such as Dolos are small, but

when executed, they produce vast amounts of runtime data that could be useful for many

software engineering purposes. This chapter proposes new tasks and contexts which

could significantly benefit from the capability to revisit past program states on demand.

In particular, I explore a few applications of ubiquitous deterministic replay for software

engineering: supporting collaborative bug reporting and diagnosis; synthesizing tests

from recordings; supporting user-driven interactive dynamic analysis; and making it eas-

ier to empirically observe web program behavior in the large.

This chapter does not address short-term fixes and long-term architectural changes

that are necessary to generalize and integrate this dissertation’s contributions into exist-

ing production systems. In the short term, adopting deterministic replay is largely a mat-

ter of addressing the shortcomings of research prototypes through software engineering.

Potential improvements to the reliability, features, and architecture of this dissertation’s

prototypes are documented in the relevant chapters, and are not further discussed here.

8.1 Collaborative Debugging

Developers often cannot fix bugs in widely deployed software because they lack the

means to reproduce the bug, or in many cases, even collect rudimentary diagnostic in-

formation that may help them fix the bug. Deterministic replay can make it easier for

end-users to report bugs in web programs, and for web developers to fix reported bugs

using a collaborative debugging workflow. Common to both of these visions is the need

to integrate and extend prior research into how recordings can anonymized and mini-
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mized. Clouse and Orso [40] investigated how to anonymize sensitive, nonessential user

information in field failure reports. Jin and Orso [75] investigated how to remove inessen-

tial data from field failure reports (further discussed in Section 8.2.3). Further research is

necessary to integrate these techniques into deterministic replay for web programs, which

have different requirements for ensuring deterministic execution.

Even when a failure can be reproduced reliably by a web developer, it is often dif-

ficult for a single developer to share their progress or seek help in diagnosing a failure.

When possible, developers often prefer to synchronously interrupt a colleague to seek

their help during debugging rather than post comments on an issue tracking system for

later asynchronous feedback [15, 84]. I hypothesize that this tendency is partly a response

to the high cost of context-switching to a debugging task. To resume a debugging task,

a developer must recreate the failure, re-read and understand previous hypothesis and

observations, and only then start making progress.

In addition to simplifying the process of recreating a failure, deterministic replay

recordings can also enable a more documented and collaborative approach to debugging.

If recordings were augmented with building blocks for collaboration such as annotations

and versioning, then recordings could be the technical basis for a debugging “lab note-

book”. A debugging notebook would be shared amongst team members and contain

the full history of a debugging session: important program states, executed commands,

logged runtime values, developer notes, and associated code fixes. A notebook would

contain the metadata necessary to revisit the relevant program instants mentioned in past

entries. While the idea of a debugging notebook may seem far-fetched given the state of

contemporary tools, this future is already a reality in the scientific computing community.

IPython [125] and related tools allow users to create and share interactive notebooks that

juxtapose code, results, and scientific analysis.
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8.2 Creating Tests From Recordings

Using deterministic replay, it’s possible to generate high-fidelity tests from a captured

recording. In cases such as user interfaces, creating tests manually can be very time-

consuming. Many test environments rely on text descriptions of test cases. Using deter-

ministic replay, a user can capture their interactions with a web program, interactively

permute or change inputs to see their effects on execution, and extract input sequences

that should be codified as an automated test. This is a more direct way of “authoring” a

test because it avoids the need to abstractly express reproduction steps using a separate

vocabulary of testing commands. An interactive test editor is included with STS [147]1,

which allows users to author tests with specific interleavings that would otherwise be im-

possible to reliably trigger. This ability would be similarly useful for authoring tests that

exercise interactive behaviors in web programs.

Tests derived from replayable recordings contain a subset of the inputs that constitute

the recording; different types of tests use different subsets of a recording’s inputs. A

subset is necessary when deriving a test: if the full set of inputs were used, then the test

would become fully deterministic, making behavior changes impossible. The choice of

subset also determines what types of nondeterminism become possible. For example,

a test generation tool might use a recording’s user inputs (mouse events, scroll events,

keyboard events, etc.) to synthesize a user interface test, but permit different program

versions or event loop schedules. A tool that tests the throughput of a rendering engine

could replay a recording as fast as possible, while permitting nondeterministic execution

that does not cause the executing web program to diverge. A tool for minimizing a failure

recording could discard inputs which are not causally related to a failure.

Below, I summarize some of the open research problems and promising approaches

for generating different types of tests from deterministic replay recordings.

1STS is a random input generator and simulator that finds bugs in software-defined networks (SDN). It
uses deterministic replay to find failure-revealing event interleavings, and to explain the causal sequence
of events responsible for a failure.
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8.2.1 User Interface Tests

Some of the most challenging tests to write are those that exercise interactive and dynamic

behaviors. User interface (GUI) tests are difficult to author because the functionality and

interfaces that they exercise are highly visual and change frequently. GUI tests also diffi-

cult to maintain: if tests are not written in a robust way, they will begin failing whenever

anything substantial changes in the user interface. For example, a test that encodes user

input events as a series of absolute screen coordinates is straightforward to create, but

may fail if a different element is positioned at that coordinate during a later test run.

To make tests less brittle to changes, prior work has investigated strategies for robustly

identifying interface elements across program versions using visual [51, 178] or struc-

tural [14, 86, 176] properties. With additional research, these techniques could be used to

synthesize robust GUI tests from a captured recording.

8.2.2 Performance Regression Testing

Detecting performance regressions is critical when making changes to a browser engine or

JavaScript runtime. Browser vendors are especially interested in two performance met-

rics: latency and throughput. In the browser, latency (or time-to-first-paint) is the time

required to download, parse, and render a web program to the screen. Throughput cap-

tures the rate over time at which a browser engine can respond to user actions and execute

JavaScript code.

Measuring a browser’s latency is fairly easy because loading web programs does not

require user interaction. In contrast, measuring a browser’s throughput is difficult be-

cause some of the most important use cases are also the most challenging to exercise with

automated tests. Automated tests cannot easily recreate what occurs when a user uses

an interactive application such as Facebook, Gmail, or Google Docs. Server responses are

nondeterministic and may change over time; even if network traffic is simulated using a

replaying reverse-proxy [138, 148], nondeterministic JavaScript and DOM APIs can easily
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cause successive test executions to behave very differently. Due to the difficulty of test-

ing these interactions, browser vendors today rely on “non-interactive” DOM and Java-

Script benchmarks2. These short-running web programs are not representative of end-

user browsing activity [138], but are better than micro-benchmarks or no benchmarks at

all.

What if realistic performance tests could be synthesized from an execution captured

by Dolos? In theory, this should be as straightforward as replaying a recording on dif-

ferent browser engine versions and collecting performance measurements. For example,

browser vendors often want to track execution times for specific API calls, processing

times for event loop tasks, overall memory usage, garbage collector activity, etc. In prac-

tice, re-executing a replay recording across different rendering engine versions is effec-

tively an open research problem. Browsers gain and lose functionality frequently, and

these differences may cause a replayed execution to diverge. Web programs often use

dynamic feature detection—testing at runtime whether an API is implemented—when

deciding which code path or library implementation to use. Thus, exposing a different

set of platform features and APIs to a replayed web program may cause different code to

execute. Even if publicly visible APIs do not change between browser versions, changes

to browser architecture or policies can impact internal browser engine nondeterminism

and cause divergence. For example3, event loop tasks could be scheduled differently in

response to resource contention, resource cache policies could change, some work could

be moved to its own thread or process, and so on.

A different approach to creating performance tests is to synthesize a best-effort deter-

ministic test that does not rely on a deterministic replay infrastructure. Richards et al.

pioneered this approach with JSBench [138], a tool for generating JavaScript test scripts

that approximate a captured browsing session. These tests are (necessarily) not com-

2BrowserBench: https:///www.browserbench.org/
3The changes mentioned here have occurred in upstream WebKit over the past few years during the

course of my research. Each required nontrivial adjustments to the record/replay hooks used by Dolos.

https:///www.browserbench.org/
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pletely deterministic, but their performance characteristics are stable enough across mul-

tiple browser versions to be used as a performance metric. Access to more precise record-

ings may allow synthesized tests to be more consistent across browser engine versions.

8.2.3 Minimizing Recordings

Bug reports often contain irrelevant, misleading, or wrong information [184] that can hin-

der rather than help a developer in resolving an issue. The ability to submit a replayable

recording produced by Dolos can reduce the amount of skill and effort required to report

a bug (i.e., by writing reproduction steps, capturing output, or other steps). However,

since recordings contain much more data than prose descriptions, recordings represent

a potential increase in the amount of irrelevant information that a developer must inves-

tigate. Ideally, a recording submitted in lieu of reproduction steps would only contain

the specific interactions and events necessary to reproduce a failure. But, even if a user

creates a recording of themselves following reliable reproduction steps, they will unin-

tentionally create user inputs—such as unhandled mousemove events—that become part of

the recording but are not necessary to reproduce a failure.

Like program slicing and other techniques to aid comprehension, test case minimiza-

tion techniques operate on the assumption that shorter recordings are strictly more useful

because they reduce the amount of information that must be processed. This assumption

seems reasonable, but it would be prudent4 to obtain evidence to support this hypothesis

before spending significant effort to develop minimization techniques whose usefulness

is on it. In ongoing research outside the scope of this dissertation, my collaborators per-

formed feasibility studies [67] to test whether this assumption is true in practice. We

found that when traditional user interface test scripts [163] were minimized by remov-

ing irrelevant inputs, participants were able to diagnose and fix faults more quickly and

successfully.

4Many reasonable assumptions in programming languages research have been debunked with just a few
months’ of curiosity and skepticism. For example, contrary to widely-held assumptions, recent studies
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By thinking of a deterministic replay recording as an input file to a rendering engine,

recordings can be shortened by applying well-known delta debugging algorithms [111,

182] that are often applied to the test case reduction problem [134]. Pruning irrelevant

operations from a deterministic replay recording is inherently difficult because the strict

invariants of fully deterministic execution are fragile. In the general case, dependencies

between user inputs, network callbacks, and program data are extremely difficult to rea-

son about using traditional program slicing techniques5. Scott et al. [147] have investi-

gated a simpler alternative based on delta debugging and re-executing to detect diver-

gence. First, a specific input and its dependencies are removed from a recording based on

domain knowledge or observations of coarse-grained causal dependencies. For example,

Dolos could observe the relationship between an executed event loop input and the later

event loop inputs that it enqueues, and use these dependencies when removing inputs.

This approach is unsound because it does not consider fine-grained data dependencies

in JavaScript code, but any divergences caused by disrupted data dependencies can be

easily detected by re-executing the reduced recording.

When reducing a recording, preserving a particular failure or behavior is often more

important than maintaining strict determinism. For example, if a developer is only in-

terested in the buggy behavior exhibited by a search bar widget, then inputs that affect

other widgets on the page can be discarded. In this scenario, a recording reduction tool

heavily depends on finding effective test oracles to guide delta debugging or other mini-

mization algorithms. Finding effective, automated oracles for interactive behaviors and

visual outputs is an active area of research [176].

have found that web programs frequently use dynamic and reflective language features [137], and a list
of suspicious statements does not help much in isolating a fault [124].

5At the time of writing, I am not aware of any research prototypes that can usefully trace data and control
dependencies through large-scale multi-process software systems such as browsers or operating systems.
If such a prototype existed and could identify irrelevant inputs, it would still be necessary to validate the
removal via re-execution.
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8.3 On-demand, Retroactive Dynamic Analysis

The availability of deterministic replay could make many heretofore impractical program

comprehension tools feasible for use with realistic programs and tasks. In his disserta-

tion [42], Cornelissen identifies key intrinsic benefits and drawbacks of dynamic analysis

for program comprehension:

1. Benefit: Enhanced precision with respect to actual software behavior, such as executed

control flow paths or call-site dispatch targets.

2. Benefit: The possibility for goal-oriented strategies which only analyse specific execu-

tion behavior: namely, features exercised through an execution scenario provided

by the user.

3. Drawback: The analysis is inherently incomplete, only covering the small fraction of

possible executions and runtime states covered by an execution scenario.

4. Drawback: It is difficult and important to find appropriate execution scenarios over

which the analysis should be run.

5. Drawback: Scalability is a major concern due to the large amounts of data collected,

stored, analyzed, and presented to the user.

6. Drawback: Observer effects can cause an instrumented program to no longer repro-

duce a behavior of interest, especially when the program uses multithreading or

depends on precise execution timings.

The research literature contains thousands of papers describing dynamic analysis tech-

niques which are infeasible for regular use because the drawbacks—especially scalabil-

ity—outweigh the benefits. Most dynamic analysis techniques assume that an execution
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is transitory, so as the execution proceeds, an analysis must pessimistically collect all po-

tentially relevant runtime state. However, excessive data collection is very frequently the

limiting factor for scalability. For example, the Whyline for Java [82] can only capture ex-

ecution scenarios up to a few minutes in length before the generated trace completely fills

main memory. Scalability suffers because an analysis may add significant runtime slow-

downs, consume too much main memory, disk space, network traffic, or induce observer

effects. Applying principles from modern distributed systems and databases can increase

the throughput for trace storage [131] and analysis [130], but this approach requires ex-

tensive engineering effort.

Deterministic replay could shift the benefit/drawback situation of dynamic analysis

techniques to the point that many such techniques become feasible for realistic tasks and

programs. This could be accomplished by several means: moving data collection and

analysis in time in space; avoiding observer effects; improving completeness by combin-

ing executions; and designing entirely new multi-stage dynamic analysis techniques.

8.3.1 Improving Scalability and Reliability

The most straightforward improvement to scalability is the potential to decouple data

collection and analysis from a specific execution [38, 39] or computing resource. This has

clear usability benefits: a user can first capture an execution scenario using deterministic

replay, and later perform the expensive instrumentation and analysis only if it is truly nec-

essary. A user can run a dynamic analysis over a captured execution on a remote machine

with more computing resources. (This is essentially the reverse of the solution proposed

above for debugging field failures.) The initial recording phase incurs minimal overhead

from deterministic record/replay, and subsequent re-executions—which are both deter-

ministic and instrumented—are guaranteed to avoid certain observer effects.

The deterministic nature of Dolos and other record/replay infrastructures eliminates

entire classes of observer effects. In particular, those caused by task interleavings or differ-
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ent timings are impossible because these aspects of execution must be carefully controlled

by the infrastructure in order to achieve deterministic execution. Most observer effects

caused by deterministic replay are related to the set of features that are unsupported or

disabled during capture or playback. For example, Dolos disables certain in-memory and

OS-level resource caches during capture and replay. Many replay infrastructures that op-

erate at the level of POSIX system call [113, 145] or a virtual machine [170] force all threads

to execute on a single core during capture and replay. A dynamic analysis’ instrumenta-

tion itself could be the source of some observer effects. For example, re-executing a record-

ing with an instrumented browser may slow down an execution due to the extra mem-

ory usage and larger code size associated with instrumentation. If the instrumentation is

transparent—that is, it doesn’t diverge execution and is undetectable by client code—then

observer effects caused by instrumentation are limited to runtime-related measurements.

8.3.2 Making Dynamic Analysis Interactive

A less understood direction for research is how deterministic replay enables new dynamic

analysis techniques. Existing dynamic analysis techniques must pessimistically capture

any potentially relevant data at runtime, on the assumption that executions are transitory.

Some tools such as Whyline [82] initially collect runtime data in bulk, then perform post-

hoc, on-demand data analysis to drive interactive user interfaces. What if data collection

could be performed on-demand? How can a dynamic analysis collect data iteratively as it

is needed, rather than all at once? How do user information needs map to configurations

of instrumentation or an analysis?

To illustrate the potential of on-demand data collection, consider a scenario where a

developer wants to find hot interprocedural execution paths and improve their perfor-

mance. Existing tools provide complimentary capabilities that are useful in this scenario,

but uses of these tools are mutually exclusive and require preemptive deployment. A

tracing profiler [3] captures an exact calling context tree, but induces high runtime over-
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head that makes it unsuitable for profiling hot code. A sampling profiler [61] has very low

runtime overhead, but only reports hot call stacks, obscuring paths through functions and

fast or infrequently-executed code. Branch and path profilers [9] are designed to capture

frequently executed sequences of basic blocks, but are even slower than tracing profilers.

Using iterative data collection, it would be possible to build a developer tool that

mixes and matches the capabilities of these profilers to quickly identify hot interprocedu-

ral paths within a captured execution. Such a tool can accelerate a developer’s workflow

by only turning on profilers as necessary, and by configuring each profiler invocation to

discard irrelevant information. First, the tool re-executes with a sampling profiler enabled

to detect methods that dominate execution time. To identify related functions in the call

graph that run quickly or are infrequently executed, the tool re-executes again using a

tracing profiler. Finally, to detect the paths that intersect with user-selected functions or

branches, the tool re-executes once more with a path profiler configured to discard paths

that do not intersect the program point of interest. In effect, this hypothetical tool can

achieve the goals of adaptive [20] or “bursting” profilers [183]—only profile code that’s

interesting—by composing multiple uses of well-understood single-purpose profilers on

successive playbacks.

8.4 A Database of Reusable Executions

Deterministic replay can enable large-scale corpus analysis of web program executions.

Researchers and browser vendors frequently ask questions about how web programs be-

have at runtime: which browser and language features they use, whether optimizations

pay off in practice, and whether a policy change would break existing web programs. In

many cases, these questions can only be answered satisfactorily by analyzing many exe-

cutions of real-world web programs. Recent research projects such as WebZeitgeist [87]

have demonstrated the feasibility and utility of “mining” design elements from a corpus

of thousands of static web pages. What if it were possible to mine dynamic behaviors from

a corpus of thousands of captured executions?
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Recent efforts to standardize the next version of JavaScript illustrate the importance

of wide-scale impact analysis. In one instance5, several standards committee members

disagreed as to whether introducing a new method, Array.prototype.contains, would break

web programs that make use of MooTools5 (a popular JavaScript utility library). At the

time, MooTools was used by 6% of all public web domains. Committee members were

vexed: a new method in JavaScript’s standard library should not potentially break mil-

lions of web programs, nor can they fix a library deployed on 3rd-party web servers, nor

could they obtain real data as to whether this hypothetical corner case was an actual is-

sue. In the end, the standards committee conservatively renamed the contains methods in

String and Array to includes, breaking with the naming convention used by other new data

types Map and Set and standard libraries in other languages.

With existing browser technology, the only way to answer many of these questions

with runtime data is to manually interact with web programs using an instrumented

browser. In prior work [137, 139] that analyzed whether and how often web programs

used dynamic language features, my co-authors and I manually collected over 10,000

traces by browsing hundreds of web programs using a specially-instrumented browser.

This took over 2 man-weeks of effort to produce results for each paper. This manual

approach is also very brittle: all previously gathered traces are rendered useless if instru-

mentation was incorrect or missing. It also harms reproducibility of research results: in

this model there is no way for someone to verify that the traces correspond to reasonable

user interactions. The same corpus cannot be reused across multiple research projects,

resulting in related but incomparable results.

If a corpus of executions is captured as recordings using Dolos, then trace data could

be regenerated as needed by replaying recordings using an instrumented browser. Traces

can be produced via any appropriate mechanism, such as through an extension, injected

page content, wrapping a browser view inside a tracking harness, or by instrumenting

5 Array.prototype.includes on GitHub: https://github.com/tc39/Array.prototype.includes/
5 MooTools: http://mootools.net/

https://github.com/tc39/Array.prototype.includes/
http://mootools.net/


127

the browser engine itself. Traces produced by manual interaction or deterministic re-

execution should not significantly differ, with some exceptions. For example, a trace may

differ if: instrumentation causes execution to significantly diverge (Section 4.3); the ex-

ecution depends on unsupported platform features (Section 3.4.4); or the trace captures

aspects of execution that are intentionally left nondeterministic (Section 3.4.1).

Automatically generating executions that are representative of real user interactions

and browsing behavior is an active area of research [108]. However, even without auto-

matic generation, using Dolos recordings as a canonical representation of execution fac-

tors out repetitive interactions, making collection a one-time cost. With some improve-

ments to how recordings are shared, versioned, and anonymized (Section 8.1), the task

of capturing manual interactions could be distributed to any population of consenting

browser users. Instead of performing analysis-specific data collection on an end-user’s

machine (as proposed by Liblit [102]), data is collected on-demand by re-executing an

end-user’s browsing session.
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Chapter 9

CONCLUSION

Many developers have longed for the magical ability to go back in time when debug-

ging a frustrating failure in a program. This dissertation investigates two lines of research

that enable the vision of going back in time to understand program behavior.

The first half of realizing this vision is the capability to capture and revisit past pro-

gram states. The first half of the dissertation describes how a fast, transparent, and per-

vasive deterministic replay infrastructure can be used to capture and extract program

states. Chapter 3 presents Dolos, a novel deterministic replay infrastructure that targets

the highly dynamic, visual, and interactive domain of web programs. Dolos is the first

such infrastructure to adapt precise, low-overhead virtual machine replay techniques to

modern browser runtimes. Chapter 4 further develops several additional Dolos features

for extracting program states, detecting errors, and navigating to past program states.

The second half of realizing this vision requires the development of retroactive tools

for finding and using program states. The second half of this dissertation describes sev-

eral such retroactive tools that support different strategies for navigating through a cap-

tured execution. Section 5.2 describes Timelapse, a user interface for visualizing and nav-

igating a captured execution according to its input events. Section 5.3 introduces the con-

cept of data probes and time-indexed events as affordances for navigating through a captured

execution via its logged runtime states. Chapter 6 describes Scry, a feature location tool

that enables a developer to navigate to past program states via their visual outputs. tScry

is a powerful approach for finding behavior-relevant program states without requiring

significant code familiarity.

This dissertation has also been an adventure in how to move beyond the status quo of



129

uninspired, limited developer tools and unrealistic, untested research tools. On the user

interface side, this dissertation provides examples of both successful and less-promising

approaches to designing retroactive tools that solve real use problems. Scry in particular

was the one tool that had great traction, was well-scoped in its goals, and could clearly

benefit from deterministic replay (but not become useless without it). I am convinced

that the way to proceed is to develop more such task-specific tools, and integrate their

capabilities with deterministic replay when it makes sense to do so. On the technical side,

deterministic replay has been a decent research success and a great industrial success. I

am confident that deterministic replay will serve as the foundation for many more appli-

cations to software engineering outside of program understanding tools (Chapter 8).

This dissertation provides a glimpse into what is possible when deterministic replay

capabilities are pervasive, transparent, and integrated into the runtime platform itself. In

the course of performing the research described by this dissertation, I have demonstrated

the potential of replay infrastructures for program comprehension so that their value is

more widely appreciated by platform and tool developers.
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Appendix A

RESEARCH PROTOTYPES AND DEMOS

As a tool- and prototype-centric dissertation, much of this work’s intermediate output

and external visibility is in the form of code, prototypes, and interactive demos. This sec-

tion lists the major prototypes and demos developed as part of this dissertation. For each,

I briefly explain its purpose, research results derived, how it relates to other repositories

or prototypes, and where the code may be obtained.

A.1 Prototypes

A.1.1 Pre-Timelapse (2010–2011)

Early experiments in tracing and replaying web content took place in a branch of the

DynJS [140] fork of WebKit in May 2011. Upstream changes were occasionally merged to

the branch in large batches. I performed merges less and less frequently due to DynJS’s

invasive instrumentation of the JavaScript interpreter and increasing complexity of the

JavaScript runtime. Once it became clear that deterministic replay was the platform on

which other research results would be built, I created a new repository for the develop-

ment of deterministic replay techniques.

A.1.2 timelapse-hg1 (2011–2012)

1timelapse-hg on Bitbucket: https://www.bitbucket.org/burg/timelapse/

https://www.bitbucket.org/burg/timelapse/
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A new fork of WebKit, initially codenamed Timelapse2, was created in Autumn 2011. This

repository1 contained a clean reimplementation of previous deterministic replay experi-

ments, and was the basis for the first (rejected) conference submission describing Time-

lapse. This prototype was the first to save nondeterministic inputs to a file, integrate with

the Web Inspector interface, and shares many of the same architectural choices as more

recent prototypes. Its interface (Figures A.1 and A.2) was the basis for the Timelapse in-

terface, both in implementation details and interface design. The interface featured an

overview with a row of timelines per input category, and a sortable table containing de-

tails for each input.

Unlike in later designs, this early prototype dispatched event loop inputs preëmptively

and asynchronously. Similar to instruction-counting techniques used in VM research [113,

145], its replay infrastructure counted the number of dispatched DOM events to know

when to preëmptively inject the next event loop input. An asynchronous design was re-

quired to support the network replay machinery, which was an out-of-process reverse net-

work proxy that captured and replayed browser network traffic. After months of dealing

with unexplainable divergence and deadlock bugs, I abandoned both of these approaches

in later prototypes in favor of the easier-to-debug synchronous event loop input dispatch

scheme described in Section 3.2.2.

A.1.3 timelapse-git3 (2012–2013)

The second major prototype was reimplemented from scratch as a fork of WebKit, this

time in a git repository3 based on the official WebKit git mirror4. This prototype was the

basis for the paper published at UIST [30]. This prototype was used for the user studies in

Chapter 7, so it received a lot of interface refinement and bug fixes. The visualization was

2To distinguish the separate technical and design contributions, I later gave the Timelapse moniker to
the user interface, and named the replay infrastructure Dolos. Replay functionality in mainline WebKit
is referred to as Web Replay in design documents [29] and WEB REPLAY in code.

3timelapse-git on GitHub: https://www.github.com/burg/timelapse/

https://www.github.com/burg/timelapse/
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Figure A.1: An early prototype of Timelapse’s input-centric timeline visualization. In this screen-

shot, the user has toggled the User Input button so that user input events are hidden from the

table.
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Figure A.2: An early prototype of Timelapse’s input-centric timeline visualization. In this screen-

shot, the user has toggled the Network and Timer button and sorted the table of inputs by input

type.
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refined to more clearly show bursts of activity and scale to longer recordings. The time-

line (Figure 5.1) encodes input density over time using bubble radius and fill opacity, with

higher intensity shown as larger and darker bubbles. The interface gained an overview

timeline that showed relative composition of input types and provided zooming capabil-

ities. In addition to these refinements, many features and buttons were added to support

scanning (Section 5.2.4), bookmarks (Section 5.2.3), and other integrations described in

Section 4.2.

A.1.4 Interface Redesign (2013)

The third major prototype was based on the same replay infrastructure but featured a

redesigned interface (Figure 5.5) to match the redesigned Web Inspector. This prototype

was the basis for probes and time-indexed outputs described in Section 5.3. This new de-

sign abandoned the previous stacked input timeline visualization in favor of a minimalist

line graph timeline overview and integration with the Web Inspector’s existing timeline

interface.

A.1.5 replay-staging5 (2013–2015)

The last major prototype5 focused on engineering and process improvements that made

it easier to incorporate replay functionality into the upstream WebKit repository. Rather

than maintaining a fork of WebKit, the replay-staging repository consisted of a patch

series and a base WebKit commit. Instead of merging mainline changes into the fork, the

patch series was rebased on top of new WebKit commits as functionality was contributed

upstream. This prototype was the basis for the infrastructure extensions described in

Chapter 4.

While I interned at Apple Inc. in early 2014, over 100 patches were developed in

4WebKit git mirror: git://git.webkit.org/WebKit.git
5 replay-staging on GitHub: https://www.github.com/burg/replay-staging/

git://git.webkit.org/WebKit.git
https://www.github.com/burg/replay-staging/
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this repository and incorporated into mainline WebKit [28]. These changes included the

core replay infrastructure from Chapter 3, a code generator for the input classes and file

format used by Dolos, a testing harness for the Web Inspector, and general reliability and

debugging improvements to the replay infrastructure (partially described in Chapter 4).

I also implemented and shipped data probes (Section 5.3) as a new type of breakpoint

action that does not depend or integrate with deterministic replay.

A.1.6 scry-staging6 (2014–2015)

The Scry prototype was developed as a separate patch series6 on top of WebKit, similar

to replay-staging. Scry was initially built on top of the replay-staging patch series to

demonstrate that its capabilities could be integrated with Dolos. When this was achieved,

Scry was moved to its own repository to make it easier to rebase on top of newer WebKit

commits. This prototype was the basis for the tool described in Chapter 6. None of its

functionality has been incorporated into WebKit at the time of writing.

A.2 Demos

Each retroactive developer tool described in this dissertation required a significant amount

of visual and interaction design work. Conveying the resulting “feel” of these tools is very

difficult using prose. A live demonstration of the tool is much more compelling and can

quickly clarify misconceptions caused by abstract text.

While this dissertation’s contributions are all embodied in interactive prototypes, with

current tools [64] it is infeasible to create archival-quality packages of these software on

Mac OS X, the primary development platform for WebKit. In particular, WebKit has

dependencies on public and private system libraries that are incompatible with other

Mac OS X operating system versions. In lieu of software, I produced short videos to

6 scry-staging on GitHub: https://www.github.com/burg/scry-staging/

https://www.github.com/burg/scry-staging/
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demonstrate each major user interface: Timelapse7, Probes and Time-indexed Outputs8,

and Scry9.

7Timelapse Demo Video: https://www.youtube.com/watch?v=WYBPfNW2gsI
8Probes Demo Video: https://www.youtube.com/watch?v=ht3ckkNh6qM
9Scry Demo Video: https://www.youtube.com/watch?v=NENGl09Xq0I

https://www.youtube.com/watch?v=WYBPfNW2gsI
https://www.youtube.com/watch?v=ht3ckkNh6qM
https://www.youtube.com/watch?v=NENGl09Xq0I
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