

© Copyright 2016

Paul Luo Li

What Makes a Great Software Engineer

Paul Luo Li

A dissertation

submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington

2016

Reading Committee:

David Hendry

Andrew Begel (Microsoft)

Charlotte P. Lee (GSR)

Program Authorized to Offer Degree:

PhD in Information Science

Amy J. Ko, Chair

University of Washington

Abstract

What Makes a Great Software Engineer

Paul Luo Li

Chair of the Supervisory Committee:

The Information School

Good software engineers are essential to the creation of good software. However, today, we lack

a holistic, contextual, and real-world understanding of software engineering expertise. In this

dissertation, we address this gap by investigating the thesis: “Experts involved in the creation of

software view software engineering expertise as holistically encompassing internal personality

attributes, attributes regarding engagement with others, in addition to technical capabilities in

designing and writing code. Furthermore, the ability to make good decisions (e.g. choosing what

software to write and how to write), which has not yet been articulated by previous research

studies, is also critically important. The key aspects of being a great software engineer are:

writing good code, adjusting behaviors to account for future values and costs, practicing

informed decision-making, avoiding making others’ jobs harder, and learning continuously.” We

interview 59 expert Microsoft software engineers to inductively understand what software

engineering expertise entailed. We survey 1,926 more expert Microsoft software engineers to

understand the relative importance of the 45 attributes of expertise derived from interviews, as

well as to understand the influence of context on ratings. Finally, we interview 46 expert non-

Amy J. Ko Associate Professor

software-engineers who have collaborated with software engineers to understand their

perspectives. We collectively consider all our data to answer the question: what makes a great

software engineer?

 i

TABLE OF CONTENTS

List of Figures .. iv

List of Tables .. v

Chapter 1. Introduction ... 8

1.1 The Knowledge Gap ... 9

1.2 Thesis Statement ... 12

1.3 Outline... 12

Chapter 2. Related Work... 13

2.1 Comparing Novices and Experts in Writing and Maintenance of Code 13

2.2 Software Engineering Curricula ... 14

2.3 Software Development Processes and Methodologies ... 19

2.4 New Graduates and Their First Industry Jobs... 21

2.5 Everyday Activities of Software Engineers .. 26

2.6 Human Factors in Software Engineering .. 29

2.7 Insights From Luminaries and the Press ... 33

2.8 Summary and Discussion .. 38

Chapter 3. Interview Study of Expert Software Engineers ... 47

3.1 Context for Investigations ... 49

3.2 Method .. 49

3.3 Results ... 52

3.3.1 Personality... 54

3.3.2 Decision Making ... 74

3.3.3 Interacting with Teammates .. 89

3.3.4 Engineering the Software Product .. 113

3.4 Discussion ... 124

 ii

3.4.1 Nuanced Understanding of Software Engineering Expertise 124

3.4.2 Threats to Validity .. 125

Chapter 4. Survey Study of Expert Software Engineers ... 127

4.1 Method .. 130

4.1.1 Survey ... 130

4.1.2 Follow-up Email Interview ... 135

4.2 Results ... 136

4.2.1 Essential Attributes of Software Engineering Expertise ... 136

4.2.2 Influence of Contextual Factors .. 142

4.3 Discussion ... 149

4.3.1 The Essential Attributes .. 149

4.3.2 Relationship with Contextual Factors ... 150

4.3.3 Threats to Validity .. 151

Chapter 5. Interivew Study of Expert Non-Software Engineers... 153

5.1 Method .. 156

5.2 Results ... 160

5.2.1 Artists .. 161

5.2.2 Content Developers ... 168

5.2.3 Data Scientists ... 173

5.2.4 Design Researchers ... 178

5.2.5 Designers... 185

5.2.6 Electrical Engineers .. 192

5.2.7 Mechanical Engineers ... 201

5.2.8 Product Planners ... 204

5.2.9 Program Managers .. 211

5.2.10 Service Engineers.. 221

5.3 Discussion ... 226

5.3.1 Conditions for Equality ... 227

5.3.2 Challenging Engineering Processes .. 228

 iii

5.3.3 Threats to Validity .. 229

Chapter 6. What Makes a Great Software Engineer ... 231

6.1 Be a Competent Coder .. 231

6.2 Maximize Current Value of Your Work ... 233

6.3 Practice Informed Decision Making ... 235

6.4 Enable Others to Make Decisions Efficiently ... 236

6.5 Continuously Learn ... 238

6.6 Summary ... 239

Chapter 7. Software Engineering Expertise Within the Context of Human Expertise 241

7.1 Actions Amid Chaos ... 242

7.2 Decision-making but With Possibly Incorrect or Incomplete Information 244

7.3 Teachers: a Requisite for Deliberate Practice ... 245

7.4 Summary ... 246

Chapter 8. Conclusion and Future Work .. 248

8.1 Future Direction .. 249

8.2 Summary of Contributions .. 251

8.3 Implications for Researchers, Educators, and Practitioners.. 252

8.3.1 Researchers ... 252

8.3.2 New Software Engineers... 253

8.3.3 Leaders of Software Engineers ... 253

8.3.4 Educators... 254

8.4 Final Remarks ... 255

Bibliography ... 257

Appendix A: Survey Recruitment Email .. 264

Appendix B: Survey .. 265

Appendix C: Interview Solicitation Email for Expert Non-Software Engineers 293

 iv

LIST OF FIGURES

Figure 3.1. Model of attributes of great software engineers ... 53

Figure 4.1. Survey question for the hardworking attribute ... 132

Figure 4.2. Attributes rankings of the four types of attributes .. 141

file:///C:/Users/pal/Desktop/Paul_Li_UWPhDThesis26.docx%23_Toc451635633
file:///C:/Users/pal/Desktop/Paul_Li_UWPhDThesis26.docx%23_Toc451635634
file:///C:/Users/pal/Desktop/Paul_Li_UWPhDThesis26.docx%23_Toc451635635

 v

LIST OF TABLES

Table 2.1. Overview of Related Work Discussed ... 39

Table 3.2. Stratified random sample of expert software engineers at Microsoft 51

Table 4.3. Titles of expert Microsoft software engineers studied................................... 131

Table 4.4. Attributes of great software engineers, ranked and with ratings distributions137

Table 4.5. Contextual factors, distribution in survey study, and significant effects. Rows are not

ordered. ... 143

Table 5.6. Expert Microsoft non-software-engineers interviewed 158

file:///C:/Users/pal/Desktop/Paul_Li_UWPhDThesis26.docx%23_Toc451671923
file:///C:/Users/pal/Desktop/Paul_Li_UWPhDThesis26.docx%23_Toc451671924
file:///C:/Users/pal/Desktop/Paul_Li_UWPhDThesis26.docx%23_Toc451671925
file:///C:/Users/pal/Desktop/Paul_Li_UWPhDThesis26.docx%23_Toc451671926
file:///C:/Users/pal/Desktop/Paul_Li_UWPhDThesis26.docx%23_Toc451671926
file:///C:/Users/pal/Desktop/Paul_Li_UWPhDThesis26.docx%23_Toc451671927

 vi

ACKNOWLEDGEMENTS

I wish to thank my committee members for their time and dedication. A special thanks to Dr.

give thanks to my committee members, David Hendry, Andrew Begel, and Charlotte Lee for their

service and support.

 This thesis would not be possible without the generosity of the experts at Microsoft who

participated in the studies. Your time and insights are greatly appreciated. Thank you!

Amy J. Ko, my chair and advisor, for believing in me and taking me on. I would also like to

 vii

DEDICATION

To my family and Sharon, for all their support and love.

A special thanks to my dad, whose 45-year odyssey to complete his own Ph.D. inspired me to

not give up on mine.

Chapter 1. INTRODUCTION

At the end of the day, to make changes [to software], it still takes a dev, a butt in a seat

somewhere to type [Source Depot] Commit.

– Partner Dev Manager, Windows

Good software engineers are essential to the creation of good software. Regardless of the

advances in technologies, processes, and tools, it still takes a software engineer—a butt in a seat

somewhere—to decide what software to build and how to build it. Consequently, understanding

the attributes that entail software engineering expertise is foundational to our world’s rapidly

growing software ecosystem: companies want to hire and retrain great software engineers,

universities want to train great software engineers, and young software engineers want to know

what it takes to become great.

With software being ubiquitous today, software engineers are (and will be) well paid and

in high demand. Data from the Bureau of Labor Statistics in 2013 (Bureau of Labor Statistics,

2015) indicate that the median salary for software developers was $93,350, nearly three times the

national average across all occupations. US News & World Report further reports that while

salaries for the average U.S. worker showed no gains between 2000 and 2013, software

developers’ salaries grew an astonishing 26% over the same period, more than health care

practitioners, engineers, and other science professionals—7%, 6%, and 5% growth, respectively

(Rothwell, 2014). Looking into the future, the demand for software engineers is forecasted to be

even higher; employment is expected to grow 22% between 2012 and 2022, more than double

the projected average growth across all occupations (Bureau of Labor Statistics, 2015).

Good software engineers are critical to companies, nations, and societies. Software

engineering’s early origin in the US Department of Defense—via the Defense Advanced

Research Projects Agency (DARPA)—is well documented. Recent nation-funded software

security attacks, both confirmed and rumored (e.g. North Korean attack on Sony (Wikimedia

Foundation, 2015)), indicate that availability of good software engineers is of strategic

importance. Commercial use of software is pervasive, though, sadly, often highlighted by costly

problems (e.g. security breaches (Zetter, 2013) and failures (Bellovin, 2013)). For everyday

consumers, mobile computing devices (e.g. cell phones) and mobile applications (i.e. apps) are

already ubiquitous, and software is sieving into more of our everyday activities via the internet of

things (Burrus, 2013). Software is likely to grow even more essential to humanity in the future.

Understanding software engineering expertise is a critical undertaking for our

increasingly software-dependent society. In order to improve software engineering, avoiding

catastrophes of the past (such as the ones mentioned in the previous paragraph) and possible

future failures, we need to improve the quality of software engineers—the people who produce

the software. Letting great software engineers emerge through Darwinian hiring and firing

processes is not a viable path, as the demand for great software engineers is likely to far outstrip

the supply, as discussed previously). Therefore, we must seek to advance the discipline of

software engineering as a whole, determining how to best train and educate software engineer so

that every software engineer can be great. To do so effectively, we must first understand

software engineering expertise—what makes a great software engineer?

1.1 THE KNOWLEDGE GAP

Though numerous studies have touched on the important topic of software engineering expertise,

the volume of information belies a dearth of understanding. Today, we lack a holistic, contextual,

and real world understanding of software engineering expertise.

By real world understanding, we mean knowledge from experts that have experienced

engineering of software in practice. Real-world engineering of software is a complex and

multifaceted undertaking, significantly different from software development in academic settings

(Begel & Simon, 2008) and ill captured by documentation and artifact repositories (Aranda &

Venolia, 2009). As with many complicated undertakings, software engineering is likely a

phenomenon that can only be truly understood by doing (Schank, Berman, & Macpherson,

1999); thus, suppositions drawn from indirect and secondary data sources may be incomplete or

flawed. For example, one source of information is HR professionals (Bryant, 2013); while HR

professionals may be cognizant of declared technical knowledge (e.g. courses and skills on

resumes) and general attributes (e.g. learning on the job), they may not understand the nuances of

the application of those technical skills in the real world engineering of software (i.e. how the

software is engineered). To understand software engineering expertise in practice, we need first-

hand information from experts that have experienced engineering of software in practice.

By holistic understanding, we generally mean examining all aspects of software

engineering expertise together. Most research focuses—implicitly or explicitly—on only a single

aspect of software engineering expertise. For example, the ACM curriculum focuses almost

exclusively on technical knowledge (Shackelford et al., 2006); conversely, research on human

factors in software engineering tend to ignore technical skills and abilities (Cruz, da Silva, &

Capretz, 2015). Since software engineering has rarely been examined holistically, we do not

know which attributes are important and to what degree—maybe there is a single dominant

attribute that underlies all of software engineering expertise—or whether there are important

attributes that yet to be uncovered.

Another facet of holistic understanding is the perspectives of experts that are involved in

the engineering of software but are not software engineers, e.g. artists (Hewner & Guzdial,

2010), designers (Ivory & Hearst, 2001), and program managers (Aranda & Venolia, 2009).

Existing accounts indicate that many kinds of expert non-software-engineers work together with

software engineers to produce software product. These expert non-software-engineers often

perform important tasks, frequently ones that software engineers are ill equipped to perform.

However, we know nearly nothing about what these expert non-software-engineers believe are

essential attributes of great software engineers.

By contextual understanding, we primarily mean understanding both what the attributes

entail as well as why/how the attributes are important in real world situations. Clear definitions

and descriptions are essential for anyone—researchers, educators, managers, young software

engineers—seeking to reason about software engineering expertise. Yet, much of the research

touching on software engineering expertise fails to clearly define attributes, using vague or

general words—if any at all. For example, “checking your ego at the door”, the most important

attribute in (Hewner & Guzdial, 2010), was never defined. Beyond clear definitions, existing

research also commonly lacks understanding of how/why the attributes are important: how does

this attribute impact the engineering of software? Why is it important? What benefits does it

engender? What problems may arise if one does not have it? To make forward progress in our

understanding of software engineering expertise, we need a contextual understanding of what it

entails.

Another facet of contextual understanding is knowledge about how the importance of

various attributes of software engineering expertise differs by context. Various research studies

suggest that amount of experience (Begel & Simon, 2008), gender (Margolis & Fisher, 2003),

education background (Carver, Nagappan, & Page, 2008), cultural background (Borchers, 2003),

type of software (Hewner & Guzdial, 2010), and the number of engineers working together

(Pendharkar & Rodger, 2009) may all impact software engineering practices and perceptions.

Yet no prior work has specifically examined how and why those contextual factors affect

perceptions of software engineering expertise. Understanding how the importance of the

attributes varies is critical for those aiming to articulate the attributes’ importance, selecting

among them for improvement, or seeking engineers with those attributes for their teams.

The knowledge we have today about software engineering expertise, though directionally

sound, has significant gaps. We need a holistic, contextual, and real world understanding of

software engineering expertise. Consequently, the questions we seek to answer in this

dissertation are:

 What do expert software engineers think are attributes of great software engineers?

 Why do expert software engineers think these attributes are important for the engineering

of software?

 How do these attributes relate to each other?

 How do expert software engineers rate the importance of these attributes?

 How are perceptions of importance affected by context of the software engineers?

 What do expert non-software-engineers think are the important attributes of great

software engineers?

 Why do expert non-software-engineers think those attributes are important?

1.2 THESIS STATEMENT

In this dissertation, I seek to provide a holistic, contextual, and real world understanding of

software engineering expertise. My thesis is:

Experts involved in the creation of software view software engineering expertise as holistically

encompassing internal personality attributes, attributes regarding engagement with others, in

addition to technical capabilities in designing and writing code. Furthermore, the ability to

make good decisions (e.g. choosing what software to write and how to write), which has not yet

been articulated by previous research studies, is also critically important. The key aspects of

being a great software engineer are: writing good code, adjusting behaviors to account for

future values and costs, practicing informed decision-making, avoiding making others’ jobs

harder, and learning continuously.

1.3 OUTLINE

This dissertation has seven parts. In Chapter 2, we provide the backdrop for our research by

describing existing knowledge about software engineering expertise. In Chapter 3, to begin the

research arc, we discuss the interview study of expert software engineers, aimed at deriving a

holistic list of the attributes of software engineering expertise and understanding their relevance

to the engineering of software. Subsequently, in Chapter 4, we discuss the mixed methods study

in which we quantitatively surveyed expert software engineers about the importance of the

attributes and followed-up with qualitative email interviews to understand the rankings and

relationships with contextual factors. With perspectives of expert software engineers in hand, in

Chapter 5, we discuss the interview study of expert non-software-engineers about their

perceptions. We synthesize findings and insights from all three studies in Chapter 6. Chapter 7

relates our findings to the literature on general human expertise. We conclude in Chapter 8 with

a recap of contributions and suggestions for future work.

Chapter 2. RELATED WORK

Numerous research studies and industry reports have directly or indirectly provided knowledge

about software engineering expertise. Though directionally sound, prior work lacks in (one or all

of) holistic, contextual, and real world understanding of software engineering expertise, as we

will detail below. To facilitate understanding of these gaps, we have structured our discussions

by the prior work’s intent, since the intent of prior work is often the underlying cause of gaps.

2.1 COMPARING NOVICES AND EXPERTS IN WRITING AND

MAINTENANCE OF CODE

This section discusses related work comparing how novice and expert software engineers write

and maintain code. As a result of their focus, these studies are narrowly focused on a subset of

software engineering activities.

Studies that compare novice and experienced developers generally focus on productivity

differences, measured in various ways. Sackman et al., in one of the first comparisons of

developer productivity in 1968 (Sackman, Erikson, & Grant, 1968)—origins of the 10X

developer meme—compared developer performance on coding and debugging tasks. The authors

assess differences—along various productivity dimensions—between the best and the worst

programmers for an algebra and a maze problem. The differences in debug hours were 28:1 (for

the algebra task) and 26:1 (for the maze task), differences in CPU time were 8:1 and 11:1,

differences in code hours were 16:1 and 25:1, differences in program size were 6:1 and 5:1, and

differences in runtime were 5:1 and 13:1. The authors further noted that the large differences

were due to the long tail, with the worst performers taking “as much time or cost as 5, 10, or 20

good ones.”

Similarly, (Valett & McGarry, 1988) investigated productivity—based on SLOC/Hour

derived from personnel resource forms, interviews, and automated data collections (code

repository)—at the Software Engineering Laboratory in 1988. For large projects (>20K lines of

code) and small projects, the productivity of the worst, average, and best developers were 0.9,

5.4, and 7.9 for large projects and 0.5, 5.2, and 10.8 for small projects. The also authors

mentioned that most of the developers’ time were spent designing (27%) and testing (28%)

rather that coding (25%).

In addition to productivity, various studies also suggest that novices and experts differ in

mental aspects of program recognition and comprehension. Gugerty and Olson examined

differences in debugging between novices (students in their first or second programming class)

and expert (graduate students in computer sciences) in 1986 (Gugerty & Olson, 1986). The

authors found that experts were more likely to complete the task, complete the tasks faster,

introduced fewer new bugs, and formulated and validated hypotheses about the root causes of

problems faster.

Along the same lines, Robillard et al. investigated debugging approach of effective

developers (recruited within the Computer Science department of the University of British

Columbia) using code repository and screen capture tools (Robillard, Coelho, Murphy, &

Society, 2004). They observed that successful developers were more methodical in their

investigations, better comprehended constructs spanning multiple modules, better recognized

relevant information, had a plan for making changes, rarely reinvestigated issues, and used

structured searches. However, as we note about other studies in Section 2.4, behaviors of

students may not reflect those of industry experts.

Coding is central to software engineering; findings in these studies suggest that various

aspects of coding may be relevant to software engineering expertise. However, coding is only

one of many activities that software engineers perform; other technical abilities may be more

important (as we discuss in the next section). Furthermore, these studies examine coding in

isolation. Since software engineering is collaborative, there may be non-coding activities (e.g.

seeking help from experts) that directly affect coding effectiveness, but are not considered in

these studies.

2.2 SOFTWARE ENGINEERING CURRICULA

This section discusses related work on software engineering curricula. The intent of these works

is to prescribe knowledge and abilities that software engineering graduates should possess.

Information in these works is also foundational to understanding software engineering expertise,

and distinguishes between software engineering and ‘traditional’ engineering as well as

differences between different branches of computing (e.g. IS, IT, and software engineering).

The foremost work in this area is the ACM Computing Curricula (Shackelford et al.,

2006), which stipulates areas of knowledge that graduates need in various areas of computing,

including software engineering. The ACM Computing Curricula Joint Task Force, an ACM

interest group that meets at technical conferences (e.g. the Conference on Software Engineering

Education and Training), developed a set of core knowledge areas within computer sciences

(Joint Task Force on Computing Curricula, 2014). For each knowledge area, the Task Force

provides—through internal deliberation and external review—a minimum and maximum level of

mastery needed for different concentrations in computing: computer science, information

systems (IS), software engineering, computer engineering, and information technology (IT). The

knowledge areas with the highest combined minimum and maximum levels (scale of 1-5) for

software engineering are:

 Programming Fundamentals - Fundamental concepts of procedural programming

(including data types, control structures, functions, arrays, files, and the mechanics of

running, testing, and debugging) and object-oriented programming (including objects,

classes, inheritance, and polymorphism). (Min: 5, Max: 5)

 Software Modeling and Analysis – An activity that attempts to model customer

requirements and constraints with the objective of understanding what the customer

actually needs and thus defining the actual problem to be solved with software. (Min: 4,

Max: 5)

 Software Design - An activity that translates the requirements model into a more detailed

model that represents a software solution which typically includes architectural design

specifications and detailed design specifications. Alternatively, in software engineering,

the process of defining the software architecture (structure), components, modules,

interfaces, test approach, and data for a software system to satisfy specified requirements.

(Min: 5, Max: 5)

 Software Verification and Validation - The process of determining whether the

requirements for a system or component are complete and correct, the products of each

development phase fulfill the requirements or conditions imposed by the previous phase,

and the final system or component complies with specified requirements. (Min: 4, Max:

5)

 Project Management – An organizational practice and academic field of study that

focuses on the management approaches, organizational structures and processes, and

tools and technologies that together lead to the best possible outcomes in work that has

been organized as a project. (Min 4: Max 5)

The guideline also distinguishes between software engineering and ‘traditional’

engineering by noting that the foundation of software engineering is primarily computer science,

not natural sciences; the concentration is on abstract/logical entities instead of concrete/physical

artifacts. Software maintenance primarily refers to continued development, or evolution, and not

to conventional wear and tear (Joint Task Force on Computing Curricula, 2014).

These high-level areas in the Computing Curricula are divided into detailed topics in the

Software Engineering (SE) specific curriculum guideline (Joint Task Force on Computing

Curricula, 2014). In addition to technical topics, the SE curriculum guide also provided overall

guidance about meta-issues. The SE curriculum guide dictates that graduates of SE programs

should be able to demonstrate several qualities including:

 Professional Knowledge – show mastery of software engineering knowledge and skills

and of the professional standards necessary to begin practice as a software engineer

 Technical Knowledge – demonstrate an understanding of and apply appropriate theories,

models, and techniques that provide a basis for problem identification and analysis,

software design, development, implementation, verification, and documentation

 Teamwork – work both individually and as part of a team to develop and deliver quality

software artifacts

 End-User Awareness – demonstrate an understanding and appreciation of the importance

of negotiation, effective work habits, leadership, and good communication with

stakeholders in a typical software development environment

 Design Solutions in Context – design appropriate solutions in one or more application

domains using software engineering approaches that integrate ethical, social, legal, and

economic concerns

 Perform Trade-Offs – reconcile conflicting project objectives, finding acceptable

compromises within the limitations of cost, time, knowledge, existing systems, and

organizations

 Continuing Professional Development – learn new models, techniques, and technologies

as they emerge and appreciate the necessity of such continuing professional development

However, the SE curriculum guide does not go into detail about what each quality entails

or how/why the qualities are important in real world scenarios; instead, it focuses on approaches

for instilling these attributes in students. Another relevant place where the SE curriculum

provides guidance on “attributes and attitudes that should pervade the curriculum and its

delivery” is Guideline 8: “students should be trained in certain personal skills that transcend the

subject matter.” It goes on to state that this includes: exercising critical judgment, evaluating and

challenging perceived wisdom, recognizing their own limitations, communicating effectively,

and behaving ethically and professionally. However, the guidance is prescriptive, without

contextual understanding of the attributes’ importance. The guidance for the ‘Communicating

Effectively’ attribute is an illustrative example:

Communicating effectively: Students should learn to communicate well in all contexts:

in writing, when giving presentations, when demonstrating (their own or others’)

software, and when conducting discussions with others. Students should also build

listening, cooperation, and negotiation skills.

Several research efforts have contributed to or have derived from the ACM Computing

Curriculum. One of the largest is Lethbridge’s survey (Lethbridge, 1998) of 168 software

professionals about the relevance of 57 computer science education topics (9 mathematics, 31

software, 4 engineering, 13 miscellaneous) derived from the ACM Computing Curricula

(Shackelford et al., 2006) and topics “taught in most programs.” Using a Likert-like scale the

author sought to understand how much the respondents learned about the topic in school, their

current level of knowledge, the usefulness of the topic in their career, and usefulness of

additional learnings. Overall, software topics had the highest rating, though only moderately at

2.8 average rating. The most useful subtopics were “general architecture & design” (4.3 average

rating), “data structures” (4.1 average rating), “testing & quality assurance” (3.7 average rating),

and “requirements gathering and analysis” (3.7 average rating). The only other subtopic with an

average rating above 3.5 was ‘technical writing’ (3.6 average rating) within miscellaneous

topics.

Addressing special needs within gaming, the International Game Developers Association

(IGDA) issued their own curriculum framework (International Game Developers Association,

2008), developed through “workshops, panels at conferences and discussions.” The curriculum

framework prescribes the core topics of critical game studies, games and society, game design,

game programming, visual design, audio design, interactive storytelling, game production, and

business of gaming. The authors neither ranked these topics nor provided in-depth explanations

of their importance.

Technical skills and abilities covered by works related to the software engineering

curricula are extensive; however, they leave several knowledge gaps about software engineering

expertise. Foremost, the curricula are prescriptive; they lack detail about how the knowledge

should be applied and why this knowledge is important in real world settings. For example, for

“recognizing their own limitations”, the software engineering education guideline specifies that

“students should be taught that professionals consult other professionals and that there is great

strength in teamwork.” However, how the engagement should proceed and the benefits of

engagements (and drawbacks of its neglect) are not discussed. Similarly, for all the technical

areas, contextual understanding about how or why the abilities are important for real world

engineering of software is lacking. Second, interpersonal skills, like communicating effectively,

are not discussed in detail—if at all—and the attributes do not have a ranking like the technical

knowledge areas. Therefore, we do not know how important ‘communicating effectively’ ranks

relative to technical areas like ‘software verification and validation’. As studies and reports in

subsequent sections show, we need a holistic understanding, beyond technical skills and abilities,

about software engineering expertise.

2.3 SOFTWARE DEVELOPMENT PROCESSES AND METHODOLOGIES

This section discusses related work on software development processes/methodologies. The

intent of these works is to prescribe best practices for real world software engineering teams. By

prescribing certain procedures as best practices and examining various aspects of software

engineering projects as outcomes, these works suggest that various things may be part of

software engineering expertise. However, these works generally focused on activities and

outcomes at the team level; there is little direct information about individual expertise. The

literature on software engineering development processes/methodologies is extensive. While a

full review is beyond the scope this dissertation, we examine a few notable examples.

One of best known software development methodologies is Boehm’s Spiral software

development model, developed at TRW (B. W. Boehm, 1988). This methodology suggests that

software engineers should be able to “defer detailed elaboration of low-risk software elements

and avoid unnecessary breakage in their design until the high-risk elements of the design are

stabilized,” use “prototyping as a risk-reduction option at any stage of development,

‘accommodate reworks or go-backs to earlier stages as more attractive alternatives are identified

or as new risk issues need resolution.” A related methodology is the Scrum software

development method. As discussed by Rising and Janoff, the Scrum software development

method is similar to the Spiral method, “just speeded up” (Rising & Janoff, 2000). Scrum also

adheres to the Agile manifesto (Beck et al., 2001) which prescribes ‘individual and interactions

over processes and tools’, ‘working software over comprehensive documentation’, ‘customer

collaboration over contract negotiations’, and ‘respond to change over following a plan’. The

Scrum software development method has planned incremental development cycles (i.e. sprints),

periodic reassessment, customers in the loop, and active risk management. The incremental

addition to the Spiral method is the daily Scrum meeting where progress and problems are

discussed. The underlying intent of the Scrum meeting is keeping others informed, getting help

for problems, and keeping to a timeline are likely desired attributes of software engineers.

Carnegie Mellon University-Software Engineering Institute’s Capability Maturity Model

(CMM) is another area of well-known software development methodology research (Herbsleb,

Zubrow, Goldenson, Hayes, & Paulk, 1997). CMM implies that various things are part of

software engineering expertise. First, CMM suggests knowledge and ability to execute various

processes are important, including project management processes, engineering processes and

organizational support, product and process quality, and continuous process improvement. The

CMM’s ‘maturity level’—1. Initial, 2. Repeatable, 3. Defined, 4. Managed, and 5. Optimizing—

suggests that attributes at levels higher than 1 may be attributes of software engineering

expertise. Finally, the indicators of success—product quality, customer satisfaction, productivity,

ability to meet schedules, ability to meet budgets, and staff morale—suggest that attributes are

also desirable.

In addition to overall software development methodologies, various research examines

specific software engineering processes. For example, in the area of design, Beyer and Holtzblatt

prescribes understanding the customer’s work contexts and work flows (via participatory

approaches) in order to effectively design systems that meet their needs (Beyer & Holtzblatt,

1995). Ivory and Hearst in their survey of automated usability evaluation procedures (Ivory &

Hearst, 2001) require software engineers to effectively instrument, collect, and analyze data from

customer usage.

Another process is negotiation between software engineers. Gobeli et al. (Gobeli, Koenig,

& Bechinger, 1998) surveyed 117 managers and team members in 78 software development

companies in the Pacific Northwest, ranging from 1-2 people to 300+ people, about conflicts and

conflict resolution approaches within their teams. Using self-rated ‘overall success’, ‘customer

satisfaction’, and ‘member satisfaction’ as outcomes, the authors found that the conflict

resolution styles of ‘confronting’ (recognizing disagreement exists, and then engaging in

collaborative problem solving to reach a solution to which the parties are committed) and ‘give

and take’ (recognizing disagreement exists, and then reaching a compromise solution which the

parties can accept) are higher correlated with better outcomes than ‘withdrawal’ (avoiding the

disagreeable party or issue, or denying that any action must be taken now), ‘smoothing’

(recognizing disagreement exists, but then minimizing the differences while striving for harmony

or a superficial solution) and ‘forcing’ (imposing a solution on one or more of the disagreeing

parties). In fact, ‘forcing’ was negatively correlated with positive outcomes. These findings

suggest that the ability to execute (or to avoid) conflict resolution processes may be part of

software engineering expertise.

Research on software engineering processes/methodologies cover a wide range of

topics—both technical and interpersonal—that teams need to do or accomplish to be successful.

While probably essential for teams/organizations, the topics’ relevance for individual expertise is

unclear. For instance, for a given software engineer, we do not know whether awareness and

willingness to participate in (all or any of) the activities are sufficient or whether excellence is

necessary.

2.4 NEW GRADUATES AND THEIR FIRST INDUSTRY JOBS

This section discusses related work examining new graduates in their first industry jobs. By

identifying the problems and needs of new graduates, these works aim to improve training of

new software engineers.

Begel and Simon observed and interviewed eight new hires at Microsoft for four weeks

over the new hires’ initial two months; Begel and Simon examined their daily tasks and the

problems they encountered (Begel & Simon, 2008). The authors observed that new software

developers spend a large portion of their time in communication tasks: meetings, seeking

awareness of teammates, requesting help, receiving help, helping others, working with others,

persuading others, coordinating with others, getting feedback, and finding people. The authors

state that simply knowing what the new hires did was insufficient; they supplemented

observation data with self-recorded video journals and predetermined question prompts that

sought to understand the problems the informants faced and their feelings toward those

problems. The authors found that novices needed to learn how to contribute value to the team

(‘take on tasks that have an impact’), to be ‘movers’ (avoiding uncertainty and lack of self-

efficacy), and to collaborate effectively in a ‘large-scale software team setting’. Furthermore, the

study provided evidence that university experience (even Masters and Ph.D. programs) are

different in nature from real world software development. This suggest possible validity issues

for related research (e.g. those in Section 2.1) that examine only students. For example, one of

their informants stated, “[I should] get a lot of experience working on a team project with

people… not just some stupid homework assignment that only lasts one week.”

Like Begel and Simon, Hewner and Guzdial interviewed and surveyed managers and

artists at one small game company to learn about desired traits in new graduates (Hewner &

Guzdial, 2010). The authors interviewed nine employees (a mix of developers, managers, and

artists) by asking them, “Say you were going to interview some new college hires and you

decided to put together a document about what was important to look for in a new hire. What

would be in that document?” From all the responses, the authors selected a subset of 28

qualifications in seven group, and then surveyed 32 additional people (27 developers, 4

managers, and 1 artist):

 Programming

 Optimize

 Design

 Specifications

 People Skills

 Game Industry

 CS Education

Respondents rated the qualifications using a Likert-like scale: ‘Essential, would not hire without

good skills in this area’, ‘Very Important, has a large impact on a hiring decision’, ‘Important,

has an impact on the hiring decision’, ‘Sometimes useful but not required or evaluated in

interviews’, and ‘Not useful’. The group with the highest overall importance was Programming,

including:

 ‘Being able to solve algorithmically challenging problems’ (15.6% essential, 53.1% very

important)

 ‘Proficiency with the C++ language including basic knowledge of features like

templating’ (29.0% essential, 51.6% very important)

 ‘Knowledge about data structures’ (37.5% essential, 43.8% very important)

 ‘Debugging and familiarity with debugging tools’ (15.6% essential, 43.8% very

important)

The most important individual qualifications were the ‘ability to work with others and check

your ego at the door’ (75.0% essential, 9.4% very important) under People Skills, and ‘writing

clean code’ (18.8% essential, 65.6% very important) under Design. While the approach is solid

(we use a similar approach of interviews followed by a survey in our research), there are gaps in

the understanding results from their focus on new graduates. As an interesting side note, some of

the interviewees and survey respondents were ‘artists’, not software engineers (or managers of

software engineers). These people were important within the game development organizations,

yet there was no attempt to examine how their perspectives differed (or didn’t) from those of

software engineers.

In 1995, Turley and Bieman (Turley & Bieman, 1995) compared competencies of

exceptional and non-exceptional software engineers at “a Fortune 500 company involved in the

design, manufacture, and support of single and multi-user computer systems.” The manager

designated ‘exceptional’ (and ‘non-exceptional’) software engineers. The tag was tied closely to

years of experience, with exceptional software engineers having an average of 9.05 years

compared to 5.00 years for non-exceptional software engineers. The authors derived aspects of

competence from interviews with software engineers, and then surveyed 129 managers

designated ‘exceptional’ (41) and ‘non-exceptional’ (88) software engineers, asking them to self-

rate themselves on those aspects. The authors found that the statistically higher aspects for

‘exceptional’ software engineers were ‘helps others’, ‘proactive role with management’, and

‘maintains big picture view’. For ‘non-exceptional’ software engineers, the statistically higher

aspects were ‘seeks help from others’ and ‘willingness to confront others’. The enumerated

competences covered a broad set of interesting areas. The approach of inductively deriving a set

of attributes based on qualitative interviews and then conducting a qualitative survey based on

the findings, is a good approach (we use the same in this thesis). However, the comparisons may

have validity issues due to social desirability biases in self-ratings and questionable managers

tagging of ‘exceptional’ (with no clear indication that the managers had any real world software-

engineering experience).

Combining findings in past and more recent studies, Radermacher and Wailia reviewed

existing literature on the gaps between industry expectations and abilities of new graduates

(Radermacher & Walia, 2013). The authors searched the ACM Digital Library and IEEE

publications for relevant papers, selecting 38 that qualified. In addition to filtering for quality and

applicability, the authors also scoped to empirical research papers published after 1995. The

authors identified 14 deficiencies in four areas:

 Soft skills (oral communication, written communication, leadership, presentation)

 Software engineering practices (design, testing, requirements, software life-cycle)

 Computer science concepts (theoretical CS, data structures, programming, networking)

 Software tools (debuggers, configuration management, development tools, miscellaneous

software tools)

The four deficiencies most mentioned were oral communications (11 papers), teamwork

(11 papers), project communications (10 papers), and problem solving (10 papers). While

covering many topics (and providing a good resource for identifying important related work), the

survey had several drawbacks. First, the survey lacked clear descriptions and definitions, with

little detail to help understand relevance and importance. The section on ‘teamwork’—the

second most mentioned topic—illustrated this:

Teamwork was tied with oral communication as the most identified knowledge

deficiency. One paper listed the ability to get along with others and to check one's own

ego as important aspects of teamwork. Another study also indicated that having

experience working as part of a team or a group was important. Scott, et al. indicated

that the ability to be work as part of a cross-disciplinary team was necessary in industry.

The description neither described what teamwork entails (e.g. whether ‘getting along with

others’ and ‘check one’s ego’ fully encompasses teamwork) nor explained why it is important

(e.g. how ‘cross-disciplinary team’ impact ‘teamwork’). Second, the survey contained papers

from the IT and IS fields. The authors acknowledged that those findings may not be directly

applicable to software engineering and that both fields (IS and IT) had their own publications

outside of their literature search (i.e. not ACM or IEEE). This appeared to affect at least one

attribute, ‘ethics’, for which all supporting information were IS and IT papers.

Using findings from their 2013 survey, Radermacher et al. interviewed 23 managers and

hiring professionals from companies that work with North Dakota State University’s capstone

project to understand the knowledge deficiencies that prevented graduates from being hired

(authors designate as interview) and issue/problems commonly encountered by new graduates

(authors designate as job) (Radermacher, Walia, & Knudson, 2014). The authors used the topics

from their literature review. The highest rated topics were:

 ‘Project experience’ mentioned by 13 interviewees for interview and 0 interviewees for

job

 ‘Configuration management’ mentioned by 0 interviewees for interview and 12

interviewees for job

 ‘Oral communication’ mentioned by 9 interviewees for interview and 2 interviewees for

job

 ‘Problem solving’ mentioned by 8 interviewees for interview and 3 interviewees for job

The lopsided ratings (high ratings for interviews but of no relevance for job) raises

concerns that some the topic may be specific to novices and may not be relevant for experts. The

authors explained some of the overall themes such as knowledge of tools covering ‘configuration

management’ and other tools, but did not go into details for others (the topics that encompass

lack of understanding of job expectations were not discussed). The authors also compared the

results with topics mentioned from their literature survey. However, the use of the taxonomy

from previous studies was a problem. Some of the concerns discussed by interviewees clearly

spanned many topics (e.g. tools), whereas other concerns were at a much lower lever than topic

headings. For example, interviewees felt that some new hires had problems estimating costs,

which the authors put with ‘project experience’; however, project experience is significantly

broader than the single topic of cost estimation. The lack of clear definitions of the topics

contributed to the confusion. Preconceived structured topic areas was a poor fit for their

qualitative approach.

The most obvious drawback of these studies is the focus on novice software engineers.

Several authors explicitly state that expert software engineers likely differ from novices, and that

problems faced by novices may not be comprehensive or applicable to experts. For example,

Begel and Simon excluded a participant from their study due to expertise (Begel & Simon,

2008). “We originally had a ninth subject in the study, whom we removed after one observation.

His behaviors and actions during the observation exhibited all the signs of a fully expert software

engineer, with no signs of hesitation, insecurity, deferment to others’ authority, etc.” The lack of

clear definitions and explanation is another issue common among these studies. The problem

with vague definitions is also present in other studies, such as (Radermacher et al., 2014)

discussed in the previous section. For example, for the most important attribute in the Hewner

and Guzdial study (Hewner & Guzdial, 2010)—‘ability work with others and check your ego at

the door’—the authors only stated that “participants individually emphasized that too much ego

and unwillingness to take advice was against the company culture.” It was neither clear what ‘too

much ego’ meant nor why the attribute was important in practice. Finally, we note that in

(Hewner & Guzdial, 2010), one of the attributes that was only mentioned ‘in passing’ in their

qualitative interviews turned out to be one highest ranked attributes in their subsequent survey.

This was a problem for the validity of the Hewner and Guzdial study since the authors included

only attributes in the survey that the authors considered highly important or ‘provoked

disagreement or interesting discussion’ in interviews; the attributes surveyed was not

comprehensive. More broadly, this suggests that studies examining expertise need to consider all

attributes together (i.e. be holistic), lest important attributes and interplay between attributes be

missed.

2.5 EVERYDAY ACTIVITIES OF SOFTWARE ENGINEERS

This section discusses related works that examine everyday activities of software engineers.

Using mostly ethnographic approaches, these studies examine what software engineers do. As

the intent of the research is descriptive, it does not provide much understanding about differences

between engineers in their execution of these activities, or whether they do them at all.

Ko et al. shadowed 17 Microsoft developers for 90 minutes each to examine the kinds of

information that they sought (Ko, DeLine, & Venolia, 2007). The authors grouped the 20 types

of information sought into work categories in which they arose: writing code, submitting a

change, triaging a bug, reproducing a failure, understanding execution behavior, reasoning about

design, and maintaining awareness. The most common sought information were:

 ‘What have my coworkers been doing?’ (work category: maintaining awareness, sought

by 15 participants)

 ‘What code caused this program state?’ (work category: understanding execution

behavior, sought by 11 participants)

 ‘How have resources I depend on changed?’ (work category: maintaining awareness,

sought by 10 participants)

The authors also surveyed 42 different developers about needs for these types of

information: ‘important to making progress’, ‘unavailability or difficult to obtain’, and ‘had

questionable accuracy’. For ‘important to making progress’, the types of information receiving

the highest ratings were ‘what is the program supposed to do?’ (93% agree), ‘what code caused

this program state?’ (90% agree), and ‘what does the failure look like?’ (88% agree). The study

suggests that having these information is likely an important as aspect of software engineering

expertise; though, the study provides little information about differences in acquisition (e.g. how

quickly one acquires this information), which is likely what distinguishes great software

engineers.

Similarly, Latoza et al. surveyed 28 and interviewed 13 developers at Microsoft about

their activities, tools, and practices (Latoza, Venolia, & DeLine, 2006). The authors found that

developers spend similar (median) amounts of times on various activities such as designing,

writing, understanding, editing, unit testing, communicating, overhead (e.g. building

synchronizing code or checking in changes), other code, and non-code. The authors further

reported several interesting behaviors from their interviews: personal code ownership, team code

ownership and the ‘moat’, (integrating) new team members, and code duplication. The study

suggests that these activities are likely aspects of software engineering expertise, but it does not

provide much understanding about what distinguishes the execution of great software engineers.

Several older studies also provide knowledge about everyday activities of software

engineers. Singer et al. surveyed (6 respondents) and shadowed (9) software engineers to learn

about activities and tool use (Singer, Lethbridge, Vinson, & Anquetil, 1997). From the survey,

the authors reported that the most common activities were read documentation, look at source,

write code, and attend meetings. Similarly, in 1994, Perry et al. asked 13 developers at AT&T to

complete time diaries to examine their activities (Perry, Staudenmeyer, & Votta, 1994). Most of

the self-reported time was spent coding, followed by support, low-level test, high-level design,

and planning/development. The authors further commented that nearly half of the developers’

time is occupied by non-coding tasks (though coding was nearly 50% of the developers’ time).

The authors further investigated the number of times participants interacted with other

developers, noting that much of the non-coding tasks involved interacting with others (e.g.

providing code reviews). As with previous studies, these older results suggest that performing

various activities well are likely aspects of software engineering expertise.

In addition to direct observational studies, numerous works have examined bug/issue

reporting/tracking repositories to examine how software engineers reach decisions about what to

fix/improve, how to do so, and who should do it (Anvik, Hiew, & Murphy, 2006), (Jeong, Kim,

& Zimmermann, 2009), (Podgurski et al., 2003), (Runeson, Alexandersson, & Nyholm, 2007),

(Bertram, Voida, Greenberg, & Walker, 2010), (Aranda & Venolia, 2009), and (Ko & Chilana,

2010). As with other research papers in this section, these studies suggest that great software

engineers do various activities effectively:

 Finding owners and experts

 Determining/assigning ownership

 Pulling in relevant information (e.g. duplicate or related bugs)

 Assessing whether to address an issue (i.e. triaging)

 Negotiating the best approach for fixing a problem

 Coordinating activities (e.g. with validators/testers)

 Communicating/broadcasting status (e.g. stakeholders and customers)

Studies examining everyday activities of software engineers indicate that they engage in

many activities in addition to coding; doing these activities well are likely attributes of expertise.

However, much of the knowledge is about what software engineers do, with little understanding

about how the execution of these activities differ between novices and experts. As studies in the

next section show that how activities are performed may be an important aspect of software

engineering expertise.

2.6 HUMAN FACTORS IN SOFTWARE ENGINEERING

This section discusses works that examine human factors in software engineering. These studies

provide knowledge that how software engineering activities are performed are likely relevant to

software engineering expertise.

In 1985, Robert E. Kelley started a 14-year study looking at successful engineers.

Originating in Bell Labs, the study included engineers from many companies in many

industries—Analog Devices, Air Touch, Shell Oil, and Kimberly Clark (Kelley, 1999a). Kelley

started by soliciting qualities of ‘star performers’ from engineers at Bell Labs. Though the full

list of factors is not published, the four categories investigated were:

 Cognitive factors, such as higher IQ, logic, reasoning, and creativity

 Personality factors, such as self-confidence, ambition, courage, and a feeling of personal

control over one's destiny

 Social factors, such as interpersonal skills and leadership

 Work and organizational factors, such as the worker's relationship with the boss, job

satisfaction, and attitudes toward pay and other rewards

Kelley and his team proceeded to measure these factors using ‘standard measurement tools

available’ as well as surveys and interviews; however, they did not find a relationship between

measurements and being ‘star performers’ (based on rating by managers and peers).

Subsequently, Kelley postulated that anyone who was hired had the necessary abilities to

succeed; therefore, how people did their work distinguished the star performers. Kelley. based on

his own understanding, advanced nine work strategies (i.e. how to do things) for achieving

success, in order of importance:

1. Initiative – blazing trails in the organization’s white spaces

2. Networking – knowing who knows by plugging into the knowledge network

3. Self-management – managing your whole life at work

4. Perspective – getting the big picture

5. Followership – checking your ego at the door to lead in assists

6. Leadership – doing the small-L leadership in a big-L world

7. Teamwork – getting real about teams

8. Organizational savvy – using street smarts in the corporate power zone

9. Show-and-tell – persuading the right audience with the right message

Kelley’s work provides excellent explanation of the work strategies with contextual

understandings of their importance, supported by anecdotes and observations. Nonetheless, there

are drawbacks with Kelley’s work. First, the study includes non-software-engineers. The ACM

distinguishes between software engineering and ‘traditional’ engineering, as discussed in Section

2.2; it is unclear how these differences affect the lack of relationships with the cognitive,

personality, social, and organizational factors, as well as the importance of the nine work

strategies. Second, the study does not consider technical software engineering knowledge and

abilities (e.g. coding). Understanding about software engineering expertise that does not consider

developing code—the central activity in software engineering—is a significant limitation.

Ahmed et al. also examined the ‘soft skills’ of software engineers, analyzing 500

computer science related job advertisements worldwide (Ahmed, Capretz, & Campbell, 2012).

The authors claimed that only nine soft skills were mentioned across all the advertisements:

 Communication skills

 Interpersonal skills

 Analytical and problem-solving skills

 Team-player

 Organizational skills

 Fast learner

 Ability work independently

 Innovative

 Open and adaptable to change

The authors only considered ads that mentioned one of the nine attributes and divided the ads by

the position being sought: system analyst, software designer, computer programmer, and

software tester. Across all positions, only communication skills (the ability to convey

information so that it’s well received and understood) was consistently mentioned—a part of

requirements for more than 75% of advertisements for all positions. For software programmers,

the frequently mentioned soft skills in postings were communication skills (90%), followed by

interpersonal skills (“the ability to deal with other people through social communication and

interactions under favorable and inauspicious conditions” – 65%) and team players (“someone

who can work effectively in a team environment and contribute toward the desired goal” – 62%).

The authors further mentioned several regional differences. North America ads for computer

programmers showed a moderate demand for independent workers (can carry out tasks with

minimal supervision) while this attribute was in low demand in other regions. Australian market

showed low demand for organizational skills (the ability to efficiently manage various tasks and

to remain on schedule without wasting resources) while other markets showed moderate demand

for this skill. Capretz further mapped the soft skills in the study to Myers-Briggs Type Indictors

to conclude that most programmers are introvert, sensing, and thinking types (Capretz, 2003).

In a meta-study of human factors in software engineering, Cruz et al. reviewed 90 studies

published between 1970 and 2010 to examine the research of personality (traits that can be

assessed objectively using personality tests) in software engineering (Cruz et al., 2015). The

authors found that the effect of personality—at least those that were objectively measured—were

equivocal. Different research results showed relationships or no relationships between

personality and tasks/processes of software engineering, including:

 Paired programming

 Education (mostly academic success)

 Team effectiveness

 Software process allocation (personality types and technical roles)

 Software engineer personality characteristics

 Individual performance

 Team process

 Behavior and preferences

 Leadership effectiveness

One contributing problem may have been inconsistencies in definitions, which the authors did

not attempt to reconcile: “we did not investigate consistency among the operational definitions of

the constructs used as outcomes in the studies.”

Related work examining human factors in software engineering indicate that software

engineering expertise likely involved how non-coding activities are executed. However, with the

exception of the Kelley study, many of the studies lack clear definition and explanations of these

attributes. More problematic is the omission of technical attributes. There are likely interplays

between mental and human factors with technical skills, as the studies themselves suggest;

therefore, not considering technical attributes leaves an incomplete picture of software

engineering expertise.

2.7 INSIGHTS FROM LUMINARIES AND THE PRESS

This section discusses opinions of luminaries as well as articles in the press. As software is

becoming increasingly essential to our society, many luminaries have shared their perspectives

on software engineering expertise, and the topic is popular in the press. Covering all mentions of

software engineering expertise is beyond the scope of this literature review; however, we discuss

some notable instances.

In his OOPSLA 2003 editorial “Things They Would Not Teach Me of in College: What

Microsoft Developers Learn Later,” Brechner—a director of development training at

Microsoft—discussed skills that new graduates are commonly missing when they come to

Microsoft and that he’d like see taught in schools (Brechner, 2003). These skills were:

 Design analysis: design and analyze software for strong cohesion, loose coupling, clear

focus (simplicity), minimal redundancy, and high testability

 Embracing diversity: write one piece of code that supports users of many nationalities as

well as users who can’t see or hear

 Multidisciplinary project teaming: work with a multidisciplinary team to complete a

project that satisfies a customer’s imprecise list of requirements and expectation of

quality, all by a fixed date

 Large-scale development: write an integrated piece of a larger project while other

students simultaneously write their pieces and be accountable for every student’s ability

to read, modify, and debug each other’s code

 Quality code that lasts: write code that withstands all forms of use, input, and attack

without becoming inoperative, taxing system resources, or exposing user’s data, while

simultaneously recording errors that unskilled support personnel or users are able to

diagnose or report

The set of attributes described by Brechner covers many technical skills and interpersonal skills;

they also overlap with topics discussed in research studies at Microsoft (see studies in Section

2.4 and Section 2.5). His editorial is also notable because it is one of the few places where the

need for software engineer to work well in a multidisciplinary team—including ‘designers,

usability engineers, and artists’—is called out explicitly.

Another notable place where software engineering expertise is discussed is in “Code

Complete” (McConnell, 2004), one of the best-selling practical guides on programming.

McConnell argued that effective developers, in addition to programming, also needed ‘personal

character’:

 Humility: developers who compensate for their own mental fallacies by writing code

that’s easier for themselves and others to understand and that have fewer errors

 Curiosity: keeping up with changes and seeking ways of doing their job better

 Intellectual honesty: refusing to pretend you’re an expert when you’re not, readily

admitting your mistakes, trying to understand a complier error rather than suppressing the

message, clearly understanding your program—not compiling it to see if it works,

providing realistic status reports, and providing realistic schedule estimates and holding

your ground when management asks you to adjust them

 Communication and cooperation: writing comprehensible code with the audience of

people, not machines, in mind

 Creativity and discipline: be creative in the right places; follow disciplined practices and

convention to avoid wasting time

 Laziness: some are bad (e.g. deferring unpleasant tasks, unnecessary tasks to look busy);

some are good (e.g. writing a tool to do an unpleasant task)

McConnell further deems several attributes that work in other areas of life but do not work well

in software development:

 Persistence: when one approach doesn’t work try something else or come back to it later;

no pigheadedness

 Experience: it’s not the years of experience, but the amount of deeply reflected

experience that matters

 Gonzo programming: pulling all-nighters lead to more time later to fix the bugs

introduced

Finally, the author comments that ‘personal character’ often requires years for habit to build.

Though anecdotal, McConnell clearly described various mental attributes and articulated their

importance to the engineering of software; the chapters were some of the best at providing a

contextual understanding of software engineering expertise. Furthermore, his opinions suggested

that dissention among expert software engineers about the attributes of software engineering

expertise was possible. Some attributes that he thought ‘do not work well in software

development’ (e.g. persistence) had been suggested as positive attributes in other studies.

Brooks is another well-known luminary that commented on software engineering

expertise in his well-known book Mythical Man-Month (Brooks, 1995). He touched upon

software engineering expertise in many of his observations.

 “The second-system effect” stated that when designing a second system, software

engineers should to be mindful that they are susceptible to over-engineering

 “Progress tracking” stated that software engineers need to be continuously pay attention

to meeting small/intermediate milestones, lest small incremental slippage accumulate to

significant project delays

 “Conceptual integrity” stated that software engineers should have programs that have

conceptual integrity, preferably set by a small number of engineers

 “Project estimation” stated that software engineers should take into account additional

difficulty in write production code as well as overhead costs (e.g. meetings) in estimating

project schedules

 “The surgical team” stated that the best software engineers are 5 to 10 times more

productive than mediocre software engineers

 “Communication” stated that the entire team should remain in contact as much as

possible to ensure that their mental picture is complete and that all assumptions are

correct

Brooks’ account provided evidence that software engineering is a complex undertaking and that

software engineering expertise—to be able to engineer software well—entails attributes that span

many areas (e.g. technical expertise, interactions with teammates, and personality traits), with

some non-technical attributes influencing technical decisions (as with ‘the second-system’

effect).

Various articles from Google indicate that software engineering expertise concerns

successful software development organizations other than Microsoft. The New York Times

(Bryant, 2013) interviewed Brock—a vice president of people operations at Google—about the

success of their hiring practices. Brock indicated that at Google, GPA and test scores are poor

predictors of success. He states that significant learning and growth occur after college and that

many skills needed to succeed in industry are not the same ones needed to succeed in school.

Furthermore, he comments that real-world software engineering was poorly approximated by

academic environments (e.g. real-world software engineering problems often lack specific

answers). In a 2009 Google I/O talk, Fitzpatrick and Collins-Sussman gave an “opinionated talk”

titled “The Myth of the Genius Programmer” about characteristics of good and poor software

engineers based on their ‘subjective experience’ (Fitzpatrick & Collins-Sussman, 2009). They

stated that good programmers did not “go off into your cave” and were not afraid of admitting

mistakes; they were open with sharing their code and progress, even if it was not perfect. The

authors cited the ‘bus factor’ (resiliency against the loss of a central person), quality (“many eyes

make all bugs shallow”), and constant feedback about working on the right thing as important

reasons for being open. The pair further pointed out that communicating with people was critical

since software engineering is collaborative (i.e. no one person builds big successful software

alone). Good programmers needed to be open to taking feedback, are able to give constructive

feedback, and not take non-constructive feedback personally. Good programmers were also not

afraid of trying and failing fast, because that was the best way (and often the only way) to learn

and to iterate to a solution. The authors comment that it was better to be a ‘small fish’, because

one had more opportunity to learn from better engineers and improve. The pair pointed out that

an organizational support is needed for many of these ‘good’ habits to be possible, such as giving

constructive feedback and learning from mistakes. In addition to reinforcing the idea of

interplays between non-technical and technical attributes, reports from Google also explicitly call

out ‘learning’ as an important aspect of software engineering expertise. Supplementing studies

from Microsoft (see Section 2.4 and Section 2.5), these reports from Google indicate that having

good software engineers is a problem that concerns even very successful software development

organizations; having the financial resources to hire the best candidates is likely not a viable

approach to getting good software engineers.

Taken as a whole the opinions of experts and articles in the press provides the best

argument for needing this dissertation. These reports indicate that software engineering expertise

entail interplay among a wide variety of attributes, including technical knowledge, interpersonal

skills, and mental disposition. And since the investigations were likely neither comprehensive

nor rigorous, they make the case that we need a holistic, contextual, and real-world

understanding of software engineering expertise.

2.8 SUMMARY AND DISCUSSION

As shown in the previous sections, related work that provides insights into software engineering

expertise is extensive. Previous studies suggest that software engineering expertise is

multifaceted, covering technical attributes (involving how software engineers envision, actualize,

and maintain code), interpersonal attributes (related to how software engineers engage and

collaborate with others), as well as mental attributes (related to how software engineers approach

themselves, their work, and their craft).

As various works indicate (Section 2.1: comparing novice and expert developers, Section

2.2: software engineering curricula, Section 2.3: software development process/methodologies),

expert software engineers may have a variety of technical knowledge and skills. These likely

include the core ability to develop code, as well as other related technical skills like software

design/architecture, testing/verification, and the familiarity with a variety of software

development tools.

In addition, researchers have found that various ‘soft’ skills may also be attributes of

expertise. Foremost is the ability to work with others; this typically entails communicating and

coordinating with other software engineers as indicated by research studies on everyday

activities of software engineers (Section 2.5) and in mental and human factors in software

engineering (Section 2.6). ‘Soft’ skills may also include the execution of specific activities that

facilitate success at the team level, such as ‘scrum daily stand ups’ that aim to maintain shared

understanding and to monitor schedule slippage as well as ‘confronting’ and ‘give and take’

conflict resolution processes that aim to reach satisfactory decisions between team members with

disagreements.

Various researchers suggest that the mental disposition of the software engineer may also

be important, such as the willingness to perform certain activities and how the activities are

performed. From ‘systematic’ underlying effective software development (discussed in Section

2.1), to ‘being open’ underlying effective collaborations (discussed in Section 2.7), personality

traits may underlie many of the externally observable actions of expert software engineers.

Enumerating every likely attribute of software engineering expertise stated, suggested, or

insinuated by prior work is beyond the scope of this literature review. We do not suffer from a

lack of likely attributes; however, we lack in-depth understanding of the attributes. We

summarize the knowledge in related works in Table 2.1, pointing out the types of attributes

described, their underlying source data, and examples of how they describe attributes of software

engineering expertise; these will highlight the weakness and gaps in our understanding, which

we seek to fill with this dissertation.

Table 2.1. Overview of Related Work Discussed

Area and
Publication

Type(s) of
attributes
examined

Source data Example attribute description

Comparing novices
and experts in
writing and
maintenance of
code: (Sackman et
al., 1968)

Technical Lab experiments on
contrived programs
for 12
programmers and 9
‘trainees’ at the
Advanced Research
Project Agency of
the DoD

‘Debugging was considered finished when the
subject's program was able to process,
without errors, a standard set of test inputs.’

Comparing novices
and experts in
writing and
maintenance of
code: (Valett &
McGarry, 1988)

Technical Developer self-
reported data and
version control
data for 150+
developers at
NASA’s Software
Engineering
Laboratory

‘Although there are obvious problems and
objections to using line of code a productivity
measure, the SEL used it to at least compute
trends in productivity.’

Area and
Publication

Type(s) of
attributes
examined

Source data Example attribute description

Comparing novices
and experts in
writing and
maintenance of
code: (Gugerty &
Olson, 1986)

Technical Lab experiments on
contrived programs
for 10 first/second
course CS students
and 10 graduate CS
students

‘Another pattern of behavior that
differentiated novices from experts was that
novices frequently added bugs to their
programs…’

Comparing novices
and experts in
writing and
maintenance of
code: (Robillard et
al., 2004)

Technical,
Mental

Lab experiments on
the jEdit open
source program for
5 CS students

‘The successful subjects created a detailed and
complete plan prior to the change whereas
the unsuccessful and average subjects did
not.’

Software
engineering
curricula:
(Shackelford et al.,
2006)

Technical Opinions of the
ACM Computing
Curricula Joint Task
Force with
feedback from
educators,
academics, and
practitioners

‘Programming Fundamentals - Fundamental
concepts of procedural programming
(including data types, control structures,
functions, arrays, files, and the mechanics of
running, testing, and debugging) and object-
oriented programming (including objects,
classes, inheritance, and polymorphism).’

Software
engineering
curricula: (Joint Task
Force on Computing
Curricula, 2014)

Technical,
Interpersonal,
Mental

Opinions of the
ACM Computing
Curricula Joint Task
Force with
feedback from
educators,
academics, and
practitioners

‘Communicating effectively: Students should
learn to communicate well in all contexts: in
writing, when giving presentations, when
demonstrating (their own or others’) software,
and when conducting discussions with others.
Students should also build listening,
cooperation, and negotiation skills.’

Software
engineering
curricula:
(Lethbridge, 1998)

Technical Survey of 168
software
practitioners of
topics commonly
taught in computer
science programs
and in various CS
curricula

‘Software – General architecture & design’

Software
engineering
curricula:
(International Game
Developers
Association, 2008)

Technical ‘workshops, panels
at conferences and
discussions’

‘Interactive Storytelling Traditional storytelling
and the challenges of interactive narrative.
Writers and designers of interactive works
need a solid understanding of traditional
narrative theory, character development, plot,
dialogue, back-story, and world creation, as
well as experimental approaches to
storytelling in literature, theatre, and film with
relevance to games…’

Area and
Publication

Type(s) of
attributes
examined

Source data Example attribute description

Software
development
processes and
methodologies: (B.
W. Boehm, 1988)

Technical Experiences at TRW ‘Defer detailed elaboration of low-risk
software elements and avoid unnecessary
breakage in their design until the high-risk
elements of the design are stabilized’

Software
development
processes and
methodologies:
(Rising & Janoff,
2000)

Technical,
Interpersonal

Experiences at AG
Communication
Systems

‘After each sprint, all project teams meet with
all stakeholders, including high-level
management, customers, and customer
representatives. All new information from the
sprint just completed is reported. At this
meeting, anything can be changed. Work can
be added, eliminated, or reprioritized.
Customer input shapes priority-setting
activities. Items that are important to the
customer have the highest priority.’

Software
development
processes and
methodologies:
(Herbsleb et al.,
1997)

Technical,
Interpersonal,
Mental

Capability Maturity
Model developed
by the Software
Engineering
Institute

‘Optimizing - Continuous process
improvement is facilitated by quantitative
feedback from the process and from piloting
innovative ideas and technologies’

Software
development
processes and
methodologies:
(Beyer & Holtzblatt,
1995)

Technical,
Mental

Projects at
InContext
Enterprises, Inc.

‘Adjusting Focus. The designer has an idea of
the scope of the system he or she might create
and the kind of work requiring support...
However, the designer’s initial focus may be
wrong or too limited. The designer may be
tempted to dismiss what the customer is
saying. Information that is too far out of the
designer’s expectations just seems wrong…
Probe into the details… Probing leads to an
expanded understanding of the work.’

Software
development
processes and
methodologies:
(Ivory & Hearst,
2001)

Technical Literature review ‘Automation of usability evaluation has several
potential advantages over non-automated
evaluation, such as the following: reducing the
cost of usability evaluation… increasing
consistency of the errors uncovered…’

Software
development
processes and
methodologies:
(Gobeli et al., 1998)

Interpersonal Survey of 117
managers and team
members in 78
software
development
companies in the
Pacific Northwest

‘Confrontation - Recognizing disagreement
exists, and then engaging in collaborative
problem-solving to reach a solution to which
the parties are committed.’

Area and
Publication

Type(s) of
attributes
examined

Source data Example attribute description

New graduates and
their first industry
jobs: (Begel &
Simon, 2008)

Interpersonal,
Mental

Observations and
video diaries of 8
newly hired
developers at
Microsoft

‘Stoppers get stuck easily and give up. Movers
experiment, tinker and keep going until a
problem is solved. All of our subjects noted
the importance of persistence, likely making
them movers. Subject W, in particular, noted:
“the attitude of not giving up here at MS… if I
am given a problem I am expected to solve it.
There‘s no going to my supervisor and saying
“I can‘t figure this out”… Ultimately it‘s my
responsibility.’

New graduates and
their first industry
jobs: (Hewner &
Guzdial, 2010)

Technical,
Interpersonal,
Mental

Interviews with 9
employees and
then survey of 32
additional people
at one small game
company about
desired traits in
new hires

‘Of the people skills mentioned in interviews,
the skill that was consistently ranked highest
was the ability to work on a team without
excessive ego… Participants individually
emphasized that too much ego and
unwillingness to take advice was against the
company culture.’

New graduates and
their first industry
jobs: (Turley &
Bieman, 1995)

Technical,
Interpersonal,
Mental

Interviews with 20
‘exceptional’ and
‘non-exceptional’
employees and
then survey of 129
additional more

‘Team Oriented – Definition: I value the
synergy of group efforts and invest the effort
required to create group solutions even at the
expense of my individual results.”

New graduates and
their first industry
jobs: (Radermacher
& Walia, 2013)

Technical,
Interpersonal

Literature review of
studies on the gaps
between industry
expectations and
abilities of new
hires

‘Teamwork was tied with oral communication
as the most identified knowledge deficiency.
One paper listed the ability to get along with
others and to check one's own ego as
important aspects of teamwork. Another
study also indicated that having experience
working as part of a team or a group was
important. Scott, et al. indicated that the
ability to be work as part of a cross-disciplinary
team was necessary in industry’

New graduates and
their first industry
jobs: (Radermacher
et al., 2014)

Technical,
Interpersonal

Interviews of 23
managers and
hiring professionals
that work with
North Dakota State
University’s
capstone projects
about deficiency of
new graduates

‘A lack of understanding of job expectations
was the second most common problem that
recent graduates were reported to experience
on the job. One interviewee indicated that
their new employees often seemed to be
afraid of asking questions so as not to appear
foolish and that they needed to understand
that it was better to ask for help than to be
stuck on something for extended periods of
time… Multiple participants also indicated that
recently graduated students occasionally
lacked their professionalism. Some examples
of this included dressing inappropriately or
texting on their phones during meetings.’

Area and
Publication

Type(s) of
attributes
examined

Source data Example attribute description

Everyday activities
of software
engineers: (Ko et al.,
2007)

Technical,
Interpersonal

Observations of 17
developers at
Microsoft

‘Developers worked to keep track of
hardware, people and information needed for
their tasks:… What have my co-workers been
doing? …
Developers tracked their time and others’,
checking their calendars, glancing at schedules
and asking their managers about priorities.
Managers communicated to their developers
about upcoming changes in informal meetings,
email announcements, or planning meetings’

Everyday activities
of software
engineers: (Latoza
et al., 2006)

Technical,
Interpersonal

Interviews with 13
developers and
then surveys of 28
more at Microsoft

‘Developers reported spending a little less
than half of their time (49% ± 39%) fixing bugs,
36% (± 37%) writing new features, and the rest
(15% ± 21%) making code more maintainable.
This confirmed our expectation that most
developers spend much of their time fixing
bugs. But the vast variability in these numbers
also demonstrates that typical development
activity varies greatly across teams and across
the lifecycle.’

Everyday activities
of software
engineers: (Singer et
al., 1997)

Technical,
Interpersonal

Surveyed and
shadowed ~ 13
employees
maintaining a ‘large
communications
system’

‘Search - Using Grep, in-house search tools, or
searching in an editor’

Everyday activities
of software
engineers: (Perry et
al., 1994)

Technical,
Interpersonal

Time diaries of 13
developers at AT&T

‘There was much unplanned interaction with
colleagues: requests to informally review
code, questions about a particular tool, or
general problem-solving and debriefing
sessions.’

Everyday activities
of software
engineers: (Anvik et
al., 2006), (Jeong et
al., 2009),
(Podgurski et al.,
2003), (Runeson et
al., 2007), (Bertram
et al., 2010),
(Aranda & Venolia,
2009), and (Ko &
Chilana, 2010)

Technical,
Interpersonal

Bug/Issue tracking
systems for various
organizations, e.g.
Microsoft, Eclipse,
Mozilla

‘Probing for expertise - Sending emails to one
or few people, not through the “shotgun”
method, in the hope that they will either have
the expertise to assist with a problem or can
redirect to somebody that will.’

Area and
Publication

Type(s) of
attributes
examined

Source data Example attribute description

Human factors in
software
engineering: (Kelley,
1999a)

Interpersonal,
Mental

Original research
used standardized
tests, direct
observation, work
diaries, focus
groups, and
individual
interviews on
1,000+ engineers
from Bell Labs, 3M,
and HP.
Subsequent studies
at other companies

‘Initiative – blazing trails in the organization’s
white space’

Human factors in
software
engineering:
(Ahmed et al., 2012)

Interpersonal,
Mental

Survey of job
postings from
online portals

‘Communication skills—the ability to convey
in-formation so that it’s well received and
understood’

Human factors in
software
engineering: (Cruz
et al., 2015)

Interpersonal,
Mental

Literature review ‘Three studies found evidence of the influence
of a team’s personality composition on overall
team performance. [One study] showed that
teams with predominantly introverted
members experience lower effectiveness due
to communication problems’

Insights from
luminaries and the
press: (Brechner,
2003)

Technical,
Interpersonal,
Mental

Personal
experiences at
Microsoft

‘Commercial software involves more than
algorithms. It involves the user interface,
online help, button and dialog box labels,
money and business plans, marketing, and of
course, unpredictable users. No programmer
will be good at all these things and good at
writing solid code. Programmers need to work
with others: designers, usability engineers,
and artists for the user interface, writers for
online help and user interface text, planners
for thinking through money issues, marketers
for selling the result, and employees who think
like users—testers.’

Insights from
luminaries and the
press: (McConnell,
2004)

Technical,
Interpersonal,
Mental

Personal
experience at
various companies,
including Microsoft

‘Communications and Cooperation: Truly
excellent programmers learn how to work and
play well with others. Writing readable code is
part of being a team player. The computer
probably reads your program as often as other
people do, but it’s a lot better at reading poor
code than people are. As a readability
guideline, keep the person who has to modify
your code in mind. Programming is
communicating with another programmer
first, communication with the computer
second.’

Area and
Publication

Type(s) of
attributes
examined

Source data Example attribute description

Insights from
luminaries and the
press: (Brooks,
1995)

Technical,
Interpersonal,
Mental

Personal
experience on the
IBM OS/360 project

‘Communication – “Schedule disaster,
functional misfit, and system bugs all arise
because the left hand doesn’t know what the
right hand is doing.” Team drift apart in
assumptions’

Insights from
luminaries and the
press: (Bryant,
2013)

Mental Experiences as a
hiring manager at
Google

‘After two or three years, your ability to
perform at Google is completely unrelated to
how you performed when you were in school,
because the skills you required in college are
very different… You learn and grow, you think
about things differently.’

Insights from
luminaries and the
press: (Fitzpatrick &
Collins-Sussman,
2009)

Technical,
Interpersonal,
Mental

Experiences as
developers at
Google

‘Well, it's hard to admit that you've made
mistakes sometimes, especially publicly,
right?... Why is this a problem? Why should I
care about this? The primary reason is it
inhibits progress and not just personal
progress, but project progress, okay? It's sort
of the "many eyes make all bugs shallow"
quote. But if everyone's off working in a cave
and just occasionally throwing code out to the
project, code quality remains low, and your
bus factor remains low.’

Despite numerous studies that touch on the topic, we are not aware of a single research

work that provides holistic, contextual, and real-world understanding of software engineering

expertise as we have defined in Section 1. Related works that compare how novice and expert

software engineers write and maintain code generally examine only technical skills. Software

engineering curricula prescribe knowledge and abilities that software engineering graduates

should possess; they provide little understanding about how and why these knowledge and

abilities are important in real-world engineering of software. Related works on software

development processes/methodologies primarily aim to prescribe best practices for the

engineering of software at the team/organization level; there is little direct information about

individual expertise. Studies examining problems/needs of new graduates in their first industry

jobs focus on new software engineers; while some needs of novices may overlap with needs of

experts, others may not. Studies about everyday activities of software engineers generally lack

information about differences in execution of those activities (i.e. what does it mean to be better

or worse at those activity). Works that examine mental and human factors in software

engineering generally do not consider these ‘soft’ factors along-side technical abilities, leaving

an incomplete picture of expertise.

The insights provided by luminaries indicate the way forward in this area. Their

discussions of software engineering expertise are generally holistic, incorporating technical,

interpersonal, and mental attributes. Their insights are supported by real-world examples and

explanations. Luminaries were neither rigorous nor complete in their investigations (nor were

they aiming to be); nonetheless, the kind of understanding they provide is what we seek to

provide in this dissertation.

Another gap in prior work is the perspectives of expert non-software-engineers. Today,

the engineering of software is often an interdisciplinary undertaking involving expert non-

software-engineers. Research works like Hewner and Guzdial (Hewner & Guzdial, 2010) which

mentions technical artists, Aranda And Venolia (Aranda & Venolia, 2009) which mentions

program managers, and Brechner (Brechner, 2003) which explicitly calls out software engineers

needing to work with ‘designers, usability engineers, and artists’ indicate that non-software-

engineers play important roles in the engineering of software. However, as can be seen from the

‘source data’ column in Table 2.1, prior work prioritizes perspectives of software engineers. No

prior work has directly examined the perspectives of non-software-engineers.

Finally, various studies indicate that context may affect the (perceived) importance

various aspects of expertise, including experience (Begel & Simon, 2008), gender (Margolis &

Fisher, 2003), education background (Carver et al., 2008), cultural background (Borchers, 2003),

type of software (Hewner & Guzdial, 2010), and the number of engineers working together

(Pendharkar & Rodger, 2009). For example, Ahmed et al. (Ahmed et al., 2012) find that North

Americans tend to value the ability to work independently more than employers in Australia,

Asian, and the EU. However, no prior work has systematically examined the effects of context

on software engineering expertise.

Therefore, we set out to provide a holistic, contextual, and real-world understanding of

software engineering expertise—including perspectives of expert non-software and the effects of

context—to further the growth and development of the software engineering field.

Chapter 3. INTERVIEW STUDY OF EXPERT SOFTWARE

ENGINEERS

As Chapter 2 indicated, prior research has examined—explicitly and implicitly—many

attributes that may be related to software engineering expertise. However, many attributes have

unclear descriptions (or are without explanations), making it difficult to disambiguate and to

reason about the attributes. For example, the most important attribute desired of software

engineers in Hewner and Guzdial’s paper (Hewner & Guzdial, 2010)—‘ability work with others

and check your ego at the door’—is explained as “participants individually emphasized that too

much ego and unwillingness to take advice was against the company culture.” However, this

definition neither clarifies what “too much ego” means nor why the attribute is important in

practice. This causes problems for those attempting to reason about the topic, such as in the

literature review by Radermacher and Walia (Radermacher & Walia, 2013) that cites the Hewner

and Guzdial study:

One paper [the Hewner and Guzdail study] listed the ability to get along with others and

to check one's own ego as important aspects of teamwork. Another study also indicated

that having experience working as part of a team or a group was important. Scott, et al.

indicated that the ability to be work as part of a cross-disciplinary team was necessary in

industry.

The description above does not clarify whether ‘getting along with others’ and ‘check one’s ego’

fully encompasses teamwork; it does not discuss why it is important, and it introduces new

concepts—‘cross-disciplinary team’—without any explanation. Unclear definitions and

incomplete explanations leave us with unclear understanding.

In addition, since various research efforts do not specifically aim to contribute knowledge

about software engineering expertise, their definitions and explanations are problematic for those

seeking to understand great software engineers. For example, research into the software

engineering curricula, discussed in Section 2.2., focuses on prescribing technical knowledge and

skills that software engineering graduates should have and how they should be taught; those

works contain little explanation about why those abilities are important in real-world engineering

of software and how/when to apply those skills/abilities in practice. Research into software

engineering processes/methodologies is another problematic area, as much of their focus is on

the team as a collective, rather than individual expertise. The description and explanation of the

need to collaborate and work with customers for the Scrum software development method

(Rising & Janoff, 2000) is one example:

After each sprint, all project teams meet with all stakeholders, including high-level

management, customers, and customer representatives. All new information from the

sprint just completed is reported. At this meeting, anything can be changed. Work can be

added, eliminated, or reprioritized. Customer input shapes priority-setting activities.

Items that are important to the customer have the highest priority.

Teams probably should undertake this task, but it is unclear whether everyone in the team needs

to; furthermore, it is unclear whether software engineers need to be the team member do the task.

To compound the problem of murky definitions and explanations, many studies focus on

a single aspect of expertise. For example, Cruz et al. ’s (Cruz et al., 2015) survey paper on 40

years of research on personality in software engineering focuses solely on personality ‘traits that

are assessed objectively using personality tests’. Most of the studies examining the differences

between novice and expert developers, discussed in Section 2.1, focus on their technical ability

in writing and maintaining code. Since software engineering expertise has rarely been examined

holistically, we do not actually know whether there are other important attributes of great

software engineers that have not been uncovered or whether there is actually a single attribute

that underlies all facets of software engineering expertise.

A holistic understanding of software engineering expertise as well as clear definitions and

explanations are foundational; they need to be examined first. In order to have meaningful

conversations about software engineering expertise, we need to be able to describe it clearly.

This understanding is critical for determining the different kinds of attributes that software

engineering expertise entails, for assessing whether novel attributes unexplored by prior research

exist, and for future work in ranking attributes and understanding the effects of context. As the

first step in understanding software engineering expertise, we set out to understand:

 What do expert software engineers think are attributes of great software engineers?

 Why do expert software engineers think these attributes are important to the engineering

of software?

 How do these attributes relate to each other?

3.1 CONTEXT FOR INVESTIGATIONS

For our investigations, we sought understanding from experts at Microsoft. Rather than a

problematic limitation, examining Microsoft employees offered unique advantages. Rather than a

monolithic company, Microsoft is a conglomerate of diverse products, cultures, and settings.

These include game (e.g. serious: Halo and Forza, as well as casual: Wordament and

Minesweeper), consumer electronics (e.g. Surface, Xbox, and HoloLens), OS (e.g. Windows and

Windows Server), productivity (e.g. Office), search (e.g. Bing), consumer services (e.g.

OneDrive), enterprise services (e.g. Azure), ERP/CRM (e.g. Dynamics), databases (e.g. SQL),

developer tools (e.g. Visual Studio), and communications (e.g. Skype), as well as regional-

specific development centers around the world. Microsoft also employs a wide variety of expert

non-software-engineers to produce products such as artists, content developers, data scientists,

design researchers, designers, electrical engineers, mechanical engineers, product planners,

program managers, and service engineers (discussed more in Chapter 6). This rich diversity of

contexts and perspectives benefits the external validity of this dissertation. Furthermore,

Microsoft consistently utilizes best practices and technologies, as well as employs top talent; this

helps to factor out confounding deficiencies. Finally, Microsoft employees share common

understandings (e.g. seniority based on titles and commonly used acronyms); this helps

consistent interpretation of our questions as well as analysis of informant responses. Therefore,

while there are other software development organizations our study could have utilized (some

potentially more interesting, discussed in Section 8.1), Microsoft is a good setting for

contributing rigorous and credible knowledge for this dissertation.

3.2 METHOD

We chose face-to-face semi-structured interviews in order to holistically understand attributes

that entail software engineering expertise, with detailed and contextualized explanations of their

meaning and importance. The semi-structured interview format allowed us to ask follow-up

questions, going in-depth on areas of interest, and getting clarity on vague concepts.

A key decision in our method was determining whose subjective opinions of software

engineering expertise could be considered valid (i.e. who are expert software engineers). We

took the ACM’s perspective (Shackelford et al., 2006): people who write software to be used in

earnest by others. We operationalized this definition using the Microsoft company directory, to

which I had access as a Microsoft employee. We identified software engineers based on titles

that entailed ‘software development’, e.g. software development engineer, director of

engineering, as well as several titles known to the authors as those of software engineers, e.g.

architect, technical fellow, and distinguished engineer. We further used the approach utilized by

researchers of human expertise (Ericsson, Krampe, & Tesch-romer, 1993), basing our definition

of expertise on people having achieved some degree of recognition as software engineering

experts. We selected engineers at or above the Software Development Engineer Level 2 (SDEII)

title. These engineers were confirmed as experts by other engineers via the hiring or promotion

processes.

We obtained a stratified random sample of software engineers across two important

dimensions: product type (10 major divisions at Microsoft plus one for all others including

Skype, Data Center Ops, and Distribution) and experience level (‘experienced’—titles at or

above SDE2—and ‘very experienced’—titles at or above Senior Dev Manager, typically with

15+ years of experience). We randomly sampled software engineers in the 22 strata in a round-

robin fashion, aiming for at least two informants in each stratum. Of the 152 engineers we

contacted, we interviewed 59 (39%). For reporting purpose, we further anonymized the divisions

using ‘product type’. The number of engineers in each strata (division and feature area) and their

titles are in Table 3.2.

Each semi-structured interview was about 1 hour in duration. We started by describing

our study, explaining how we located the interviewee, asking permission to record the interview,

informing them that all personally identifiable information will be removed, and detailing their

rights to refuse to answer any question and to have their responses removed later. We began the

interview with the following statement: “I want to start by learning a bit more about you. What

software products, at Microsoft and elsewhere, have you worked on?” This helped to establish

rapport and facilitated reflections; this prior history was later removed during transcriptions to

preserve anonymity. We then asked, “Think back to someone you've worked with that you

thought was a great software engineer. What were some attributes that made the person 'great' in

your mind?” We asked follow-up and clarification questions for attributes that we thought were

interesting (e.g. novel, vague, or counter to prior informants).

In the second part of the interview, we asked about attributes that either lacked clarity or

that we thought might vary in interpretation. As we learned more about the attributes from

interviewees, we updated the set of attributes we inquired about (once every ~10 interviews). For

time considerations, we limited our discussions to five attributes of interest. We closed the

interview by restating the purpose of the research and asking interviewees whether they had

anything else to add.

To analyze the more than 60 hours of interviews and 388,000 words of transcripts, we

used an inductive approach, making multiple passes through the data. We began with open

coding, reading through all the transcripts to identify and assess all excerpts that discussed

attributes of great software engineers, as well as to get an overall sense of the data. Next, we

produced an initial set of attributes and groupings based on my preliminary understanding. On a

Table 3.2. Stratified random sample of expert software engineers at Microsoft

Division Product type Experienced titles:
SDE II, Senior SDE,
Senior Dev Lead

Very Experienced titles:
Architect, Technical Fellow, Partner
Dev Manager, Partner Dev Lead,
Principal Dev Lead, Senior Dev
Manager, or Principal SDE

Totals

Ad Platform Web Applications 2 3 5

Bing Web Applications 2 3 5

Corp Dev IT 2 3 5

Dynamics Enterprise 2 2 4

Office Applications 2 3 5

Phone Devices 3 2 5

Server & Tools Enterprise 3 2 5

Windows Windows 6 5 11

Windows Services Web Applications 3 2 5

Xbox Gaming 2 3 5

Other Various 2 2 4

Totals - 29 30 59

second pass through the transcript, we labeled each of the excerpts with one of the attributes or

created new attributes to capture the sentiment in the excerpt. Once we developed this initial set of

attributes and groupings, we made a selective coding pass through the data, consolidating the

adjusted the descriptions of the attributes as well as to their level of granularity. To validate our

interpretations, we then solicited the help of a Senior Software Development Engineer at

Microsoft (one of the interviewees who was interested in the study) to analyze roughly 1/3 of the

interviews, developing her own attributes and groupings. We then met multiple times to

consolidate the set of attributes, often going to the source excerpt to solve differences. The

process was complete when the senior software engineer and we agreed on the set of attributes

provided organization and structure to the attributes (see the next section). Finally, we made a last

pass through all transcripts, ensuring that all insights and sentiments were captured. The entire

process took ~3 months from January to May of 2013.

3.3 RESULTS

Our analysis identified a diverse set of 54 attributes of great software engineers. At a high level,

our informants described great software engineers as people who are passionate about their jobs

and are continuously improving, who develop and maintain practical decision-making models

based on theory and experience, who grow their capability to produce software that are elegant,

creative, and anticipate needs, who evaluate tradeoffs at multiple levels of abstraction, from low-

level technical details to big-picture strategies, and whom teammates trust and enjoy working

with.

We present a model of the 54 attributes in Figure 3.1, showing how the attributes

interconnect. We organized the attributes into four areas: internal attributes of the software

engineer’s personality and ability to make effective decisions, as well as external attributes of the

impact that great software engineers have on people and products.

By decision-making, we mean ‘rational decision-making’, as described in a paper by

Simon (Simon, 1955), as recognizing decisions to be made, identifying alternative courses of

attribute set. We then solicited feedback from my advisor Amy Ko. Based on her feedback, we

that covered all the excerpts. We then conferred with Amy Ko to develop the model that

action, assessing likely outcomes, and evaluating values of outcomes. We discuss decision-

making in more detail in Section 3.3.2.

While informants generally discussed attributes of software engineers that they admired

and liked, many lamented about detrimental and dysfunctional attributes of bad engineers. In an

attempt to identify what makes a great engineer, this dissertation will not emphasize what makes

a poor engineer.” we decided to frame all of the attributes in the positive. Nevertheless, for some

attributes (e.g. the well-mannered attribute described in Section 3.3.3.16), informants’ sentiment

was to avoid a trait—being an ‘asshole’—that would inhibit a software engineer from being

considered great.

While many of the attributes are applicable to many professions (some simply to being a

‘good person’), our objective was to identify the attributes that expert software engineers viewed

as relevant; more importantly, we aimed to provide contextualized definitions and explanations

of why these attributes were important in real-world engineering of software. In the subsequent

sections, we provide a description of each attribute, reasons why our informants thought it

Figure 3.1. Model of attributes of great software engineers

Personal Characteristics

Decision Making

Knowledgeable about their
technical domain
(3.3.2.1)

Knowledgeable about
people and the organization
(3.3.2.5)

Knowledgeable about tools and
building materials
(3.3.2.2)

Grows their ability to make
good decisions
(3.3.2.6)

Knowledgeable about software
engineering processes
(3.3.2.3)

Updates their decision
making knowledge
(3.3.2.7)

Knowledgeable about customer
and business
(3.3.2.4)

Mentally capable of
handling complexity
(3.3.2.8)
Sees the forest and the trees
(3.3.2.9)

Continuously improving
(3.3.1.1)

Curious
(3.3.1.7)

Systematic
(3.3.1.13)

Open-minded
(3.3.1.2)

Craftsmanship
(3.3.1.8)

Adaptable
(3.3.1.14)

Executes
(3.3.1.3)

Ideas to reality
(3.3.1.9)

Productive
(3.3.1.15)

Self-Reliant
(3.3.1.4)

Into the unknown
(3.3.1.10)

Aligned
(3.3.1.16)

Self-reflecting
(3.3.1.5)

Passionate
(3.3.1.11)

Data-driven
(3.3.1.17)

Persevering
(3.3.1.6)

Focused
(3.3.1.12)

Hardworking
(3.3.1.18)

Teammates

Is a good listener
(3.3.3.1)

Walks-the-walk
(3.3.3.7)

Does not make it
personal
(3.3.3.13)

Integrates
understanding
(3.3.3.2)

Mentoring
(3.3.3.8)

Resist external
pressure
(3.3.3.14)

Creates shared
understanding
(3.3.3.3)

Challenges others to
improve
(3.3.3.9)

Create shared
success
(3.3.3.15)

Honest
(3.3.3.4)

Creates a safe haven
(3.3.3.10)

Well-mannered
(3.3.3.16)

Manages
expectations
(3.3.3.5)

Asks for help
(3.3.3.11)

Personable
(3.3.3.17)

Has a good
reputation
(3.3.3.6)

Does due diligence
beforehand
(3.3.3.12)

Trades favors
(3.3.3.18)

Software Product

Pays attention to coding details
(3.3.4.1)

Long-termed
(3.3.4.6)

Fits together with surrounding
pieces
(3.3.4.2)

Creative
(3.3.4.7)

Makes informed tradeoffs
(3.3.4.3)

Anticipates needs
(3.3.4.8)

Evolving
(3.3.4.4)

Uses the right processes
(3.3.4.9)

Elegant
(3.3.4.5)

The
Great

Software
Engineer

Internal External

1010100100010
1001010101001
0101001010101
0101010100101

> g++ -c

Teammates

Software Product

important, and supporting quotations (including informants’ title and division when this

information would not reveal their identity) that capture the sentiment in interviews.

3.3.1 Personality

That is something that can’t be taught. I think it’s something a person just has to have...

They don’t need any outside motivation. They just go…They have just an inner desire to

succeed, and I don't know why. It's not necessarily for the money, it's not necessarily for

the recognition. It's just that whatever it is they do, they want to do it extremely well…

I've seen a lot of smart people that have none of these characteristics...

– Principal Dev Lead, Windows

Informants mentioned 18 attributes that we felt pertained to software engineers’ personalities.

With attributes like passionate and curious, these concerned who great software engineers were

as people. Informants felt that many of the attributes were intrinsic to the engineer—formed

through their upbringing—and would be difficult (if not impossible) to change.

3.3.1.1 Continuously improving

… Always looking to do something better, always looking for the next thing, studying

about the newer thing… [Great software engineers will] study different articles and

research papers on software development and stuff. So they're more up to date on newer

technologies and newer ideas and thoughts of software architecture or software

engineering in general… they are essentially continuing their education and continuing

to look, to do things better, is a really big plus.

– Senior Dev Lead, Gaming

Many informants described great software engineers as continuously improving: constantly

looking to become better, improving themselves, their product, or their surroundings. Informants

felt that great software engineers desired to improve things for which they felt ownership,

moving it to a state that they felt was better:

He was not the kind of person that would keep doing things the same way even if other

people thought it was fine. He was always looking to improve.

-Software Architect, division removed to preserve anonymity

Generally, informants felt that continuously improving was important for two reasons.

First, informants recognized that engineers did not start their careers being great; young software

engineers needed to learn and improve in order to become great. Second, informants felt that

because the software field was rapidly changing and evolving, unless software engineers kept

learning, they would not continue to be great. This notion of running up an infinite escalator was

prevalent among our informants:

Computer technology, compared to other sciences or technology, it's pretty young. Every

year there's some new technology, new ideas. If you are only satisfied with things you

already learned, then you probably find out in a few years, you're out of date… good

software engineer [sic], he keep investigate, investment. [sic]

– SDE2, IT

The need to continue one’s learning is closely related to ‘continuing professional

development’ discussed in the ACM Software Engineering Curricula (Joint Task Force on

Computing Curricula, 2014). Graduates are expected to continue their education even after

attaining their software engineering degrees: “learn new models, techniques, and technologies as

they emerge and appreciate the necessity of such continuing professional development.” This

edict is in the code of ethics for many professions (e.g. medicine (AMA, 2001) and ‘traditional’

engineering (NSPE, 2007)) and appears to be a fundamental aspect of most learned professions.

3.3.1.2 Open-minded

…the problem is sort of in a way the inverse of sharing, which is people not being willing

to take the input of others… That I see as a big problem. You’ve heard of NIH – not

invented here. That’s a huge problem… It comes from this unwillingness to accept what

other engineers are eager and willing to share.

– Principal Dev Lead, Applications

Most informants described great software engineers as open-minded: willing to let new

information change their thinking. Informants felt that great software engineers, even if they

were the experts in their area, were open to changing their thinking based on new information

presented to them. Frequently, informants discussed this attribute negatively, describing some

software engineers who would dismiss ideas and technologies that they did not conceive, also

known as the ‘not invented here’ mentality. Great software engineers were not reported to be

conceited about their knowledge and did not believe that they knew everything.

Informants felt that not being open-minded lead to suboptimal decisions, commonly in

two ways. First, informants felt that outcomes in software engineering, such as user reactions and

commercial success, were difficult to predict. Therefore, great software engineers needed to be

open to letting real-world data change their thinking:

You should be open… what you think need not be the right thing tomorrow… like the

Facebook explosion, when Myspace was already there, but it exploded… no one knew

that Facebook would explode when it started.

– Senior SDE, Web Applications

Informants also felt that many software products were large, complex (e.g. extensive use of

layering and abstractions), and constantly changing; therefore, it was rare for any one person to

have a complete understanding of the software product and of all the implications of design

choices. Therefore, even experts needed to be open to changing their understanding when

provided with new information:

No matter how much you know, the software industry is so large… there’s so many other

areas… If that person has something to say that hadn’t occurred to me, I’ll stop

everything and say, ok, explain this. What did you see, that I didn’t see?

– Senior SDE, Applications

3.3.1.3 Executes; no analysis paralysis

“[Great software engineers] should not be just idealistic software designers where you

can think you can do a lot of, they should not get into analysis paralysis… write the most

optimal solution for the problem on hand.

– SDE2, Devices

Several informants described great software engineers as knowing when to execute, not having

analysis paralysis: knowing when to stop thinking and to start doing. By ‘analysis paralysis’,

informants meant taking too much time to think about alternatives or over optimizing the

solution. Many informants felt that many things in software engineering, such as the variability

of alternative technologies, could not be known ahead of time. Furthermore, most projects had

hard deadlines. Therefore, a saturation point existed where additional thinking and debate was

detrimental to the success of the software product:

…you have to not be so thorough that you don't get anything done because you're

spending all your time analyzing, or researching, or prototyping, or whatever you do,

you'll never deliver anything.

– SDE2, IT

Informants felt that great software engineers understood that they existed to ship products

to customers in a timely manner. The product might not be successful if engineers spent too

much time thinking about the problem rather than implementing the solution. The overwhelming

sentiment was that ‘perfect should not be the enemy of the good’:

“[Some engineers who are not great] like to go very deep in the problem. For them,

problem solving is the goal actually. They don't care as much about shipping. They will

go for the last one percent improvement also. Then you'll be like, "there's no business

value. It’s 90% accurate, I’m good" They're like, "no, no I can make it 96%."… a

different skill set to be successful there compared to successful here.

–Senior Dev Lead, Web Applications

Microsoft, as a for-profit company, likely influenced informants’ perspectives about this

attribute. Business terms like ‘time to market’ were commonly used by our informants in

discussions. While many software development organizations are like Microsoft, software

engineering research indicates that many ‘open-source’ software projects have a primary goal

other than making money like Mozilla (Ko & Chilana, 2010) and Linux (Raymond, 2001).

Whether and how this attribute manifests in the ‘open source’ contexts may be an interesting

area for future research.

3.3.1.4 Self-reliant

Rather than looking around for somebody to solve it for them... try to figure out how they

can do this on their own… get yourself unblocked attitude works really well in this

company.”

– Principal SDE, Windows

Informants commonly described great software engineers as self-reliant: getting things done

independently (i.e. not needing to go to their lead/manager for help constantly) and removing

roadblocks by leveraging their abilities and resources (e.g. asking other experts for help). Great

software engineers were not expected to know everything; rather, they were expected to have the

initiative and ability to seek out answers independently in order to deliver on their objectives.

For many informants, being self-reliant was a minimum requirement for working at

Microsoft. Even new software engineers were expected to be able to make forward progress on

complex and novel problems with limited guidance:

I think that engineers go through this growing up phase, but there's a key milestone

where they realize that they actually don't need anyone else's help… you just need to

figure out yourself… You have to be more independent.

– SDE2, Enterprise

However, several informants lamented that some engineers, though technically capable with high

seniority, lacked the ability to reach objectives by themselves. Our informants felt that reliance

on managers and leads for day-to-day guidance prevented these engineers from being considered

great:

…there's sort of a base differentiator. I would call it effectiveness. I work with a lot of

people…super smart, they have the skill sets, they're just not effective… They lack self-

confidence. They come to you and ask you questions all the time and you work with them

all the time and you say, just make a decision and do this on your own, you're level 63 [a

senior level engineer]… you need to be able to do this on your own.

– Principal Dev Manager, Web Applications

This attribute closely mirrors the ‘movers’ attribute—avoiding uncertainty and lack of

self-efficacy—discussed in Begel and Simon’s paper (Begel & Simon, 2008). One of the

rudimentary attributes that new hires needed in order to be effective at an organization was self-

reliance. Building on the Begel et al. study, which focused on new hires, our findings indicate

that the ‘ability to make independent progress’ may not be so basic after all; it may be an issue

for new and experienced software engineers alike.

3.3.1.5 Self-reflecting

... a little bit of an intuition and maybe the ability to see where you're going wrong and

step back so self-reflection a little bit maybe is important, being able to recognize, yeah,

this ain't working, I better start over.

– Principal Dev Lead, Gaming

Several informants described great software engineers as self-reflecting: able to recognize when

things are going wrong or when the current plan is not working, and then self-initiate corrective

actions. This attribute is likely a manifestation of the concept of metacognitive awareness in

cognitive psychology (Schraw, 1998), where people have (or can learn) the ability to self-

monitor and self-regulate. While it was not clear what triggered the recognition (e.g. checklist or

intuition), informants felt that great software engineers were able to self-initiate corrective

actions in order to avoid dead ends (i.e. wasted effort), failures to deliver, and/or bugs that harm

users:

It turned out most of the accidents… you learned that the engineer who wrote that code,

didn't have the right level of training and understanding to write it… they did something

that was textbook but it didn’t really apply to what they were doing.

– Software Architect, division removed to preserve anonymity

Informants felt that great software engineers needed to be self-reflecting because they

were commonly the people who were the most knowledgeable about the area and the situation.

Therefore, they were best able to recognize when the current direction or strategy was untenable:

[Great software engineers] should have a sense of where you should be... I understand

that if it's a two-week project, I really know that by four or five days and I need to be at

this point and if I'm not there, I need to make adjustments. It’s surprising of how many

people don't necessarily recognize that.

–Principal Dev Lead, Enterprise

3.3.1.6 Persevering

Ultimately I will never give up. I will live here day and night to make sure it happens…

definitely intelligence is required but the people continuously keep hearing that, ‘okay, I

won’t give up. I will try to find out a solution.’ Those people always succeed.

– Senior Dev Lead, Enterprise

Many informants described great software engineers as persevering: not dissuaded by setbacks

and failures; they kept on going, kept on trying. Their confidence and belief was bolstered by

previous experiences overcoming setbacks to achieve success:

It's quite often that you face a problem, you look at it and say, ‘I have no idea how to do

this. This is too big.’… If you easily give up, then you will end up giving up pretty much

every hard problem you touch.

– Partner Dev Manager, IT

Informants felt that perseverance was important because software engineers constantly

encountered difficult problems during real-world engineering of software, such as seemingly

impossible objectives, difficult bugs, and dead-end investigations. Therefore, it took perseverant

software engineers to overcome problems and to successfully deliver software products:

Most coders don’t know what they need to know or actually… don’t know how to do

something right away. There’s a lot of learning on the job, right. There’s a lot of figuring

out, a lot of you know, doing the search for how to do this, how to do that. Following

through and knowing how to do those things is very important for a coder. Like not just

giving up right away and looking for someone else saying we should change our

objective…

–SDE2, Enterprise

A side benefit of the perseverant attribute was that it often created positive feedback

loops. Several informants discussed perseverant engineers—successfully delivering software

products despite setbacks and failures—were often given subsequent interesting and challenging

assignments by their managers because they proved their perseverance. These opportunities

enabled great software engineers to grow their skills and knowledge quickly, as well as gain

recognition and promotions faster:

They always press in to find the issue; even they facing the hardship they will

aggressively to find a way to fix the issue. Maybe they get [interesting] assignments the

way they handle the issue.

– Senior SDE, Devices

Interestingly, being persistent was explicitly called out in a paper (McConnell, 2004) as

possibly being detrimental in software engineering. In McConnell’s opinion, “Most of the time,

persistence in software development is pigheadedness—it has little value. Persistence when

you’re stuck on a piece of new code is hardly ever a virtue.” This attribute is one of many for

which dissenting opinions exist; the fact that expert software engineers can have differing

opinions is a motivation for our subsequent studies.

3.3.1.7 Curious

…the best people naturally are not satisfied until they’ve really figured out the

problem…The best ones they just have this thing and then they just want it by themselves

until they’ve figured it out.

– Principal Dev Manager, Web Applications

Many informants described great software engineers as curious: desiring to know why things

happen and how things work (e.g. how the code and the context interact to produce a software

behavior). Informants felt that great software engineers desired to deeply understanding how

products worked end-to-end (typically their own or competitors), not satisfied with superficial

‘black box’ knowledge:

A curiosity… how things work, why things work, the way they work, having that curiosity

is probably a good trait that a good engineer would have. Wanting to tear something

apart, figure out how it works, and understand the why's

–Principal Dev Lead, Gaming

For our informants, being curious was important for three reasons. First, it motivated great

software engineers to gain a more thorough understanding of their technical domains, which

enabled them to derive better solutions and to make better decisions. Second, knowing the

important parts of the product (i.e. where the essential difficulties lie), meant those areas

received the appropriate attention during development. Third, figuring out the nuanced side

effects of various actions enabled great software engineers to avoid problems when designing or

coding:

You're doing step by step a really hard problem and then you're always curious, what's

next now… when you're writing a code, you have indirectly debugging in your mind,

‘Okay, I'm writing this line, this will happen, now this is going to happen, now this is

going to happen, now this is going to happen.’

– Senior Dev Lead, Enterprise

3.3.1.8 Craftsmanship

Really being able to demonstrate something that you've done, that you're really proud of,

and speak to it well. When you do your work that you take pride in the fact that it's

quality work.

–Principal Dev Lead, Gaming

Several informants described great software engineers as having craftsmanship: taking pride in

oneself and one’s product, letting their output be a reflection of their skills and abilities.

Informants believed that most software engineers knew the difference between doing something

and doing something right. Great software engineers with craftsmanship did not cut corners and

did things the right way:

It's nice to know how it works and all that kind of stuff, but actually making yourself do it

that way is a task in itself. The discipline is really important to be paired with the process

and all that kind of stuff, so yeah, discipline is key.

–Principal Dev Lead, Gaming

Informants commonly discussed two reasons for craftsmanship being important. First,

even with numerous quality assurances processes in place, to test/validate all scenarios was often

difficult. Unless the software engineer ‘did things the right way’, the shipped product would have

many problems. This might have been especially important at Microsoft where, historically,

other people—testers—were responsible for verifying that the code was correct and met

specifications. Therefore, informants felt that great software engineers did not merely do

minimum work, ‘throwing it over the wall’ for the tester to find the problems:

…in that attention to detail that willingness to, also the introspection packet to really be

able to say, "Oh gee, I may not have accounted for this. Let make sure I account for that."

and, "Oh, gee, this might not work here. Let me make sure I account for that. And really

following through. Whereas, there's others who are just like, "Let me just do the minimum

to be able to say I’m done with it and move on.

–Principal Dev Lead, Applications

Second, informants felt that software engineers with craftsmanship did “not stop caring

once the code was checked in”, extending their stewardship of their code to deployment and

maintenance. Issues after deployment were common and having software engineers that

remained engaged with the product—who did not simply ‘check out’ or move onto the next

thing—helped the long-term success of the product:

‘I think seeing things through to the end’ is like once you build something you don’t

immediately check out, you’re not gone. It’s still your baby, you still need to kind of get it

walking, get it running. As people consume it they’re going to find bugs and you just need

to be there to fix them quick and keep people happy.

–SDE2, Web Applications

Overall, there was a feeling of respect for software engineers with craftsmanship among

our informants. They felt that software engineering was often hard and tedious, sometimes

needing to iterate many times to account for edge cases and special conditions. Consequently,

software engineers were often tempted to cut corners. Our informants felt that great software

engineers consistently resisted these temptations and always did things right. They took pride in

doing something to the best of their abilities:

…willingness…to say, ‘Oh gee, I may not have accounted for this. Let make sure I

account for that.’ and, ‘Oh, gee, this might not work here. Let me make sure I account for

that.’ And really following through. Whereas, there's others who are just like, ‘Let me

just do the minimum to be able to say I’m done with it and move on.

–Principal Dev Lead, Applications

3.3.1.9 Desires to turn ideas in to reality

They feel more accomplished at the end of the day if they’ve actually built something

whether it was with their hands, or maybe they drew something, maybe they designed

something, maybe they wrote some code. I think you have to have that…. personality

trait.

–Senior SDE, Windows

Several informants implied that great software engineers desire to turn ideas into reality: takes

pleasure in building, constructing, and creating software. This can be an entire software product,

a feature within a product, or even a solution to a hard problem. Informants felt that great

software engineers felt joy in bringing something into existence that did not exist before.

We inferred the importance of desiring to turn ideas in to reality from our interviews. The

sentiment was that software engineers with this attribute would bring new things into existence.

Great software engineers often saw potentially new products and new features based on their

understanding of the technical domain; yet, it took those with a desire to turn ideas into reality to

actualize those features, bring new things into existence that could substantially change the

world:

[Great software engineers] have a sense of a potential that software has, right?... I think

the people that are great are able to grasp a bigger chunk of that potential and sort of

turn it into something useful … I think in this field really the limitations are all in your

own head. I think there are people who are able to kind of push those limits out a little

further and grab a bigger piece of what they think they can do.

–Principal Dev Lead, IT

This attribute overlaps somewhat with other personality attributes, e.g. executes (Section

3.3.1.3) and productive (Section 3.3.1.15); however, we felt that the desire to birth something

new into existence was a distinctly separate sentiment. Whereas other attributes might lead to

creation of new things, none focused directly on desire to ‘create’ as the motivation:

It’s more like you have an urge to create. You get satisfaction from creating.

–Senior SDE, Windows

3.3.1.10 Willing to go into the unknown

People are just naturally going to gravitate towards their comfort areas and just kind of

hang out there…But if you're willing to take those risks and learn about other things and

then actually apply them they can help move you forward. But apply them might mean

getting out of your comfort zone.

– Senior Dev Manager, Windows

Many informants described great software engineers as willing to go into the unknown: taking

informed risks into new areas even though they may not have, at the time, knowledge or

expertise (e.g. a new technology). Informants felt that it was important for software engineers to

overcome inertia: try new things, gain new knowledge, and push the boundaries of their domain:

[Great software engineers] are willing to take the risk to try to make the product

successful... if we don’t do it, we won’t improve our selves, if we stay wherever we have

we actually just never change, never bring the new stuff to the whole company

 –Senior SDE, Devices

Informants felt that willing to go into the unknown was important for two reasons. First,

in order for a software engineer to produce a successful software product, commonly entailing

‘differentiator’ that distinguished it from competitors, the software engineer often needed to push

the technological envelope:

…being bold enough to take the risk of making some mistakes… explore some new ideas

or some new technologies that's not foolproof yet... So, if you have shut that door right

from the beginning, and I've seen many people like that, that's not going to yield good

results.

– Senior Dev Lead, Enterprise

Second, great software engineers commonly needed broad holistic understandings of their

domain; this often required them to branch out into new areas. Willingness to go into the

unknown enabled engineers to gain new knowledge and perspectives, understandings different

ways of ‘doing things’:

…at Microsoft, they say, "You have to move every two releases within Microsoft." They

encourage people to move, so they can broaden their knowledge and learn a lot of stuff,

rather than being stuck in one spot. Those might be patterns, inertia.

– Senior Dev Manager, Windows

3.3.1.11 Passionate

[Great software engineers] are usually very interested in the area they're in. They like it.

They would probably play with that even if they weren't getting paid for it. The best

engineers don't see it as a job, they see it as a hobby and they just like doing the work… I

don't think I've ever known a really good coder who hated the feature he was in… I firmly

believe every coder who hated what they're doing some other developer paid the price

later.

– Principal SDE, Windows

Informants described great software engineers as passionate: intrinsically interested in the area

they are working in, and not just doing it for extrinsic rewards such as money. Informants felt

that great software engineers did not simply view engineering software as their job, rather it was

their passion; great software engineers would do what they did, even if they were not paid.

Informants discussed various aspects of the software product as being potentially interesting,

from the software product itself (e.g. Xbox), to attributes of the software product (e.g. aesthetics,

security, or performance), to the technology area (e.g. mobile computing or big data):

…knowing what people are passionate about, knowing what people are not passionate

about; it’s hard but it’s really key to people’s long term health, and desire to actually

produce results… Some people love security, for instance, other people hate security. If

you give somebody who hates security a security function, they're just going to not

perform well, regardless.

– Senior Dev Manager, Windows

As indicated in the quotes above, most informants felt that software engineers will not

succeed if there is a mismatch between their interests and their assigned task, and the software

product will ultimately suffer. Great software engineers needed to find project and assignments

that matched their passion.

I think that there are people who are great software engineers who are in the wrong

place and aren't motivated and they end up not performing well.

– Principal Dev Lead, Enterprise

While this raised the possibility of task/assignments that no one wants (and consequently bad

software), there was an underlying sentiment among our informants that no matter the subject

matter, there would be someone with a natural affinity towards it, such that they would want to

work on it:

I found that there's always a person who's passionate about every type of thing, you just

have to find the right people… I ended up in the wrong job for six months. It was painful.

People around me, they loved their work

– Principal Dev Lead, Devices

3.3.1.12 Focused

In an environment like Microsoft where there’s a lot of meetings and interruptions… [this

great software engineer] just figured out that when he can get away from the chaos of the

day-to-day, he could come back and make very good use of that time.

–Principal Dev Lead, Web Applications

Several informants described great software engineers as focused: allocating and prioritizing

their time for the most impactful work, not overwhelmed by daily distractions and tasks.

Informants felt that software engineers experienced many distractions daily (e.g. meetings, IMs,

and emails) and were assigned many tasks. Great software engineers were able to focus on the

most important tasks, often structuring their days to have sufficient time to complete priority

items:

I think the other thing is focus. At Microsoft we have priorities every day. Everybody

going to be working on different issues and different priorities… It's easy to get lost by

the work… It can be always busy, but do you make the choice of the right priority? That's

the challenge.

–SDE2, Devices

Our informants did not discuss avoiding disruptions, as many were resigned to

interruptions and meetings—where the team aligned understandings and shared information

activities—being painful but necessary parts of large scale software development:

There’s some simpler things just in terms of raw speed and focus. In an environment like

Microsoft where there’s a lot of meetings and interruptions, I think it takes … A

developer has to kind of figure out how to get their focus and when to get their focus.

–Principal Dev Lead, Web Applications

Most informants viewed the focused attribute as a software engineer’s ability to deal with such

disruptions. Informants commonly discussed the attribute as a mental attribute, where great

software engineers were intrinsically more effective at switching quickly between contexts and

recovering quickly to their previous tasks; nonetheless, in several instances, informants also

discussed great software engineers devising processes of dealing with disruptions, e.g. making

prioritized lists, coming in early before others arrive for uninterrupted time, and blocking time

out on the calendar to focus on high priority items.

The underlying issue associated with this attribute, interruptions, is a rich research topic

within software engineering. Many researchers have sought to understand the nature of varying

kinds of interruptions (Dabbish, Mark, & Gonzalez, 2011), their impacts on various tasks

(Czerwinski, Horvitz, & Wilhite, 2004), and approach for mitigating their negative effect (Iqbal

& Horvitz, 2007). In our study, our informants largely ignored the nature and impact of

interruptions, instead focusing on the software engineer’s ability to make progress despite the

existence of interruptions.

3.3.1.13 Systematic

You have to be patient and not rush to the solution. You have to go through a mental

gymnastics in order to get to a solution.

– Principal SDE Lead, Windows

Several informants described great software engineers as systematic: not rushing or jumping to

conclusions, addressing problems in a systematic and organized manner. Informants felt that

great software engineers took actions in logical and ordered steps, carefully reasoning about the

unbounded and complex nature of software. They decomposed problem into manageable pieces

of investigation to be investigated in an orderly manner:

They are fairly quickly able to break any arbitrary problem down into its components…

help shape the solution… it’s the fully and accurate picture of the problem and

understanding where the boundaries are, and the pieces are.

– Principal Dev Manager, Web Applications

Without being systematic, informants felt that engineers were prone to waste time and

resources on fruitless investigations and strategies. Informants felt that it was common for

software engineers to have an initially wrong hypothesis about the situation; therefore, great

software engineers needed to be “thoughtful” and “not immediately try to project this ideas about

what it might be”. Great software engineers systematically approached problems to avoid

“chasing down blind alleys”. This was true for design tasks, but also particularly true for

debugging:

If you're given a very humongous amount of code and there is a problem, you can’t

debug each and every line of the pool... step by step. You get to the root of the problem

very fast.

– Senior Dev Lead, Enterprise

Software engineers frequently formulate and validate hypothesis about code behavior,

especially during maintenance tasks, as reported by many researchers (Ko et al., 2007) (Ko,

2006). Findings about the systematic attribute in this study provide nuanced understanding that

how the activity is performed distinguishes the great software engineers.

3.3.1.14 Adaptable to new settings

…things are going to change, what are you going to do about that? Are you going to be

one of the people that are helping to change? ...everything from values to fit into the

group, or the product, or the problem you're trying to solve, and I think that that is

important… How are you going to take and adapt your situation to move forward, and

how do you adapt to work with what you have to work with?

– SDE2, IT

Many informants described great software engineers as adaptable to new settings: continuing to

be of value to the organization even with changes in what they do (e.g. software product and

organizational objectives) and how they do it (e.g. people, processes, and technologies). Whereas

willing to go into the unknown entailed self-initiated changes, informants felt that changes often

occurred outside of the software engineer’s control, including changes to the organization, to

focus of the software product, to the competitive landscape, as well as to the task assigned to the

engineer:

…embrace new ideas, new technologies, patterns of doing things, being adaptable to a

new team, being able to adapt to a new team and their culture… [great software

engineers] need to be adaptable… we need to be adaptable to accommodate change in

our lives, especially professional lives.

–Senior Dev Lead, Enterprise

Informants felt great software engineers were able to successfully navigate and adapt to

the changes around them. Regardless of the context, the organization could expect positive

results from great software engineers. Many informants discussed the ever-evolving nature of

software development as a contributing factor to this attribute: “the time changes and good

software engineer will adapt to it”:

Whatever feature you happen to be working on one day you guys may decide that you’re

heading down path A and this is how the feature is going to work and then all of a sudden

you said it’s going to run into this problem so we need to switch and go down path

B…You do have to be flexible to change because there is a lot of change in the software.

It’s superfast, growing and changing industry.

–Senior SDE, IT

However, the notion of software engineers as ‘interchangeable parts’ was not shared by all

informants. It conflicted with the notion of needing a tight fit between the interests of software

engineers and the task they are assigned (passionate, Section 3.3.1.11). Furthermore, some

informants felt that certain technical domains required ‘deep expertise’ such that it was rarely

practical to move software engineers to/from that area:

…our developers tend to stay… It’s a very specialized area, and there’s not any other

group within Microsoft to hop around to, so you basically give up 10 years or 20 years of

education in order to move to a different group if there’s something completely different.

– Principal Dev Manager, Applications

3.3.1.15 Productive

“Some developers can do things very fast. The work takes someone else maybe half a

day, [they] can take half the time required.

– Senior Dev Lead, Web Applications

Many informants described great software engineers as productive: achieving the same results as

others faster, or taking the same amount of time as others but producing more. As discussed in

the related work Section 2.1, productivity–the speed and the number of tasks completed—is

often used as a measure of expertise when comparing novice and expert developers. Our

informants felt similarly; great software engineers produced code faster:

… developer productivity is always an example. Some of the developers that are most

highly regarded are the ones that are able to produce more results than others… no one's

ever consider the great developer if their productivity isn't great

– Principal Dev Manager, Enterprise

In addition to the obvious business benefit of enabling their software products to reach

the market faster, informants also discussed productive engineers enabling their teams to ‘fail

fast’. Informants described scenarios in which great software engineers quickly produced a

MVP—minimum viable product—to understand and to reason about the product. Since some

things in software engineering were difficult to know ahead of time, productive engineers

quickly provided information that enabled the organization to make better decisions (sometimes

to forgo further investment in the products):

In a start-up, where you've got a deadline to actually secure your next round of funding,

and doing so requires that you have the product in certain level of minimal viability.

Speed is really of the essence. Being able to rapidly iterate, fail fast, that kind of thing.

– Principal Dev Lead, Web Applications

3.3.1.16 Aligned with organizational goals

A mismatch of value… their number one goal is really to learn and learn … you are paid

because we are a business.

– Principal Dev Manager, Web Applications

Several informants described great software engineers as aligned with organizational goals:

acting for the good of the product and the organization, not for their own self-interest. Usually

discussed in the negative, informants commonly described two forms of misalignment. First,

some software engineers focused on an interesting technology rather than customer needs; this

commonly led to wasted efforts on software features that did not make the software product

more value to customers:

… my job is to provide value to the customers so that they’ll buy our product. Writing the

coolest, most fun, neatest software solution, in fact often does not provide the best

customer value. Sometimes the most boring, mundane, simple, brute force, least cool bit

of code is exactly what’s going to provide the best customer value. For me having

passion about providing customer value is important. More important than writing

something cool software.

– Principal Dev Lead, Applications

Second, some engineers neglected less glamourous aspects of system (e.g. usability); this neglect

commonly led to poor quality.

In addition to completing their own tasks, great software engineers undertook tasks

outside of their responsibility in order to help their software product to be successful, such as

writing documentation, answering customer questions, or running tests. Informants felt that

having great software engineers that had bought-in to the success of the organization was

necessary for successful software products:

I will do whatever it takes. You need to run a test pass, I will do the test pass. You need

somebody to write some docs, I will go write docs. You need somebody to help with

customer support I can do that.

– Principal Dev Lead, Gaming

The attribute is close to the concept of ‘signing up’, described by Zachary in his account

of the creation of Windows NT at Microsoft (Zachary, 1994); software engineers committed to

joining a team to work a software product, implicitly indicating that they were willing to do

whatever it took to make the software product successful. This concept was also discussed in

Soul of a New Machine, Kidder’s Pulitzer winning account of software development at Data

General (Kidder, 2000). The notion of great software engineers committing to delivering

something and then doing their best to deliver on their promises appears to be a long-standing

unwritten rule within software engineering:

He's very dedicated to whatever thing he took on, meaning that if he promised to deliver

something, he was going to do his best to deliver that, took pride in delivering what he

said he would deliver.

–Principal Dev Lead, Applications

3.3.1.17 Data-driven

Look at things in a more scientific way, a more empirical sort of way… do the

measurements, [great software engineers] will understand, and they’ll try to break down

the data… a hypothesis about what I think will make it better, and try the hypothesis and

measure again, and look at look at the results.

– Principal Dev Manager, Web Applications

Many informants described great software engineers as data-driven: measuring their software

and the outcomes of their decisions, letting actual data drive actions, not depending solely on

intuition.

Informants commonly discussed two benefits. First, by creating feedback loops,

informants believed that great software engineers used data to confirm or disprove

understandings and expectorations, helping them to improve their future decisions:

…data driven and not instinctive driven for most of the time... collect customer data and

take some of that into account while you're making the next wave of decisions.

– Senior Dev Lead, Enterprise

In some situations, such as A/B online experiments (Kohavi, Frasca, Crook, Henne, &

Longbotham, 2009), informants believed that great software engineers tried various options and

then made choices based on actual customer preferences instead of resorting to rhetorical or

intuition-driven arguments:

Very iterative… Just try it. We have a hundred online experiments running at any time on

users. When people get into debate… the way I look at it is: how do I make the system

better so that I can try all these three ideas… it's very experimental.

 –Senior Dev Lead, Web Applications

Overall all, informants viewed being data-driven as an effective approach of avoiding

confirmation bias, leading to better software products. However, many informants lamented that

simply having data was no panacea. They stated that software engineers frequently found ways

to ignore the data or to discredit the evidence, leading to bad engineering decisions:

One thing that surprises me… even though we are driven by data, at least we try to

believe we are… Some data gets shown to us. We figure out some ways to ignore it. So,

maybe, maybe everybody thinks that they’re data driven, but I’ve seen people come up

with excuses for why the data doesn’t apply to them. I’ve seen that a million times.

– Senior SDE, Applications

3.3.1.18 Hardworking

…Incredible work ethic, like the ideal Microsoft employee, he would just work 12 plus

hours a day, just unbelievable. That's proto-typical programmer that we need to hire

more of.

– Principal Dev Manage, Applications

Several informants described great software engineers as hardworking: willing to work more

than 8 hours days to deliver the product. This typically meant working longer days, during

weekends, and/or during other free time in order to accomplish goals. Informants believed that,

at a minimum, software engineers needed to be willing to work beyond normal hours

immediately prior to ship dates in order for the team to successfully deliver the product:

I remember it came down to the last day. He is going on vacation and we needed to ship

and he stayed late and was there all night… even delayed his vacation by a day, so that

he could get it done and get it out the door so we could ship on time ... he got high praise

for it from the management.

–SDE2, Web Applications

There was a hidden sentiment that engineers were expected to be hardworking. This may

be inherent to the software engineering profession, reinforced by accounts from Microsoft

(Zachary, 1994) and elsewhere. Our informants seemed to accept the fact that software

engineering involved significant amounts of mundane time-consuming but necessary tasks:

I have worked in many different companies and worked in different countries,

engineering, at least from my experience, it's a time-consuming job, especially schedules

generally are tight… There's always issues that come up. There's always a big push,

especially towards the end when you have a date for a project to be completed by. You're

never where you need to be when you start getting close to that date, so you wind up

working extra hours. Unfortunately, there's some people that say, "I'm not going to work

extra hours," and I think that hurts them. Sad to say, but, to be honest, I think that may

not define you as a good engineer.

– Senor Dev Lead, Gaming

3.3.2 Decision Making

How do we make, what I often call, “robust decisions”? What’s a decision we could

make, depending on this range of potential outcomes, which we can’t foresee? ...if we can

make a decision that is viable, whether A or B happens, then we don’t have to fight about

A or B right now.

– Technical Fellow, division removed to preserve anonymity

Informants mentioned 9 attributes that we felt pertained to engineers’ ability to make decisions:

assess the current context (i.e. understanding when/what decisions were needed), identify

alternate courses of action, gauge probabilistic outcomes, and estimate values of outcomes. As

indicated in the quotation above—and numerous more in the sections that follow—engineering

of software requires many choices of ‘what software to build and how to build it’. Many of our

informants’ descriptions of great software engineers involved these engineers’ making optimal

decisions under difficult and complex circumstances. Beyond book knowledge, great software

engineers understand how decisions play out in real-world conditions. They not only know what

should happen, but also what can and likely will happen.

Combining their knowledge, their mental models that tie the knowledge together, and

their mental ability to reason about their models, decision-making attributes were internal to the

software engineer. We grouped these attributes together because they revolved around the

important mental process of ‘making decisions’. Furthermore, in contrast to many of the

personality attributes, the underlying sentiment among our informants was that attributes

concerning decision-making could be acquired.

To make optimal decisions, informants discussed great software engineers having three

kinds of attributes. First, they needed knowledge of several dimensions—technical domain,

customers and business, tools and building materials, and software engineering processes.

Second, great software engineers needed to build and maintain decision-making models that link

the knowledge together—growing their ability to make good decisions and updating their

decision-making knowledge. Finally, great software engineers needed the mental dexterity to use

their decision-making models under real-world conditions: mentally handling complexity and

seeing the forest and the trees. Great software engineers had complex and multifaceted decision-

making models that were continuously updated.

3.3.2.1 Knowledgeable about their technical domain

You are working in some of the most complex and intricate code bases there are up there.

It takes, look it, for a lot of people, it takes several years to get the point where you can

reasonably go in there and do something without doing any harm, right? If you were

churning people or just had people in there working willy nilly, it wouldn't help you,

right?

 – Technical Fellow, division removed to preserve anonymity

Most informants described great software engineers as knowledgeable about their technical

domain: thoroughly conversant about their software product, technology area, and competitors.

The exact technical knowledge discussed was product and team specific, ranging from

distributed computing in Bing, to signal processing in Skype, to encryption in Servers and Tools,

and more. Informants often discussed needing domain-specific training, as well as an

understanding of the solutions of others (e.g. competitors) in order to have a thorough

understanding one’s own product.

Informants also believed that thorough understanding included knowing the entire

solution, not just a small piece of the system. This might have been especially important with

large products involving many interconnected pieces, as choices for those systems are more

likely to have side effects. Our informants generally viewed acquisition of this knowledge as a

gradual process; starting out, even great software engineers (e.g. when an experienced engineer

was transferred to another team) were usually assigned a small piece of the product and then

progressively developed a broader and more holistic knowledge of the product:

I feel that it’s like you should have a very good understanding of the entire system as well

as all of the moving parts. Knowing basically, you should have a very good picture, a

good big picture of how it’s supposed to work… the architects behind big systems,

complex systems and know it, all the gotchas, in and out. I really do look up and consider

them great because they spend all this time to learn about systems.

– Senior SDE, Web Applications

Informants’ discussions of the benefits of being knowledgeable about the technical

domain concerned four areas. First, most frequently, informants felt that this attribute enabled

great software engineers to avoid actions with negative consequences, i.e. do not ‘break

something’:

I have a better understanding of what I'm changing... I'm not going to break something

that I'm not getting into… if you had originally written the code, or if you've spent the

time to gain a deep architectural understanding of the code, then it's much easier and

quicker to make those changes than if you're trying to make an isolated change to

something that you don't really understand.

– Senior SDE, Windows

Second, the knowledge enabled great software engineers to focus attention on the most important

areas within the software product, commonly parts of the system that were especially error

prone:

[This great software engineer] had a profound understanding of how the hardware

actually worked and was able to just optimize the key critical paths as a result.

– Technical Fellow, (division removed to preserve anonymity)

Third, great software engineers leveraged their knowledge to identify important innovations to

improve their products. Our informants felt that the key was discerning between important

advancements—ones worth the investment—versus non-essential changes that were unlikely to

yield meaningful gains. The sentiment was that many things were touted as ‘game changers’ but

few actually were; great software engineers understood their technical domain and were able to

discern important changes:

Technology changes a lot. The actual underlying ideas don’t change all that often but the

way they get expressed changes. I think being able to keep a firm grasp on that stuff is

important. I see people get overwhelmed a lot with the level of detail, so being able to

filter out what’s the essential things.

– Principal Dev Lead, IT

Finally, great software engineers knew about solutions and approaches of others (typically

competitors), which they would be able to borrow and apply to their own software products. This

typically led to better and more successful product:

[Great software engineers] are always interested in what new is out there, what they can

leverage… The technology you can use, what's available, whether it's from Microsoft,

whether it's from somebody else who has created something new and innovative… always

looking at what else is out there…

–Senior Dev Lead, Windows

3.3.2.2 Knowledgeable about tools and building materials

They understand the why the motivation for, why we have 17 different data structures, a

black tree, and this tree, and that tree and what... they really, really have a better ability to

make the right choice when choosing from this tool set. Or even understanding, well, you

know what? This problem is different in enough ways that’s we’ve got to maybe make a

new tool right here but it’s really understanding I think the why.

– Principal Dev Manager, Web Applications

Many informants described great software engineers as knowledgeable about tools and building

materials: knowing the strengths and limitations of technologies used to construct their software.

However, opinions of what constitutes ‘tools and building materials’ varied greatly among

informants; many software products were ‘building materials’ for other software products at

higher levels of abstraction. No single piece of technology is universally critical. For example,

while the SQL Server was the final product for several informants, the database was a ‘building

material’ for the informants in Dynamics that used the database to build their CRM management

product:

…But what's happened in the industry is the applicability of those skills has been getting

less and less, to this point that the teams that rely mostly on validating algorithm and data

structure skills, tend to have the least reliability in terms of accurately predicting success

as a developer in the group.

… Databases apply to so much software at this point, I mean you can't really do an online

service, for example, without a database, and using a database, the data structure

algorithm, you're dealing with higher level concepts.

– Principal Dev Manager, Enterprise

Informants’ opinions about the importance of knowledge about tools and building

materials also varied. Some informants felt that since these were things that software engineers

used frequently, and that mastery over them was essential. Others felt that information about

tools and building materials could easily be looked up; thus, engineers merely needed to be

aware of the tools and building materials:

I've found it less important that you really have the entire core computer science

curriculum in your head at any given moment. That's just the understanding of when you

see something coming that you haven't touched in a while, you have to go freshen up on

it…In practice, I sent out some code once to do a binary search on something or other,

and universally the reviewer said, "We don't write that kind of stuff. We rely on standard

libraries for that. It's silly that you would write one of those things."

– Principal Dev Lead, Web Applications

Differing opinions aside, informants felt that great software engineers with knowledge of

tools and building materials produced code faster, were better at debugging, and had fewer

quality issues. Informants felt that the increase in productivity and quality frequently stemmed

from “not having to build one’s own”. Great software engineers effectively leveraged existing

well-tested code; the key was knowing which technology to use and knowing under which

conditions the choices would differ:

[This great software engineer’s] manipulation of these is very detailed, knowing what to

use under what conditions. There’s no universal approach to this, so the ability to match

the right technology to the right situation, is actually very difficult. To be able to do it

effectively is great. It’s not something everyone can do.

– SDE2, Enterprise

In addition, knowing the limitations of the underlying technologies also enabled great software

engineers to quickly diagnose and resolve unexplained anomalies:

If you write in Java, you're probably not going to have to performant code. That's not your

fault as a programmer. It's just the constricts you're given in Java because it consumes a

lot of memory… Definitely language has a choice of tool makes a big difference in how

good of an end project you're going to get.

– Senior SDE, Windows

Many of the ‘tools and building materials’ (e.g. data structures and algorithms) are

elements of technical knowledge needed by software engineers prescribed by the ACM

Computing Curricula (Joint Task Force on Computing Curricula, 2014). However, rather than

general concepts (e.g. programming languages), the discussions and descriptions provided by our

informants were all grounded in detailed knowledge about specific instantiations (e.g. memory

consumption for Java).

3.3.2.3 Knowledgeable about software engineering processes

[Great software engineers] know how to go about developing software…how to go about

software development.

– Principal Dev Lead, Web Applications

Several informants described great software engineers as knowledgeable about software

engineering processes: knowing the practices and techniques for building a software product—

purposes, how to, costs, and best situations to use the process. Informants felt that there were

many ways to engineer software, with differing approaches and necessary adjustments for

various situations and contexts. Great software engineers have mastery over the necessary

stepwise processes—and their variants—for a team to successfully complete a software product:

Clearly one of the difficulties in software is it's so easy to do so many different things in

so many different ways, they could all be right, but the amount of effort that it takes to get

there or the amount of effort it takes to support it later on, really drives the overall

experience of what you've done... [This great software engineer] just always struck me as

someone who really stood above the rest [for knowing what process to use].

– Senior Dev Manager, Windows

Informants identified three primary benefits of being knowledgeable about software

engineering processes: higher quality, more deterministic timelines (i.e. fewer surprises), and

efficient allocation of time/resources. Many informants discussed great software engineers using

(and enforcing) validation processes/techniques to ensure high quality, such as unit testing, test

drive development, and code reviews. Interviewees believed that leveraging these processes led

their software to be high quality:

[This great software engineer] had a really really high bar for kind of engineering

excellence… he did a test driven development thing where you kind of write the test first

and then you know, kind of write the code to match the test… the state of the art was for

basically creating the best way of developing software… this one particular component

that he worked on had like one bug.

 – Principal Dev Manager, Web Applications

In addition to the three primary benefits, several informants also mentioned great

software engineers using ‘processes’ to effectively grow their teams. Great software engineers

established well-defined and well-reasoned processes, formalizing the team’s common

understandings, so that the team effectively grew in size while maintaining coherence and

quality:

How many developers you can throw at a project… having good practices around how

you do the code reviews and check ins and having unit tests that enforces things don’t

break and that kind of thing it is way way more important than the actual having a

beautiful architecture

– Principal Dev Lead, Web Applications

The knowledge discussed in this section shares similarities with technical knowledge

prescribed by the ACM Computing Curricula (Joint Task Force on Computing Curricula, 2014)

and topics discussed in software engineering processes and methodologies research (discussed in

Section 2.3). ‘Software Verification and Validation’ and ‘Project Management’ are key areas of

knowledge prescribed by the computing curricula; ‘quality’ and ‘predictability’ are key

outcomes discussed by processes/methodology research (e.g. CMM (Herbsleb et al., 1997)).

3.3.2.4 Knowledgeable about customers and business

…Really understanding the point: who is the customer, why are we doing this. There is an

old phrase that says an engineer does for one dollar what any damn fool can do for ten.

 – Principal Dev Lead, Gaming

Many informants described great software engineers as knowledgeable about customers and

business: understanding the role their software product plays in the lives of their customer and

the business proposition that it entails. Some informants saw the purpose of software engineering

as benefiting humanity, though most were realistic and pragmatic; the purpose was to make

money. Therefore, most informants felt that software engineers needed to understand what their

customers needed and how their software filled that need. This understanding enabled software

engineers to make software products and services that customers were willing to pay for:

[Some software engineers] want to solve really hard problems, [but instead]…

understanding your customer, find out what they've got, find out what they already want,

what they already do, what's the delta you can provide, how can you help, and then go

find a simple solution to it because at the end of the day, we are a for profit company.

– Principal Dev Lead, Gaming

Informants generally discussed three ways in which knowledge about customers and

business were important. First, informants felt that great software engineers recognized that they

were not the customer; therefore, they used their knowledge to avoid choices that fitted their

needs but did not work for customers. Second, many informants mentioned needing to ‘fill in the

blank’ during development (i.e. making everyday engineering decisions). Written specifications

were often incomplete or out-of-date; therefore, software engineers often needed to exercise their

own judgment in making engineering choices. Informants felt that great software engineers

effectively used their knowledge about the customer and business objectives to make optimal

choices:

Great software architects are not religious about the technology, but they're able to

understand the technology and then say, "Hey, here's how I think we can solve that

business problem better." Through this use of technology and they come out from a

perspective that's, "I understand what my customer wants," rather than just being like,

"We should just use this technology because it's cool.”

– Principal Architect, IT

Third, great software engineers used knowledge about customers and business to appropriately

test and validate their software products, ensuring that the software worked for their customer’s

scenarios:

Basically think of all the scenarios to cover, let's say I have some feature that I think I

have test cases to cover, how the customer uses it. They should be able to figure out the

issues before they go to the customers.

– SDE2, Enterprise

In addition to benefit to customers, several informants talked about benefit to the

organization. Informants felt that individual software products often needed to integrate together

into broader business solutions or for larger business objectives. Therefore, knowing the overall

business intent enabled decisions that fit within the long-term vision of the company:

…Requirements that are created by the environment, and I actually believe that

understanding those things are as important as good engineering because when you miss

them those are the kinds of things that can set you back for years if you don’t understand

the environment you’re in… Within five years of him pushing, the government began to

require this and had we not done that work we would have basically lost an incredible

amount of sales.

 – Software Architect, Applications

The concept of employees having sufficient business knowledge about their company is

discussed in Administrative Behavior (Simon, 1976), Herbert Simon’s seminal work on

organizations. The sentiment in Simon’s work is the same as those of our informants: employees

needed knowledge about the organization’s objectives (at the sufficient level) in order to make

their own decisions effectively.

3.3.2.5 Knowledgeable about people and the organization

The nice thing about some of the companies like Microsoft, there's literally people here

who have created a world, the technological world that we live in today. They’re stars in

that regard. We can learn a lot from people in these companies who have more of the

resources of people, I guess. Just trying to tap into this wealth of knowledge that Microsoft

brings to the table, the talent pool that’s here.

– SDE2, Gaming

Informants described great software engineers as knowledgeable about people and the

organization: informed about the people around them—responsibilities, knowledge, and

tendencies. Knowing ownership (i.e. areas of responsibility), enabled great software engineers to

determine key stakeholders for decisions and to align their work with the appropriate teams:

Make sure that you are aware of that big picture, you know where you fit in and how you

interact with everyone else to optimize what you are doing.

– Principal Dev Lead, Web Applications

Knowing who had expertise enabled great software engineers to find the right people for help—

often domain experts. For software engineers in leadership positions, this knowledge also

enabled them to take corrective action to address knowledge gaps within the team (e.g. assigning

a more senior person):

[This great software engineer] would go through his organization and looked very

carefully at the tasks that were being assigned and whether people had the right level of

training and understanding and if they didn’t, who their supervisor and whether that

person did and would demand code reviews...

– Software Architect, division removed to preserve anonymity

Finally, knowing people’s tendencies enabled great software engineers to adapt their engagement

techniques to obtain desired outcomes:

You have to understand people so that you can influence or impact them... You have to do

that both down and up and out.

– Principal Dev Lead, Devices

Identification of expertise and assignment of responsibility is frequently discussed in

research studies that examine everyday activities of software engineers (discussed in Section

2.5), notably in studies examining bug triage/assignment processes of software engineering

teams. Multiple studies found determination of responsibility—bug assignment—as well as

expertise as key steps in the bug-triaging process (Anvik et al., 2006) (Aranda & Venolia, 2009).

Identifying who has technical knowledge, who has ultimate decision-making power, and the

methods for locating that information (e.g. ‘bug tossing’ (Jeong et al., 2009)) are all important to

the bug triaging/assignment process of software engineering teams.

3.3.2.6 Grows their ability to make good decisions

There's a way to look at a problem and get a pretty accurate reading on how much work is

involved to solve it to a certain level of satisfaction…learning where the hard parts of the

problems are probably lurking and what trouble they might cause you or something like

that… Maybe having a good pattern of recognition from that standpoint is important too.

– Principal Dev Lead, IT

Our informants’ descriptions of great software engineers suggest that they grow their ability to

make good decisions: building their understanding of real-world situations including alternatives,

outcomes, and values of the outcomes. Great software engineers effectively identified and

understood aspects of the context that impacted alternative choices and probable outcomes,

which entailed the ability to identify when decisions were needed, available alternative choices

(including how to search for options), probabilistic outcomes (including things what can go

wrong), and the value of the outcomes (including identifying the dimensions of the value vector).

The underlying idea was that great software engineers’ experiences evolved into predictive

models over time; they grew their ability to make good decisions. Our informants rarely used

academic terms such as ‘models’, ‘alternatives’, ‘states’, or ‘outcomes’; they commonly used

terms like knowing ‘what to do’ or ‘what works’:

…Transition from being driven by intuition versus experience is kind of evaluating… The

growth that you're going to experience, it's kind of like the science project, right. When

you're operating on intuition, you're soon to be operating on theory about how things

should work… Like a real scientist, also set expectations about what the outcome should

be and measure those expectations and all that stuff. Kind of reworked that theory until

you converge at something that’s functional, I guess, working.

– SDE2, Gaming

Our informants felt that by growing their decision-making abilities, great software

engineers became progressively better at making decisions, taking actions that were likely to

succeed and avoiding actions that were unlikely to work. Great software engineers also became

better at preparing for things that could go wrong and put appropriate contingency plans in place:

[Great software engineers] can predict, or they can forecast what's the future… And he

also can predict, say, what's the challenge in the implementation, implemented into this

design. So he can predict how much time you will use, how much developer should be

involved is one, and how much tester [sic], and how long to ship it, something like that.

 – Senior Dev Lead, Web Applications

The outward manifestation of this attribute is improvements in interactions with

teammates and in engineering of their software products (discussed in Section 3.3.3 and 3.3.4).

Nonetheless, the sentiment among our informants was that the underlying genesis of those

improvements is the mental ability of great software engineers to make better decisions over

time.

3.3.2.7 Updates their decision-making knowledge

Unlearning. That's like, the things that I used to do five years ago that make me

successful don't matter anymore; in fact, they can get me into trouble right now… I start

to get to a point where I would assess [an engineer’s] ability to unlearn after a while, like

two thirds or three quarters of what you know is still valuable, quarter to a third is the

wrong thing in this world…

– Technical Fellow, division removed to preserve anonymity

Several informants described great software engineers updated their decision-making knowledge,

not allowing their understanding and thinking stagnate. Informants felt that great software

engineers evaluated changes in their context and updated their mental models (i.e. how they

would make certain decisions), sometimes throwing away obsolete knowledge and building new

mental models:

…it's a constant improvement and constant evolution of what you're doing by learning

how your product is functioning and how it's being used. You then are able to get

feedback and put it back into the product.

– Principal Dev Lead, Web Applications

The two areas that most commonly required updating were knowledge about tools and

building materials and knowledge about the limitations/restrictions of existing technologies.

Informants felt that new and evolving technologies would frequently impact both the available

engineering choices as well as the expected outcomes of those decisions. Great software

engineers incorporated those evolving circumstance into their decision-making models:

Doctors always need to know about the newest medical treatments, the newest drugs and

interaction between the drugs. Lawyers have a similar thing, they always need to keep

reading, keep understanding what new precedents have been set in the law journals and

stuff. I think the same is true for us. We need to know what problems are solved. I think

we are at a point in software development where we have a lot of options for

implementations, those kinds of things. If we're not current, you just pick the thing you

always work with and it may not be the best tool for the job. I think staying current helps

you know what's the best tool for the job.

 – SDE2, Web Applications

Informants felt that updating decision-making knowledge was essential for great software

engineers to continue being great. Software engineers that failed to update their thinking would

begin to make suboptimal decisions, losing the respect and confidence of their peers:

…Software engineering is one area where probably it has changed the most if you look at

an engineer who started in 2000…Good [engineers] know how to keep learning because

this is an area it doesn't matter how smart you are; things just change all over… back in

2000 lot of things mattered and you were doing lot of, writing a code in a way this buffer

that buffer. Today it's just stupid.

 – Senior Dev Lead, Web Applications

3.3.2.8 Mentally capable of handling complexity

There are engineers who are frighteningly intelligent, and smart, and they just walk

around with this picture in their head all the time of how everything fits together, and

they get stuff done.

– Principal SDE, Windows

Many informants described great software engineers as mentally capable of handling

complexity: able to comprehend and understand complex situations, including multiple layers of

technology and interacting/intertwining software. Informants felt that some software engineering

problems were inherently complex, necessitating software engineers who can mentally keep

track of all the considerations and implications. This might have been especially salient at

Microsoft, where products were often constructed on top of multiple layers of technologies and

interacted with many other components. Informants felt that the ability to build an accurate

mental model of the interconnections and to be being able to reason about the various options

and outcomes was critical for great software engineers, especially those in technical leadership

positions.

To solve the problem, [great software engineers] have to have the ability to connect

things… You are always debugging layers of stacks of code… this layer talks to some

other layer in the horizontal...

– Senior SDE, Web Applications

Informants felt that great software engineers needed to be able to handle complexity

because they are commonly assigned the difficult problems. Many great software engineers had

to tackle complex problems where having any solution was an accomplishment. Informants felt

that some software engineering problems were unconstrained messes—often resulting from years

of engineering debt—where software engineers could struggle to simply understand the full

extent of the problem, let alone come up with a solution. Great software engineers are often

assigned those tasks:

The [great software engineers] who tend to move up though, you can give them a

complete mess. Problem is not well defined; maybe somebody’s tried to solve it six

different ways. There’s just all this ambiguity about it… [great software engineers that

can address these issues are] high up in the chain or they will be. If you really need your

problem constrained for success, you’re never going to grow out of that [lesser] role.

 – Senior Dev Manager, Windows

Though some informants felt that the ability to handle complexity was a natural ability,

others felt that great software engineers could effectively augment their natural abilities using

tools and processes (e.g. externalize their knowledge by writing it down):

Ability to capture… simulate the architecture in their head… there's probably a little bit

of innate skill and cognitive ability… That said, the fact that you don't have that skill

doesn't mean that there's no other ways of doing it that may be more brute force…

writing things down and studying very carefully the architecture you've put down is

putting the brute force time into studying a problem.

– Partner Dev Lead, Windows

The externalization of knowledge discussed by our informants differed in intent from

most research on the topic, such as ‘knowledge sharing’ within free/open source projects (Sowe,

Stamelos, & Angelis, 2008). Whereas knowledge seekers were commonly the audience of the

knowledge externalization in related work, the software engineer him/herself was the audience of

the externalized knowledge in our study. Great software engineers were helping themselves

reason better about the situation by externalizing their understanding.

3.3.2.9 Sees the forest and trees

[A great software engineer] has to have both a very, very narrow extremely technical

prospective on his code, but also know where it fits in with the bigger picture, and to be

aware of how it affects even our major external customers, and the company vision.

– Principal SDE, Windows

Many informants described great software engineers as being able to see the forest and the trees:

reasoning through situations and problems at multiple levels of abstraction, including technical

details, industry trends, company vision, and customer/business needs. Informants felt that

mental models could exist at various levels and that great software engineers reasoned at all

levels quickly and accurately:

What differentiated [this great software engineer] from other people in management

positions… capability to zoom into the details, and he was not just a high level guy…

know the reality of the stack or the reality of the software…

– Senior Dev Lead, Web Applications

Our informants commonly discussed three reasons why software engineers needed to be

able to see the forest and the trees. First, many informants felt that some objectives, while

seemingly simple, were technically difficult (or impractical); therefore, great software engineers

needed a working understanding of the implications of their decisions at multiple levels in order

to make optimal choices. Second, most informants felt that engineering of software was usually

in service of some higher business objective and that these objectives could be met in a variety of

ways, some may not involve software. Great software engineers that saw the forest and the trees

were able to make globally optimal decisions, avoiding local optimizations (e.g. focusing only on

code solutions). Finally, related to the previous point, being able to see the big picture helped

great software engineers avoid getting enamored with technologies: the ‘if all you have a

hammer, everything looks like a nail’ problem:

It’s making sure they understand both the big picture and the details at the same time. The

people that are really good have enough hands-on [knowledge] to be able to identify and

solve problems and see the problems and stuff, but they also have a high enough view that

they’re not just chasing interesting problems to solve

 – SDE2, IT

3.3.3 Interacting with Teammates

The way [this great software engineer] just kind of touches people, just dissolves the

conflicts right there… that magic to make people respect him. That’s fun magic, I think

that not everyone possesses.

– Senior SDE, Windows

Informants mentioned 17 attributes that we felt pertained to engineers’ interactions with

teammates. Most informants believed that great software engineers positively influenced

teammates. For many of our informants (whose titles contained ‘Lead’ or ‘Manager’), this was

an important part of their job as managers of other software engineers.

Attributes concerning interactions with teammates generally revolved around four

concepts: being a reasonable person, influencing others, communicating effectively, and building

trust. These concepts are frequently mentioned in the literature, but often without clear

definitions and with little contextual understanding of their importance, as evident in several

survey papers involving interactions with teammates (discussed in Section 2.4 and 2.6

(Radermacher & Walia, 2013) (Cruz et al., 2015)). In our discussions, we deconstruct these four

concepts into their constituent attributes and then examine each attribute separately.

3.3.3.1 Is a good listener

One of the most frequently discussed soft skills of software engineers is communication skills .

Ahmed et al. found communication skills to be the most commonly cited soft skill in job

advisements for software engineers (Ahmed et al., 2012). Our findings were similar; many of our

informants discussed how great software engineers communicated. Within these discussions, we

discerned effective communications as comprising of three connected attributes: is a good

listener, integrates understandings of others, and creates shared context. We will explain each of

these attributes in turn.

Being a good listener is important, that you’re really hearing the other person’s concerns

and opinions…

– Senior Dev Lead, Windows

Many informants described great software engineers as being good listeners. For our

informants, this entailed effectively obtaining and comprehending others’ knowledge about the

situation. This knowledge may include static information, e.g. people/organizations and

technologies, as well as dynamic mental models about actions and consequences.

Informants discussed three reasons why software engineers needed to be good listeners.

First, since software engineers needed to be continuously learning (Section 3.3.1.1)—both to

become and to continue being great—acquiring knowledge from others is essential. This

commonly helped software engineers avoid mistakes of the past by knowing the approaches that

others had attempted. Central to that process is being a good listener:

[Great software engineers] don't have to make the same mistakes that other people made

and you can also, you can learn from some of these mistakes by talking to people. It is a

very less expensive way to pick up, you know, valuable experience and knowledge and all

that stuff... engaging people and like learning from them, it's good to be like very active,

like active listening and all that kind of stuff and ask them questions.

– SDE2, Gaming

Second, informants felt that the complexities of software systems today often exceeded

the mental capacity of a single engineer or a single team. Therefore, to make decisions, software

engineers needed to gather knowledge from multiple people:

As the company got big, that role broke down because it did get too big for being able to

hold it in their head. Dave Cutler, when he came on, had that capability as well, but even

today, Cutler, there are parts that he doesn't know about. So that broke down that role.

– Partner Dev Lead, Windows

This need was even greater when collaborating with external teams (e.g. other divisions or teams

outside of Microsoft), since external people, in addition to having different technical knowledge,

often had different contexts. Because of these differences, our informants felt that the ability to

acquire the understand others was important:

[This great software engineer] really listens to other very important customers, and he's

not just listening to what they're saying, but he's listening to what they're trying to say.

He's trying to get a sense for what is the real big problem that they're trying to solve, and

where does Microsoft fit into this…

– Principle SDE, Windows

Finally, informants felt that great software engineers’ efforts needed to align with

organizational goals (discussed in Section 3.3.1.16). Therefore, they needed to acquire

directional guidance and input from their managers/leaders as well as peers:

[Great software engineers] need to have the connections with the right people because

priority is important. Talk to manager, talk to peers, talk to whatever connection you

need to find that's your priority.

–SDE2, Devices

Though the need to be a good listener seems obvious, many informants lamented that

some software engineers—even experienced engineers—were poor listeners, thus limiting their

potential for growth. Some of the causes that our informants associated with poor listening

included the listener as egotistical, non-native English speakers, and ‘mentally wired’ in a

different, inexplicable way:

I think what was hardest for me was the interaction with other people… Learning to...To

understand what my managers or the company needed.... I don't think I could have

changed what I felt but if I could acquire better skills to communicate with people. To

listen to people… It does create problems I think because you can still be successful in

the right field writing good software. I think you're perceived as someone that just solves

those problems but not someone that can help see the bigger picture.

 – Principal Dev Lead, Web Applications

3.3.3.2 Integrates the understanding of others

If they say something that doesn't really line up with your intuition, like that's another

time would want to ask questions and like try to figure out, you know, where the

discrepancies lie… To really get it, internalize it and connect it with the way you think

about things. So I think that is when you really are benefiting from the people around

you, you're not just getting good answers from them but you are also being incorporated

into your own, like, mesh it with you own knowledge base.

– SDE2, Gaming

Many informants felt that integrating the understanding of others was another component of

‘effective communications’. This entailed combining and integrating the knowledge of many

people into a more complete understanding of the situation, and then noticing and asking

questions about the gaps. Informants discussed an ‘integration’ process during which great

software engineers considered conflicting views of involved parties or gaps in

actions/considerations, and rectified inconsistencies in understanding.

Informants felt that integration of understanding was an important attribute because many

poor decisions resulted, not from lack of communication, but rather from lack of clarity.

Integrating understandings was especially challenging for great software engineers in leadership

positions, who need to integrate the understanding of many engineers, with disparate

understandings and perspectives, in order to make advantageous decisions:

I think some of it is a willingness to ask questions and also perhaps figuring out a way to

have clarity of thought… oftentimes lots of disparate ideas and pieces of information

have to be collected and the ones who are able to recognize patterns and put pieces

together can see the picture more clearly. You get some of that through asking good

questions, but you also have a way to organize your thoughts that will help you make

those connections…

– Principal Dev Lead, Enterprise

An interesting benefit of the integrating understanding of others attribute was that it often

benefited others as well the great software engineers. Informants felt that the process of asking

questions and clarifying understanding helped all involved parties gain a better understanding or

new perspectives on the situation:

… you say 10 things, you learn two new things yourself because either people will say,

“Hey, do you think about it this way” or they might just come back and say, “Hey, I also

thought of this way.” It’s almost always whenever you share, you also get better. It gives

you more clarity on what you’re sharing and also makes you learn new things with what

other people are basically thinking.

– Principal Dev Lead, Web Applications

3.3.3.3 Creates a shared understanding with others

An exceptional engineer will understand how to most compellingly relate the value of

that abstraction as it goes to non-abstract to very abstract to each person in the

communication chain: their peers, as developers, their testers, their PMs, their designers,

their management or if they were to speak at a conference or do demos or interviews of

that nature. It's not merely recognizing it but also being able to empathize with your

audience, whether they are groups or individuals, in order to get them to get it...

– SDE2, Windows

For many informants, creating a shared understanding with others was the most important

component of effective communication. This involved a great software engineer molding another

person’s understanding of the situation, tailoring communications to be relevant and

comprehensible to others. Informants felt that great software engineers could effectively get

others to see the situation as they saw it. Beyond simply speaking clearly, great software

engineers grasped the level of understanding of others and adjusted their communications—often

simplifying the message—so that others can understand and incorporate the information into

their thinking:

You perceive who you are talking to, and you are able to judge on those levels that they

are, or you just ask important questions. Do you know about this? And then, be able to

simplify the problem to the level that they’re working in, or you estimate the amount of

information given to them.

– Senior SDE, Windows

Generally, three themes emerged to describe why creating shared understanding was

important. First, as leads or as managers, great software engineers often marshalled efforts of

other engineers to achieve engineering objectives, which closely aligns with the notion of

establishing and maintaining ‘conceptual integrity’, as discussed by Brooks in the Mythical Man

Month (Brooks, 1995). Creating shared understanding was requisite for aligning everyone

toward shared objectives:

One person can only accomplish so much so you've always got to be working as part of

the bigger group. People who can't communicate are only going to be sort of so-so

effective…

– Principal Dev Lead, IT

Second, engineering teams (especially teams at Microsoft) needed to coordinate efforts

with other engineering teams. For example, Windows application team working on the Edge

internet browser had dependencies on the Windows platform. Therefore, creating shared

understanding with engineers in other areas was often necessary in order to make decisions about

where and how to make changes to software:

…bring partners, especially difficult issues when people have different opinions… It

really depends on your personality and how you communicate.

– Senior SDE, Web Applications

This theme is close to the concept of information sharing reported in studies that examine

‘negotiation’ processes of software engineering teams (Sandusky & Gasser, 2005). Software

engineers must be able to communicate their understanding and perspective to partner teams in

order to achieve good outcomes.

Finally, great software engineers often need to communicate with important stakeholders

who are not engineers, including executives, experts in other areas (e.g. marketing), and external

customers. These people may not have a similar or complete understanding of the situation, but

are critical to the success of the software engineering effort. Therefore, great software engineers

need to adjust their messaging to fit both their audience as well as the intent of the

communication:

Our areas where the things are inherently difficult to talk about… business partners or

with a customer… When you go outside and you talk to customers, they think about

things in much different terms and so in some ways you have to kind of switch gears…

why you should care about it and here is how you should think about it.

– Principal Dev Lead, IT

This attribute is closely related to the concept of ‘grounding’ proposed by Clark and

Brennan, which, when done successfully, requires parties to coordinate the content and the

process of communication (Clark & Brennan, 1991). Since the engineering of software often

involves many people, getting everyone to have a shared understanding considered essential:

…communicate about software design really well, and they're able to simplify their

language around what needs to be accomplished in a way that makes it quick and easy to

get to the heart of a particular solution… you don't speak to each other in code. You

speak to each other in human language.

– Principal Architect, IT

3.3.3.4 Honest

Another commonly discussed concept in our interviews was ‘trust’; others trusted great software

engineers. Examining the discussions about ‘trust’, we discerned three central attributes: honest,

manages expectations, and has a good reputation. We will explain these three attributes in the

next three sections.

The thing is everybody make mistakes. When you do make mistakes, you've got admit you

made a mistake. If you try to cover up or kind of downplayed mistake, everybody will see

it, it's super obvious. It affects your effectiveness, no question about that.

– Partner Dev Manager, IT

Informants felt that being honest was the most important aspect of ‘trust’. This attribute

was about great software engineers being truthful—not sugarcoating or spinning the situation to

their own benefit—and providing credible information on which others can act.

Informants disdainfully viewed software engineers who presented distorted versions of

the situation to suit their own benefit. Informants needed to trust the information that the

software engineer provided in order to take appropriate action:

Influence comes to someone else trusting you, part of that trust is that they go, ‘You know

what? I know that this person always speaks the truth.’ As a result of that, when they say

something is good, I will totally believe them because they are not trying to kind of

misrepresent something or make them look better or whatever.

– Principal Dev Manager, Web Applications

Our informants did not appreciate wasting time shifting the blame for problems. Many

informants discussed software engineers spending significant time avoiding responsibility for

mistakes; in contrast, great software engineers accepted responsibility and focused their attention

and efforts on addressing the problem:

Rather than thinking about how to actually fix the problem at hand, [other engineers

were] more like ‘How do I make sure that nobody will come back and think that maybe

that happened because of something that I might have done?’ [This great software

engineer] has a way of kind of saying: It doesn't matter…What matters is right now. How

do we actually work through it?

– Senior SDE, Windows

Additionally, software engineers need to ‘speak the awful truth’ in order to help the team

forestall problems. Our informants felt that great software engineers need to be honest when they

saw problems, even if the bad news might not be welcomed:

…you really want to have [great software engineers] have a lot more input. If someone

disagrees with the tradeoffs that we’re making, have a voice... They really do participate

and give their opinion.

– Principal Dev Manager, Web Applications

Honesty is the attribute most closely related to trust; many informants felt strongly that

they would leave teams (or have left teams) that lacked honesty. Many informants discussed

frustrating situations where they were unable to make engineering progress because they could

not trust the information that was provided by team members. Furthermore, there was also a lack

of respect for leaders who tolerated (or were incapable of discerning) dishonesty.

3.3.3.5 Manages expectations

It’s really about making sure that your leads, your managers … setting expectations, they

know what you’re going to do, you do it...

– SDE2, Enterprise

This was the second attribute that contributed to ‘trust’. Informants described great software

engineers as managing expectations: setting forth what they are going to do and by when,

updating expectations (e.g. explaining the implications of unexpected problems), and then

delivering on promises. Great software engineers made sure that stakeholders—usually their

managers, but also other teams and their teammates—knew what they intended do and by when.

Managing expectations is related to the self-reflecting attribute (Section 3.3.1.4); great software

engineers self-initiated corrective action when necessary, and then proactively notified others of

changes and made them aware of the consequences:

[Great software engineers] take ownership of the project, whatever it is, and they state

their deadlines properly. I think accountability is another aspect, like a good software

developer is usually very accountable. If you slip on deadlines more than once, or that

kind of stuff, I think your credibility is hurt and I think that's a big detriment to software

engineers.

– SDE2, Web Applications

For our informants, the most important reason for managing expectations was that it

enabled others to set and adjust their plans accordingly. This was especially important for teams

with many interconnected components or external dependencies, since delays or changes could

have significant impact on the plans of others. Our informants’ sentiments about this attribute

reflect findings in the paper by Poile et al. (Poile, Begel, Nagappan, & Layman, 2009):

coordination—especially involving changes in plans—was both critical and difficult for large-

scale software engineering efforts at Microsoft. Our informants, many of whom were in

leadership positions, appreciated software engineers who proactively made them aware of

changes in expectations:

Some people have that awareness and a lot of people don't… this is the one that you

should be done by and if we're not going to be there, what are we going to do to correct

that… That'll be more about telling the managers, this is what we need to do rather than

the managers saying to the individual contributor, this is what needs to happen.

– Principal Dev Lead, Enterprise

A rarely discussed but interesting aspect of managing expectations is maintaining

direction during times of uncertainty. One informant described a great software engineer setting

expectations and establishing ‘north stars’ during times of organizational flux. This kind of

expectation management helped the team to maintain its focus and direction to deliver their

software product:

You have to give a really clear vision of goals that what you are going to achieve, by

merging projects, software or the teams… In either case, I think it's very, very important

to be very clear about what is the role, by merging those projects with technology… Then

those leaders must be able to communicate all the way up and all the way down,

technically if necessary, and be able to complete a clean architectural view of what the

future of the merging teams going to be.

– Principal SDE, IT

3.3.3.6 Has a good reputation

Well it was because of a combination of things, but one of it is because I trusted, I've seen

his previous work, I knew about it, I've seen him probably make other recommendations

that turned out to have good outcomes… And I think that is exactly what I tell some of my

other senior people. You have to build up that reputation and that trust through your

years or whatever, how long worth of good deeds essentially, so that when you make that

recommendation, they go, I am going to listen to him

– Principal Dev Manager, Web Applications

Many informants felt that having a good reputation also contributed to ‘trust’. This attribute was

about great software engineers having the respect and confidence of others. Informants felt that

great software engineers needed those around them to trust and believe in them. Great software

engineers that had a track record of success were entrusted to make current and future decisions.

Beyond organizational imperatives, a track record of success was often seen as a “difference

maker” in engagements with others; software engineers that had good reputations were treated

favorably by others:

It wasn't like [this great software engineer] was just some guy walking off the street

throwing off this confidence because that could just be ignorance, but it was...he had

done, he wrote the whole...for this product was this thing… And so again, I knew he

had that track record and history of doing some pretty impressive things by himself…

– Principal Dev Manager, Web Applications

Informants felt that the upshot of having a good reputation was that the team made better

decisions. When other engineers sought out and heeded the advice of the great software

engineers, the whole team benefitted from the expertise of that great software engineer.

Some informants had mixed feelings about having a good reputation, because they

believed that it was often due to chance and somewhat beyond one’s control. The informants felt

that most engineers were competent but often lacked the opportunity to demonstrate their

competence:

I think just the realization that it's not an ideal world... Are you visible to the right

people? Are you at the right place at the right time? Are you getting the right

opportunities?... There might be two people who have the same and equal talent. But if

one person is at the right place at the right time happens to get that opportunity and

another doesn't, tough luck. Life is not always fair.

– Senior Dev Manager, Windows

3.3.3.7 Walks the walk

In our interviews, we discerned four attributes contributing to the concept of ‘positively

influencing others’: walks the walk, mentoring, challenging other to improve, and creates a safe

haven. Commonly associated with great software in leadership positions, the underlying

sentiment for these attributes was that great software engineers helped others to improve.

I would like to model myself against that behavior [of a great software engineer]. Like it

inspires me to do the same thing.

– Senior Dev Lead, Web Applications

Informants felt that walking the walk was one way that great software engineers

positively influence others. This attribute was about being an exemplar for others—being a great

software engineer—letting others see their actions and inspiring other to follow. Informants

discussed this attribute as passive; great software engineers did not explicitly try to walk the

walk:

But [this great software engineer] was so highly competent and so thoughtful and

thorough and basically excellent at everything that he did that he just attracted people to

him and he attracted people through his work.

– Principal Dev Manager, Web Applications

While the primary benefit discussed by our informants was improving the capabilities of

the team by inspiring teammates to improve, some informants also saw walking the walk as

requisite for engineers in leadership positions. Great software engineers were expected practice

what they preach and led their team with their own actions:

Then I think one weekend [this great software engineer, who was a manager of other

engineers] just sat down and was like, "I'll figure it out"... He actually did figure out

some things. He did not figure out everything but some of these things is also about

leadership by example… you are part of it, and that also pulls the team forward.

– Senior Dev Lead, Web Applications

Many informants felt that passively walking the walk was insufficient; great software

engineers also needed to actively pass on their knowledge and ability to others. This commonly

involved mentoring and challenging others to improve:

…how a great software engineer should make other people better around them … there’s

different levels to that. There’s the level of you’re just so great at what you do that

people can watch and learn from you, but you don’t take the time to really help. You are

a leader by example instead of actually really going out and doing the teaching and

mentoring…I think it’s even better… if you actually like teaching, and mentoring, leading

that you spend the time to truly coach and mentor folks. I do believe that to really call

yourself a master in a subject or discipline or whatever it is you’re working with, it’s

another level to be able to teach it to someone…

– Senior Dev Lead, Windows

3.3.3.8 Mentoring

A mentor is, he’s somebody that’s got more experience, and he’s seen stuff that you

haven’t seen yet, and he’s willing to share his knowledge. The kind of people that horde

their own knowledge; I have no time for that. It’s great that they have the knowledge and

they can be successful, but we’re a company, we’re trying to survive, let’s spread some of

that good knowledge around.

– Senior SDE, Applications

Informants felt that mentoring was a common way that great software engineers actively

positively influence others. This attribute was about great software engineers teaching, guiding,

and instilling knowledge into others, helping others—often new team members—improve and to

be more productive. Informants often drew on their own experiences to describe great software

engineers that helped them when they first joined the team:

Being helpful as a developer… You are willing to sit down with them and kind of show

them how it works, maybe get them started in the code a little bit and kind of send them

off on the right path.

– Senior SDE, IT

While mentoring was commonly discussed in the context of helping to integrate new

team members, several informants also discussed great software engineers mentoring others as

replacements so that the great software engineer could move to new teams/projects. The implied

understanding was that, if their software was important/critical, then the software engineer may

not be allowed to take on other challenges without a replacement. This concept was similar to the

‘hand it off to a competent successor’ theme discussed in The Cathedral and the Bazaar

(Raymond, 2001). Our informants felt that, as the great software engineers grew in their career,

they had succession plans in place and groomed another to take over:

Yeah. I think sharing/mentoring is very important… He took the time to teach as well as

manage, and he influenced many people, more than me, because of that. There was an

interesting aside from him though. I think that in return, he had an expectation of

loyalty... You were going to see the project through. You weren't going to immediately

hop on the next most interesting thing that came around. It took some investment on your

… if he was going to invest in you, he expected you to invest in the project as well.

– Partner Dev Lead, Windows

3.3.3.9 Challenges other to improve

...the way he communicates implies that he believes that you can do it. There's this

shared confidence so it's like he's done it and so you can do it…. passion lead

organizations, like this guy starts, he has to be able to spark your imagination and your

sense of self confidence for you to boot strap yourself up to being a productive developer.

– SDE2, Windows

Another way that great software engineers positively influenced others was by challenging them

to improve. This attribute was about great software engineers challenging others to take actions

to expand their limits and capabilities, such as doing something new or taking on more

responsibilities. The great software engineer usually knew that the goal was achievable, having

achieved similar objectives themselves, and pushed others to grow professionally:

I had never done anything quite like that. But, he was like oh yeah, we can do that, it's no

problem. I ended up writing it. He didn't write it, but it was his confidence and his ability

to know that we will walk into that problem and we will get it done somehow that really

inspired me.

– Principal Dev Manager, Web Applications

The sentiment among informants was that great software engineers enjoyed being

challenged. Many (as indicated in the quotations above) recounted growing in their capabilities

and self-efficacy as a result of completing challenges. Likely necessitating the great software

engineer to create a safe haven (discussed in the next section), informants felt that challenging

others to improve was an effective way of improving the team:

Good developers want to work on teams with great developers and so having a great

developer in your team is something that is important and that more junior developers

look for and desire in a group and so they have to kind of play this role of being a

positive influence to other developers. Other forms of leadership are introduction of

ideas, development changes, tools change, practices change. Leaders are trying to help

lead change. Trying to help make the team better, trying to help socialize and introduce

new ideas, new tools, new techniques, new ways of thinking.

– Principal Dev Manager, Enterprise

3.3.3.10 Creates a safe haven for others

I think failing is good. If you learn something from a failure, that’s a wonderful sort of

thing.…. [but] If you’re afraid of getting smacked upside the head because you made a

failure, you’re taking a small risk there, but most good managers don’t behave that way,

right. They encourage the people to experiment, possibly succeed, possibly fail.

– Senior SDE, Applications

Several informants described great software engineers as creating a safe haven for others, so that

other software engineers—commonly subordinates or junior software engineers—were not afraid

of making mistakes; this empowered young software engineers to do what they felt was right and

learn from their actions. Informants felt that, if software engineers were afraid of mistakes, then

their development would be stunted:

Chasing after a career path or something… you will deliver your best performance if you

are not insecure… One of the challenges as a manager people face these days is

retaining talent because there is so much attrition all over.

– Senior Dev Lead, Web Applications

Many informants saw the absence of this attribute as a major contributing factor for

dysfunctional teams and talent loss. They believed that the fear of being punished for mistakes

often caused software engineers to lie, causing problems for the entire team because their

information could no longer be trusted (honest, Section 3.3.3.4). Our informants felt that

software engineers did not want to work in environments where they felt insecure, and often

avoided those teams/organizations:

If you make one mistake or don’t know something and you’re sort of dinged by that… and

you’re only judged if you say everything’s perfect even if it isn’t… Then you start to have

this really kind of I think dysfunctional environment set up where everybody just doesn’t

say the truth.

– Principal Dev Manager, Web Applications

Though informants felt that having a safe haven was important, many expressed the need

to balance a safe environment with feeling the pain of mistakes. Their reasoning was that the

pain from mistakes was the best teacher. If an engineer was hurt by a wrong decision, then the

engineer quickly learned to avoid it in the future; informants felt that completely removing this

educational mechanism was undesirable:

I believe in having people feel the pain of their own mistakes… dealing with the

ramifications of the decisions that are being made, I guess is the best way to learn.

– Principal Dev Lead, Applications

3.3.3.11 Asks for help

Yeah. Ask for help immediately. I do that mistake. I don't ask for help sometimes

because I'm just so focused on debugging or like learning some concepts and don't you

forget about the big picture. Someone has to come back and come and pull me out of

this. I'm like "Oh, OK, we went way too far. Just come up." If you don't ask for help,

you don't know what's going on outside… it's super easy to get lost in a company like

Microsoft.

– Senior SDE, Web Applications

Informants felt that great software engineers were willing to ask for help: willing to find and

engage others with needed knowledge and information. Great software engineers know the limits

of their knowledge and actively seek to supplement their own knowledge with the knowledge of

others.

Informants felt that asking for help was important in three ways. First, informants felt that

the willingness to ask for help led to greater productivity and faster learning. Great software

engineers recognized when asking others for help allowed them to acquire the necessary

information significantly faster than they could by themselves:

Without asking for help, you cannot navigate all the way to the bottom. If you become

Nancy Drew and start looking for clues every single layer, sure you will reach there, but

it's not fruitful if you reach there four days from now…

– Senior SDE, Web Applications

Second, informants believed that asking for help was often necessary for software

engineers to correctly leverage components produced by other teams. This was especially

important within Microsoft because many teams used ‘internal APIs’ or ‘internal tools’ produced

by internal partner teams that were not well documented or needed to be used in specific ways.

Informants felt that, to accurately understand the detailed behaviors of other components, great

software engineers sought out the owners of those components for help:

[This great software engineer will] take the time to go talk to all the other vested parties

and get their take on something, and get their feedback on why something would or

would not work. He does his homework and anything that he doesn't know he either goes

and learns it, or he goes and finds a person that does know. He doesn't try to know it all

himself.

– Principal SDE, Windows

Seeking information from other software engineers is a common activity reported in studies that

examine everyday activities of software engineers (Ko et al., 2007). Software engineers

commonly consult and confer with their colleagues before deciding if/how to change code.

Finally, in the context of great software engineers in leadership positions, some

informants felt that these engineers knew when to ask other engineers—typically experts—for

help in order to ensure that an area received sufficient technical oversight. This was typically

about great software engineers knowing that young/new software engineers needed oversight for

tasks, while recognizing that they—the great software engineers—did not have the available time

to help. Great software engineers asked other experienced engineers to provide the needed

guidance, ensuring the success of the project:

For me, as a dev manager, if someone's having a problem, I'm not sure that they're

struggling with a task, I grab a senior or a principle developer and say, “Hey, I need

someone to help work with this person to get them through the task.”

– Principal Dev Manager, Enterprise

3.3.3.12 Does due diligence beforehand

I don't respect people who don't do their homework... they don't read the MSDN article,

they don't download the SDK, they don't read the help files, they don't read the sample

code... they just shoot off an email to the distribution list…

–Senior SDE, Windows

Informants agreed that great software engineers did due diligence beforehand: searching

for and examining available information before engaging. Informants felt that great software

engineers are prepared when they discuss situations or ask for help, not wasting other people’s

time.

Informants discussed two main reasons why software engineers need this attribute. First,

our informants felt strongly that great software engineers did not waste other people’s time.

Related to the asking for help attribute (discussed in the previous section), informants expected

great software engineers to do some preliminary investigations prior to engaging with others.

This typically involved identifying the right people and formulating thoughtful questions.

Furthermore, software engineers were expected to provide justification for seeking help from

other engineer and evidence of preliminary investigations. Informants felt that this was common

courtesy when asking other to for their time:

Yes, it's just about [software engineers] coming to me… So if an ops person walked into

my office ... There's just this intuitive set of things they would have to know to convince

me that they know the whole ops thing.

–SDE2, Windows

Informants felt that great software engineers need to be credible when engaging with

others. By doing their homework ahead of time to ensure that concerns and questions of others

are addressed, great software engineers were positioned to get the desired responses from others:

Basically he has an idea, to improve the search quality and he needs to sell his idea to

the managers and he does a lot of homework to prepare all the data and he presents to

the managers and he finally, the project get approved.

– Senior Dev Lead, Web Applications

In addition to seeking information from others (discussed in the previous section), Ko et

al. also reported software engineers seeking some information by themselves (Ko et al., 2007). It

appears from our findings, that there sometimes was a dependent relationship between seeking

information by oneself and seeking information from others. Great software engineers might

usually first seek out information by themselves, prior to seeking information from others.

3.3.3.13 Does not make it personal

You can have a very open and heated discussion... But it is all very professional; none of

this is ever taken personally. So you can have a very good discussion. When you ask all

of us being human beings, we have our moments when we are very enamored with an

idea, and want to see that it sort of carries the day, but you have a very good strong

debate of it and then you come to the right conclusion. There's no hard feelings, it never

gets personal; oh, this is your idea, and it's good or it's bad. It's all very professional.

– Principal Dev Lead, Enterprise

Several informants mentioned that great software engineers did not make it personal: acted and

reacted based on fact and reason, avoiding personal biases and perceived slights. Informants

commonly discussed this attribute in the context of reacting to others. Great software engineers

neither took personal offense to communications nor reacted disproportionally to affronts,

avoiding unreasonable behaviors:

I think that it is not effective to try to give it right back to them. Trying to one up them

often does more harm than good… Your ability to listen to others and to give useful

feedback in a way that’s respectful, it matters in our ability to ship the product on time

with high quality.

– Principal Dev Lead, Enterprise

Benefits of this attribute were commonly discussed negatively; informants discussed toxic

situations when software engineers made it personal. Some other informants discuss unpleasant

work environments where software engineers took personal umbrage to feedback and discussion;

the situation would typically escalate to shouting matches, causing others on the team to feel

uncomfortable:

They think these people are after them, to show them that they're bad or stupid or not a

good engineer and it's not that way at all…you get one person trying to help, another

person saying “You're not helping me, you're making fun of me.” Then, it gets elevated

and gets ugly and production goes bad and if something like that gets so verbal or loud

that it causes a mix in the entire group not just between these two people, it's not a good

thing.

- Senior Dev Lead, Gaming

Some other informants discussed poor performing teams: some software engineers were

making decisions and actions that were meant to discredit adversaries, rather than for the good of

the project:

You try to discredit and discard his input just to prove your point. One program manager

told me that “Whatever is great for Microsoft is not necessarily great for your career and

whatever is good for your career is not necessarily good for Microsoft.”

–Principal Dev Lead, Devices

3.3.3.14 Resists external pressure for the good of the product

[This great software engineer] will say no, if he has to. If what they're asking him to do

jeopardizes something else, he'll say no. He can stand up and be brave about it.

– Principle SDE, Windows

Informants described great software engineers, when necessary, resisting external pressure for

the good of the product: articulating and advocating actions to ultimately benefit the product.

Informants felt that software engineers were frequently pressured, by external partners, by

internal partners, by management, and by team members, to take action that may not be good for

the software product (e.g. add features, change behaviors, go faster, won’t fix bugs, etc.). Great

software engineers were willing to take a stand—backed by sound reasoning—whenever those

demands jeopardized the long-term success of the software product. Though this may lead to

unpleasant situations including escalations, slipping schedules, and negative reviews; great

software engineers would stand up for what they felt was right:

I think one attribute which is not always seen is like to always do the right thing. At one

time you may be forced to make a decision which you feel is not right or you think is not

right and just trying to stand up for that decision and be able to articulate or to try to

explain to people what they may change is also I think would play a big factor.

– Principal Dev Lead, Devices

Interestingly, not all pressure originated from partner teams and management; many

informants discussed pressure from teammates. Multiple informants discussed great software

engineers demanding sound technical solutions or extra quality assurance processes, despite

higher costs and tighter schedules for the team. Great software engineers sometimes advocated

actions that, though painful in the short term, would be better for the product in the long run:

[This great software engineer] was very insistent that we have provable security... He

wasn't satisfied until we had that proof because he didn't want to replace something that

had been cracked by another system which wasn't theoretically secure. It took an

enormous amount of work. It took about two years to generate the proof and we actually

found some vulnerabilities, fixed them… The system has never been cracked.

– Software Architect, Applications

Interestingly, even though the benefit of this attribute was seemingly obvious—the good

of the software product—some informants felt that the attribute and the derived benefit was an

oxymoron. The informants felt that great software engineers produced software products that

aligned with the goals/objectives of their organization, as discussed in Section 3.3.1.16.

Therefore, resisting the desires/wishes of the organization could not be good for the software

product.

3.3.3.15 Creates shared success for everyone

[Great software engineers] having the skill to be able to find the common good in a

solution, be able to say, “I’m pushing for a solution but here’s the value for me,” and

also express here’s the value for you. Even though you’re still accomplishing the goals

you want. They’re feeling like they’re winning. It’s a win-win situation.

– Senior Dev Lead, Windows

Many informants said great software engineers created shared success for everyone: win-win

situations that are beneficial to everyone. This often involved great software engineers

establishing common big picture or long-term goals that everyone can support. Informants felt

that people and teams involved in software engineering efforts commonly had different personal

motivations and organizational objectives; great software engineers could effectively align

everyone toward shared goals:

No matter how good is our code, if our partner [sic] cannot give it a good product for us

then we cannot share our greatness to the whole world. A lot of time I see our support to

our client is not very well [sic]… we should have a good result combined together.

– Senior SDE, Devices

Informants commonly discussed creating shared success in three scenarios. First, great

software engineers often needed actions by partner teams to deliver the final product. For some

teams like Windows and Windows Phone, this involved working with external partners (e.g.

equipment manufacturers like Dell and HTC) to deliver a complete product; for other teams, like

Office, creating shared success involved working across feature teams on interdependent features

and functionalities. Great software engineers needed to establish shared objectives among the

stakeholders for optimal outcomes:

Like integrating works from different teams, and being able to like stop and understand

how these two systems interact with each other… many times it's very easy for the

platform or app dev, when there's a problem, you say, "Oh, you should fix it, go to it."

Really if you step back and think of whose responsibility like who's that person in terms

of that code. I'm being able to say, "Yeah, you're right. This should be done by [our

component], the platform, not by the app.

– SDE2, Applications

Second, great software engineers—frequently in leadership positions—needed to put

other software engineers in positions to succeed. This generally involved assigning them projects

that matched their interests and providing them the appropriate training and guidance:

That's individual attention from a manager to an individual contributor, especially

initially that helps them get better and learn some of these things that they need to do,

and that allows them to be more adventurous and figure out a number of these things

themselves.

– Principal Dev Lead, Enterprise

Third, great software engineers needed to proactively manage up to ensure that their

leaders made good decisions and that their own actions best contributed to the success of the

team. Great software engineers commonly had better understanding of the ‘ground truth’; the

leadership often had better awareness of the higher level considerations. Therefore, for the team

to be successful, great software engineers needed to proactively create shared success with their

leaders:

 It's a two-way communication… there's something going to happen down the road, this

piece of code or this feature going to have some issues, need to make your manager

aware.

– SDE2, Devices

As discussed in Perlow’s work The Time Famine (Perlow, 1999), a time famine is when

crises arise in teams due to a lack of shared understanding about status and objectives. This

attribute likely helped to avoid dysfunctional ‘time famine’ situations by establishing common

objectives and priorities, software engineers were less-prone to spend their time on nonessential

tasks:

… try to understand what other people need from you…You are really willing to make

compromises sometimes, sacrifices to really collaborate with other people to succeed as

a team.

– SDE2, Enterprise

3.3.3.16 Well-mannered

I think [this great software engineer] is also smart but not cocky. He’s not arrogant.

He’s very down-to-earth... you know he’s the one who knows all the information. He

doesn’t show it that way. He never come across that way. And the way he sort of

communicates ideas and maybe proposals. People would just show respect like, “Oh

wow! That is a great idea!” But then, he would never, you know, kind of like drive the

conversation in a way that makes the other people seem like, “Oh, I feel so stupid.” Or,

like, “I feel so belittled in the presence of you because the way you portray that pride or

maybe arrogance, sometimes.”

– Senior SDE, Web Applications

Many informants described great software engineers as well-mannered: treats others with

respect, not obnoxious about title, accolades, or knowledge. Informant sentiments about this

attribute were rarely about specific actions, rather they were characterized an overall feeling.

Informants felt that great software engineers made others feel respected—their ideas, opinions,

and actions mattered. Well-mannered was the best known and easily identified attribute among

our informants; even software engineers who did not discuss this attribute immediately

recognized well-mannered when we asked them about this attribute. Though, in interviews, this

attribute was discussed using the less polite but more common terminology of ‘not being an ass-

hole’. The ease of recognition among informants indicated that they perceived that many

engineers may lack this attribute:

Even though I was the most talented, I was also the last person that people wanted to go

to for assistance, because being not humble could alienate them… Even though I had the

talent, people did not want to use me as a leader because of the not being humble...

Humble is a way of making a person accessible, and creating a favorable experience

when people are interacting with your expertise.

–Principal Dev Manager, Enterprise

The consensus among informants was that no one wanted to work with ‘assholes’. This

attribute is closely related to the concept of ‘psychological safety’—mutual respect and trust

among team members— and contributes to effective teams in many industries (Edmondson,

1999). However, in our study, many informants indicated that if the software engineers were

truly gifted, they would probably still acknowledge ‘assholes’ as great. This sentiment seemed

counter-intuitive since greatness was a peer bestowed designation and promotion/review

processes at Microsoft involved feedback from peers/partners; it was difficult to envision how an

‘asshole’ could be recognized as a great software engineer. One possible explanation might be

that the community of software engineers does not value EQ; literature indicates that maverick

geniuses may be revered, like Dave Cutler at Microsoft (Zachary, 1994):

… unless you’re extremely productive and extremely gifted, you generally can’t do too

well at a company like Microsoft if you’re a real asshole. There are people like that, I

know that are partner level, they got that from pure talent… you take your super geeks

and the ones that are doing extremely well in computer science, they usually are

somewhat lacking in social skills.

– Principal Development Manager, Applications

Another contributing factor might be that software engineers were more results- and facts-

oriented, as insinuated in the does not make it personal attribute discussed in Section 3.3.3.13,

such that software engineers that produced the best results—even ‘assholes’—were

acknowledged. Finally, the scarcity of great software engineers, requiring employers to trade off

technical ability for other qualifications.

…it’s okay to be an asshole if you’re really, really good… it is somewhat true in the

profession. Maybe there’s a shortage of software engineers so management tolerate

assholes, but that’s definitely not the way to go…

– Senior SDE, Windows

3.3.3.17 Personable

I look for in every person that I get, coder or not, but definitely if it was a coder is: can I

have a beer with this guy?... That’s important, because if I can’t then we can’t really

work together because there’s going to be some point where … they’re very, very

stubborn and you know that you can only put them on one thing and that’s it.

– SDE2, Enterprise

Informants described great software engineers as personable: people with whom others enjoy

interacting. This attribute is a step beyond well-mannered (discussed in the previous section)

and commonly entailed social settings. Informants implied that a certain level of personal

relationship and understanding was needed for successful collaborations:

[Great software engineers] have to be clear, you have to be respected, you have to get to

know people. I think a lot of the personal relations that you can develop you spend a lot

of time doing that. That's really helped me and I see that in other good managers that

they're very personal. They connect to people well.

– Principal Dev Lead, Devices

The underlying sentiment was that social engagement helped software engineers to better

understand the context of fellow software engineers. This understanding likely helped

interpretations of communications and facilitated collaborations. Informants felt that teams in

which coworkers enjoyed each other’s company were more likely to be successful:

…a hobby or just be a people skill or just be networking with people or build a good

relationship with friends, whichever. They all help.

– Senior SDE, Web Applications

3.3.3.18 Trades favors

It’s [the great software engineer] returning a favor here and there… I’ve seen that

through a number of cases where someone goes above and beyond to help somebody else

out and then somewhere down the road that person has that extra good will to come help

you out at some point.

– Senior Dev Lead, Windows

Several informants described great software engineer trading favors, building personal equity

with others; the great software engineer can call upon others for personal favors in order to

accomplish goals. The informants felt that by leveraging help of others with whom they had

personal relationships, great software engineers with this attribute were able to solve problems

that other software engineers could not.

The need to trade favors might be especially important within Microsoft due to the large

number of teams and the interdependent nature of the software products. Software engineers

commonly needed assistance from other engineers (or teams) that had no organizational

obligation to cooperate. Therefore, the ability of great software engineers to get another software

engineer (or engineering team) to take action might have been critical to achieve successful

outcomes:

You can’t just sit in your office and code, you need to get out and network. It really

facilitates collaborations. When you need something, they will get it done for you.

Otherwise, they’ll just put you off.

– SDE2, Enterprise

Informants also felt that the back-and-forth between teams promoted better collaboration.

By doing favors for another team and having them reciprocate helped both teams to work better

together:

We talk about trade favor… We're one team, and the core team sometime they help us to

do some things, and we help them to do some other things… We help them to make their

code better…we help them connect between the customer and the core team.

– SDE2, Devices

There was also a latent sentiment among informants that official organizational

processes/policies can be circumnavigated by trading favors. While it was not clear what kinds

of policies or decisions can be subverted, several informants hinted that to get things done

despite managerial opposition at Microsoft sometimes required calling in favors:

When my management reached out to his management, they said no, you can’t borrow

him because we need him right now. So, I said wait a minute, and I went up the chain;

ah-huh, this guy owns me a favor. So, I sent him a really nice email, and he said sure you

can have him for a couple of days, and he solved our problem. We were in a real sticky

position, and that worked out really rather nicely.

– Senior SDE, Applications

3.3.4 Engineering the Software Product

The style… always, an idea, and it was all clean… very concise. Just looking at it, you

can say, "Okay, this guy, he knew what he was doing."… There's no extra stuff.

Everything is minimally necessary and sufficient as it should be. It's well thought out off

screen.

– Senior SDE, Windows

Informants discussed 9 attributes that we felt pertained to the software that great software

engineers produced. Like artists appreciating masterpieces of other artists, our informants, many

of whom were great software engineers themselves, saw beauty in the software produced by

other great software engineers.

3.3.4.1 Pays attention to coding details

But when we talk about the quality of the code, performance, space, and how many bugs

it has – how robust it is – and how it handles exceptions [code of great software

engineers] will have great differences…For example, when I used to make games back in

China, I worked on a board partitioning program that… took about 3 hours. Then my

CTO took the program to optimize. When he was finished with it, the program took 10

minutes to run. That’s the amount of difference it can be between people…

– SDE2, Enterprise

Many informants felt that a great software engineer paid attention to coding details: including

error handling, memory consumption, performance, security, and style. Taken as a whole and

considering the tone in which informants discussed this attribute—negatively when software

engineers neglected to take into account something obvious leading to problems—we saw this

attribute as about great software engineers not writing shoddy code. Informants felt that most

software engineers—if they put in thought and effort—should be able to write ‘good’ code. The

underlying sentiment was that ‘greatness’ was a peer-bestowed recognition and that software

engineers did not respect other engineers that could not get the basics right:

You’ve got to do the best in whatever you do … you want to try your best, not just get it

done, not just finish it, try your best, that’s what differentiator between great software

engineer and average software engineers… whether it’s adaptable, maintainable,

scalable all these tricks, performance, security all these. Some are tangible some are less

tangible and tractable. Like what is maintainable, you need time to figure it out.

 –Principal Dev Manager, Web Applications

Informants also felt that software engineers that paid attention to coding details produced

quality software with fewer issues. Great software engineers avoided obvious problems and

accounted for likely issues:

Attention to detail, it almost sounds cliché, but I view this much deeper than cliché in the

software world. I've seen lots of software where yes it works in this scenario, but what if

you introduce this thing here. Will it still work? No, we didn't really think about that…

make sure that it can either handle everything that gets thrown at it or it properly

recovers or reports or does something useful other than just ignore it… the good

engineer will produce maybe quite similar code but will take and have handled a lot of

the details and made sure that it's structured in a way that's for the future and considered

a whole lot more than just getting the job done for that.

– SDE2, IT

A common extension of discussions of this attribute involved having code in place to localize

and debug issues in case unexpected failures occurred. Informants felt that when unexpected

issues arose, the code written by great software engineers handled problems gracefully, typically

involving having support in place to easily diagnose the problem:

Graceful failure handling is crucial at that point because it's always really hard to go

back after the fact, it's a natural human tendency to want to write the feature first and get

results and then go back and bolt on all the things you need to actually kind of make it

useable in the long term. I don't think that's a good way to approach things… designing

how to handle these things so that you build them in as you write your code will make

your life infinitely easier.

– Principle SDE, Windows

3.3.4.2 Fits together with other pieces around it

Because [great software engineers] understand better, interactions around you or

around your code. How your code is supposed to work. Why your code should do one

thing as opposed to another thing? When you’re off implementing or fixing bugs, you

realize if I tweaked this here I’m not going to break something else in some other part

that I didn’t really know about… people continue to be able to look at the entire

package…

– Senior Dev Lead, Gaming

Informants felt that great software engineers produced software that fit together with other pieces

around it, such as environmental constraints, complementary components, and other products.

Beyond integration with surrounding components and meeting their own requirements,

informants often discussed this attribute at inter-organizational levels. Software built by great

software engineers fit with software and hardware products built by other (internal and external)

organizations.

This attribute might have been especially important at Microsoft where many software

products were tightly integrated as platforms (e.g. Windows, .NET) or as interconnected

offerings (e.g. SQL DB and Dynamics); furthermore, some products were consumer electronics

with physical constraints (e.g. XBox, Windows Phone). Great software engineers made

appropriate design choices based on the boarder context, assuring that their software worked well

in real-world environments with other software and underlying hardware components:

If they're making a car part for a car, they'll say, "These are the operating

requirements…”… If you have an environment where memory's stringent, it's not very

appropriate to use this piece of coding. That would be something that's well documented

and well understood from a code.

– Senior SDE, Windows

Furthermore, great software engineers ensured that their technology choices and product

decisions aligned with what other partner teams were choosing and the overall direction of the

organization. Their software products enhanced and built on other efforts within the

organization, making the whole better:

…recognizing all of the pitfalls around it. It’s not so hard to come up with an idea that’s

very forward thinking but absolutely doesn’t fit anything. It doesn’t fit the current

dynamics of … at least, if you were to use Microsoft as an example, it doesn’t fit with

anything Microsoft’s doing. … whatever you’re doing has to be able to fit within the

dynamics of whatever environment you’re in… Whatever we come up with, whether it’s

great or not great, has to fit within that environment.

– Principal SDE Lead, Windows

3.3.4.3 Makes informed tradeoffs

[Great software engineers are] quick on pros and cons, I think. Being able to say, these

are the tradeoffs. Almost no solution is perfect, but if you can list three and say here are

the tradeoffs, and I’m explicitly choosing to give up on a few things in order to gain other

things so you go with the solution, that’s good problem solving. Relatively fast. Quick

thinking in these situations because you run into it so frequently.

– Senior Dev Lead, Web Applications

Many informants described great software engineers making informed tradeoffs with their

software (e.g. code quality for time to market), meeting critical needs of the situation.

Overwhelmingly, informants felt that few software engineering decisions were black and white;

informants could envision or had experienced situations where a desirable attribute—elegant

(Section 3.3.4.5) or anticipates needs (Section 3.3.4.8)—was traded for more important

objectives. Great software engineers understood the situation and made effective, and sometimes

difficult, tradeoffs to meet critical needs.

The most frequently discussed tradeoff was optimizing for deadlines, which was critical

in many situations, such as securing continued funding for project, be first to market, fixing a

critical customer problem, etc. Informants expressed willingness or having personally traded

almost anything for time:

I think with a company like Microsoft versus a startup, with a company like Microsoft

you've got the luxury of doing things the right way. Whereas with a startup it's the fast

way. We do take time here to do design reviews and peer reviews and unit tests. They're

the first things to go when you've got next Tuesday it's got to be working and it's got to be

out there on the web. You don't spend all your time doing nice design documents and

having a big peer review and then going back and iterating on that a couple of times to

get it exactly right. You don't have the luxury.

– Principal SDE, Gaming

Some informants also discussed great software engineers considering the longevity of the

software product. Informants often contrasted long-living software (e.g. Windows) with evolving

online services, which are frequently updated and rewritten; they felt that software engineers

took the lifespan of the software into consideration, enabling some attributes—especially

anticipates needs (Section 3.3.4.8)—to be traded:

Part of answering this question requires knowing what is the longevity, what is the

lifetime of the software to be developed. If you’re talking about developing a system, like

where we work, any system we develop lives on forever, for a long time. Relatively

speaking then, there's a maintenance cost, there's a scalability cost, there's a future

proofing cost.

– SDE2, Enterprise

3.3.4.4 Evolving

I really want to put ideally something out, very small changes, in front of users every

couple of weeks… Starting from there, can we actually break that down into what are the

individual components that would take… Just being able to have a very clean step-wise

process moving forward… What are the immediate steps to that, how can we break this

down so that we have really concrete deliverables on an ongoing basis?

–Senior Dev Lead, Web Applications

Some informants felt great software engineers produced software designs that were evolving:

structured to be effectively built, delivered, and updated in pieces. This closely resembled the

‘evolvability’ software attribute (Myers, 2003).

Informants agreed on two common situations where the software design needed to be

‘evolvable’. First, even great software engineers may not be able to predict user reactions to new

software/features; therefore, great software engineers needed to be able to iteratively learn and

adapt their software according to customer reactions. Second, many Microsoft product were very

large, necessitating the ability to replace or update parts of the system while the entire software

system continued to function. This second need was commonly compounded by tight schedules;

therefore, great software engineers needed to be able to structure their software for effective

incremental changes.

It's kind of like evolution. You start with a strong component with a good idea and slowly

you move forward. Slowly adjust the system or the requirements are coming, more like a

market or industry is changing. You adapt.

 – Senior SDE, Windows,

Informants felt that evolving software designs limited risks associated with wrong design

decisions and provided agility to meet changing demands. Informants felt that the designs

enabled great software engineers to quickly adjust or reverse directions when decisions resulted

in negative reactions from users, thus limiting the impact of problems.

It's a constant improvement and constant evolution of what you're doing by learning how

your product is functioning and how it's being used. You then are able to get feedback

and put it back into the product.

– Principal Dev Lead, Web Applications

Delivering updates/changes incrementally enabled great software engineers to reevaluate and

adjust investments frequently, adapting to emerging needs of the users or market conditions:

I always believe in iterating quickly. The worst thing in the world is going in the wrong

direction for a long, long time…losing lots of money for a long period of time, feels pretty

bad to me. So, I try to iterate quickly all the time.

– Senior SDE, Applications

3.3.4.5 Elegant

Sometimes when you look at the code that [this great software engineer] developed, you

feel, first of all, it’s very easy to read his work, it’s highly structured… they are simple.

It’s very easy to understand in a sense that it’s very simple. Doing something well and in

a very simple way is very very hard.

Lot of times, it’s very easy to just put down your thoughts and be done with it and then to

look at his work and when you see the way he solves the problem, it’s very

straightforward. When I discuss with him, you see that the simplest solution is, sometimes

it’s not the first solution he thought. This is improved through looking at a problem

closely and through a lot of optimization, eventually after you have arrived at a simpler

solution. Seeking that simple solution, I think is one way just to make a better software

engineer…

– Principal Dev Lead, Web Applications

Many informants described the software of great software engineers as elegant: intuitive

software design solutions that is easily understood. Informants recognized that some problems in

software were highly complex and constrained, making it difficult to have a simple solution that

met the requirements. Therefore, they admired great software engineers that produced easy-to-

understand solutions, elegant designs that others could easily reason about how the designs

addressed requirements and constraints.

The underlying sentiment was that avoiding complexity was critical. This is the same

thinking that underlies research into complex complexity metrics such as McCabe’s Cyclomatic

Complexity Measure (McCabe, 1976). Informants felt that complex solutions increased the

likelihood of bugs and increased maintenance costs (if problems were fixable at all):

Is this the simplest way to do things and the most skillful way to do things as compared to

making it overly complicated… It’s concise and clear. How easy is it to debug?

Debugging usually is harder than actually coding up those things first time around, so if

you’ve done it in a complicated way, then you’re probably not going to be able to debug

it…

 – Senior Dev Lead, Web Applications

Furthermore, complex solutions resulted in brittle code that were more costly to evolve and

maintain:

Never complicate any things… when you simplify things it becomes easier for you to

maintain, going forward for customers… You get lesser number of issues reported by a

customer.

– Senior Dev Lead, Enterprise

Despite being simple, informants made it clear that elegant software did not equate to

terse code. Great software engineers created software designs that were each to comprehend,

communicating intentions clearly. Simply having fewer characters often made the software more

difficult to understand:

[Some engineers], for whatever reason, want to type as little as possible, so their code is

always terse and these sorts of things. I think once you teach them, "Look, maintainability

matters and simplicity is good." And strive for that, then those things become details that

they need to work on…

 – Principal Dev Lead. Gaming

3.3.4.6 Long-termed

And then over time the whole health of your code base evolves because you've built in a

framework to handling failures, a solid framework, you're not trying to make something

up later and glue it into code that's already written… What you get if you don't do that is

a lot of spaghetti code where people try to go in after the fact and add in their own error

handling.

– Principal SDE, Windows

Several informants described great software engineers as long-termed with their software:

considering long-term costs and benefits, not just short-term gratification. Commonly associated

with bug fixes, informants felt that problems would arise that necessitated solutions spanning

disjointed places such as component/executable, software products, teams, etc. Great software

engineers would accurately recognize these situations to craft solutions that solved the problem

holistically, not simply shifting the manifestation of the problem to another location.

 The underlying sentiment was that ‘duct taping’ a solution together was tempting,

especially in situations where the software engineer may not completely understand the software

that he/she was repairing. However, these ‘kludges’ often did not address the root cause of the

problem. Informants felt that great software engineers fully understood the problems and

produced solutions that did not simply ‘kick the can down the road’:

They've got a bigger breadth or areas, if you've got a problem and you really have no

idea what it is… They can own it and work through it and drive it and be crossing the

technical boundaries in exploring it and trying to resolve it.

– Principal Dev Manager, Enterprise

3.3.4.7 Creative

[Great software engineers] can think outside the box. Being able to sort of like, hey,

here's a traditional solution, but guess what ... Usually with solutions we often have

constraints… Being creative is actually, I feel that, able to take these constraints, take the

difficult circumstance and actually make it into something that could actually still work,

but without a huge complex overhead...

– Senior SDE, Web Applications

Informants described software of great software engineers as creative: novel and innovative

solutions based on understanding the context and limitations of existing solutions. Informants

felt that there were two important interconnected aspects to creative solutions. First, software

engineers needed to understand the unique constraints and requirements of the problem. Great

software engineers comprehended how these contextual conditions affected possible solutions:

If you're looking for really an innovative …or just a solution that’s outside the current

norm… think through the problem…constraints that are currently imposed on the

environment.

– Principal SDE Lead, Windows

Subsequently, software engineers needed to know when to apply existing solutions. Informants

felt that great software engineers did not invent new solutions without reason; they used existing

solutions when appropriate. Informants stressed this point because they felt that known solutions

(e.g. standard libraries) were generally less costly and less error-prone:

You are now using all of your creativity to reinvent things that are already invented and

that is just basically wasteful.

– Principal Dev Manager, Web Applications

Nonetheless, most informants felt that novel problems occurred frequently in software

engineering, needing great software engineers with the ability to come up with innovative

solutions or adapting an existing solution:

Understanding patterns and understanding how to apply something is very important so

you don’t recreate wheels all the time… when there isn’t an obvious pattern… Are you

creative enough… come up with something new?

– Senior Dev Lead, Windows

3.3.4.8 Anticipates needs

[This great software engineer] would be like, "Now, imagine that you already have that

and you've built that and now you have a team that might come to you and say we'd like

to maybe use it for that and that… Now, a few years later, somebody else wanted to start

working with that."… examples of how people might want to use technology… How

would you maybe change your design with that in mind that we might somehow have to

accommodate inter-operating with that technology in the future? How might you do that?

– Senior SDE, Windows

Informants felt that great software engineers anticipated needs with their software designs:

problems and needs not explicitly known at the time of creation based on their knowledge and

understanding. Great software engineers accommodated possible future requirements not known

at the time of inception. Informants commonly mentioned scale (more users), feasibility

(technology advancing to the point where new things were possible), and integration

(interoperability with additional software products). This attribute is closely related to the

concept of ‘extensible’ designs (Krishnamurthi & Felleisen, 1998); however, while extensible

designs in the literature generally involves adding new features and functionality, informants

commonly discussed supporting the same requirements but at different scales, both smaller (e.g.

an operating system that runs both PCs and Phones) and larger:

QQ, the Chinese chat program. It now has hundreds of millions of users. That system was

designed fifteen years ago, when QQ only had a few million users. It still works today,

that’s amazing, to have a system that scales that well, to foresee all the issues it would

have to face.

– SDE2, Enterprise

More than any other attribute, informants discussed the propensity to go overboard with

anticipating needs. Many informants discussed software engineers attempting to anticipate needs

in the face of uncertainty, incurring high costs to add unneeded flexibility. Some thought that any

prediction of the future was foolish and preferred to design for current needs and being open to

rewrites:

Architect something now that's going to survive well 20 years from now? Nobody is that

smart to be able to predict the future that well, I will refactor towards new requirements

and I constantly do that.

– Senior SDE, Applications

3.3.4.9 Uses the right processes during construction

Unit testing, of the code. Well before that was fashionable. [This great software

engineer] must have been right on the leading edge of it, it was all about the code quality

and he had almost no bugs ever found in the product and that was actually his track

record, too.

– Senior Dev Manager, Windows

Informants described great software engineers as using the right processes during construction

(e.g. unit testing and code reviews), in order to prevent potential problems. Generally, these were

quality-control processes intended to discover problems before deployment; the three most

commonly mentioned processes were unit testing, test-driven development, and code reviews.

Informants felt that great software engineers effectively used these processes to ensure that

software engineers thought through their designs. For example, several discussed software

engineers who were pressured to produce high-quality code because they needed to present in

front of peers in code reviews:

Like the way we enforce it, the process really makes that happen… So you really have to

think through in order to stand up in front a room and defend the spec that you wrote and

similarly with code reviews, you push those things out and you don’t get to check in until

your peers sign off on. You really can’t do that without having thought through what

you’re doing.

– Principal Dev Lead, Web Applications

An important aspect of the using the right processes during construction attribute was

knowing how and when to use these processes. Informants felt that simply executing the

processes was not sufficient; software engineers needed to understand how to execute the

processes effectively. For example, some processes (e.g. test-driven engineering) could be

garbage-in-garbage-out if not executed correctly.

[Great software engineers] have to know the test cases, so you have to know how your

code is going to be used. … Those are all the areas and a good developer will know

those. That's why I say they need to know how to write their own specs, so that they can

design the right outcomes, implement it well, and then actually test their work.

– Principal Development Manager, Applications

This attribute appeared to be the manifestation of the knowledgeable about software

engineering processes attribute discussed in Section 3.3.2.3. Whereas knowledge was internal to

the software engineer, this attribute captured the effect on the software resulting from great

software engineers appropriately applying those processes.

3.4 DISCUSSION

In this study, we have sought a holistic, contextual, and real-world understanding of what

software engineering expertise entails. We looked for definitions and explanations from

interviews with 59 expert software engineers across various divisions within Microsoft. In this

section, we will highlight key insights and conclude with a discussion of the threats to validity.

3.4.1 Nuanced Understanding of Software Engineering Expertise

Overall, we found that software engineering expertise entailed a holistic set of attributes,

including personality, engagement with others, and technical abilities in designing and writing

code. These results suggest that productivity is only one criterion for excellence. How software

engineers go about engineering their software relative to management (managing expectations,

Section 3.3.3.5), subordinates (creating a safe haven, Section 3.3.3.10), teammates (asking for

help, Section 3.3.3.11), partners (creating shared success, Section 3.3.3.3), and even oneself

(perseverant, Section 3.3.1.6), are all important considerations. This reinforces the perspective

that software engineering is a sociotechnical undertaking, and not solely a technical one.

Furthermore, simply delivering the code is insufficient. With attributes like elegant,

creative, long-termed, and seeing the forest and the trees, our findings indicate that great

software engineers need to take into account complex, experience-driven, contextual technical

considerations. In addition, many mental attributes are also important, especially attributes

associated with learning. We found that the ability to learn new technical skills is likely more

important than any individual technical skills. Informants, even those in the same division, used

diverse technologies—sometimes project specific tools (e.g. Cosmos, a Microsoft version of

Hadoop). There was no consensus on which specific technical topic (e.g. architecture) was

essential. Rather, most informants stressed the importance of learning new skills—manifested in

personality attributes like curious and continuously improving—as requisite for great software

engineers.

We also identified important attributes of software engineering expertise that had not

been studied in detail in the software engineering literature until now. Our findings indicate that

effective decision-making is an essential part of software engineering expertise. Our informants

felt that there were usually myriad options—not all good—for what to do and how to do it. As

software engineers grow in their careers, they are tasked with making decisions in increasingly

complex and ambiguous situations, often with significant ramifications for themselves and their

teams. Therefore, the ability to make good decisions and the mental development that it entails

are an important attribute of expert software engineers.

Several prior works have hinted at deciding as an important skill. For example, key work

activities of Microsoft software engineers observed in Ko’s paper (Ko et al., 2007) included

‘reasoning about design’ and ‘what are the implications of this change?’ Many studies have

examined bug triage processes of software engineering teams (Anvik et al., 2006) (Guo,

Zimmermann, Nagappan, & Murphy, 2011) (Jeong et al., 2009); these processes are essentially

software engineers making decisions about which actions to take in response to bugs.

Nevertheless, our study is the first to explicitly identify ‘decision-making’ (an area of research

with its own extensive research literature) as an important topic within software engineering.

Making effective decisions, using attributes in Section 3.3.2, is an important skill for engineers to

develop.

3.4.2 Threats to Validity

As with any empirical study, our results are subject to various threats to validity. Our

sampling method contains threats to external validity. Though our 59 interviews yielded rich

insights, it was a small sample, even for Microsoft, which employs tens of thousands of

engineers. This small sample size led to some natural biases, such as underrepresentation of

women; we had only three among our 59 informants. In addition, we only sampled engineers in

Seattle, USA; findings may not generalize to other cultures. The size of the organization may

also affect generalizability, especially for attributes related to people and organizations.

Microsoft also had an established set of practices, tools, and products; findings may not

generalize to other contexts (e.g. startups). Finally, Microsoft is a software-centric company;

informants discussed unfavorable conditions in non-software centric industries, like finance and

retail. It is unclear whether the same attributes (or their standards) generalize. Nonetheless,

Microsoft is a good place to start, as we discussed in Section 3.1.

There are threats to the construct validity from the lack of a clear and shared definition of

a software engineer. Though, in general, informants understood that we meant people who wrote

code to be used by customers, and we clarified the definition whenever there was confusion.

Our interview and analysis processes also contain threats to internal validity. Informants

could generally only mention a few salient attributes unprompted; given more time to think,

informants may have produced more attributes. Moreover, while our analysis was systematic,

other researchers may discern different attributes, definitions, or models than ours.

Though nearly all of the attributes of great software engineers we uncovered have been

mentioned to some degree in prior work and many attributes overlap with ones important to

other professions, our study is the first to produce a holistic set of attributes of software

engineering expertise, with definitions and explanations. This foundational knowledge enables

us to build toward additional understanding about software engineering expertise, detailed in the

next chapter.

Chapter 4. SURVEY STUDY OF EXPERT SOFTWARE

ENGINEERS

Our initial interview study of expert software engineers has provided a foundation of definitions

and explanations of attributes of software engineering expertise. However, our prior study,

described in Chapter 3, was largely qualitative; we still lack quantitative knowledge about the

relative ranking of the attributes as well as how those rankings are affected by the context of the

software engineer. This knowledge enriches our understanding of software engineering expertise,

helping practitioners and educators prioritize their improvement and pedagogical efforts as well

as assisting researchers focus future investigations.

Findings from our interview study suggested that expert software engineers varied in

their opinions of the importance of the attributes of software engineering expertise. For example,

the continuously improving attribute (Section 3.1.1.1) was frequently mentioned and commonly

deemed essential by our informants; while other attributes, like mentoring (Section 3.3.3.8) and

well-mannered (Section 3.3.3.16) were mentioned less often or were deemed unimportant by

some informants:

I think great software engineers can get stuff done without being humble… I’ve worked

with some software engineers, good software engineers who aren’t particularly humble.

They still get a lot of respect just because they are great software engineers.

– Senior Dev Lead, Web Applications

Multiple prior research efforts have attempted to determine the relative importance of

attributes of software engineering expertise. The ACM Computing Curricula (Shackelford et al.,

2006) (Section 2.2) provides rankings—minimum and maximum levels of knowledge—for

various technical skills that software engineers should possess; however, the rankings did not

consider interactions with others or personality traits, which our findings and others have found

to be important aspects of expertise. Several studies have ranked attributes that new graduates

need in order to get their first industry job (Hewner & Guzdial, 2010) (Radermacher et al., 2014)

(Section 2.4). Attributes that ranked highly included technical skills (e.g. ‘proficiency with the

C++ language’), interactions with teammates (e.g. ‘ability to work with others and check your

ego at the door’), and mental abilities (e.g. ‘problem solving’); though, the authors acknowledge

that some needs may be specific to new graduates and may not be applicable to expert software

engineers. Kelley’s 14-year study looking at successful engineers—not software engineers

specifically—identified and ranked nine successful ‘work strategies’, covering various

approaches to working with teammates (Kelley, 1999a), described in detail in Section 2.6.

However, not considering technical skills specific to software engineers was a major limitation.

The SEI’s Capability Maturity Model (CMM) prescribes activities that teams should possess at

higher levels of maturity, (e.g. ‘quantitative process management’ and ‘software quality

management’) at the ‘managed’ CMM level (Herbsleb et al., 1997). However, CMM focuses on

teams, not individuals; it is unclear which (and how much) of these apply to individual software

engineering expertise. The volume of prior work indicates that knowledge about the relative

importance of attributes is likely important; however, for various reasons (as we have discussed)

prior work has fallen short of a holistic, contextual, and real-world understanding.

Furthermore, our interview study and other prior work suggested that importance of the

attributes likely vary across different contexts. For example, several informants in our interview

study felt that various “how easily the software can be updated” affects importance of attributes:

If you are writing software for the cloud… the cost for the bug is not that high. I'll fix it. I

don't have to ship the fix to you; I'll fix it on my server…. I will take the risk… I don't

think probably [it] could apply to the product when you are shipping something by a

floppy disk.

– Senior Dev Lead, Web Applications

Some informants discussed expectations of software engineers differing depending on the

country where the software engineering takes place:

Asian [sic]… being successful…here, people are actually more focused on your working

[sic], your outcome. In Taiwan, social [sic] is very big piece of being successful.

Sometimes the communication [sic] is not about you are right or not [sic], but also about

that relationship. The people has the better relationship, they would listen more than with

other relationship [sic].

– Senior SDE, Devices

One informant also mentioned that the number of software engineers working on the project

affects the importance of attributes related to interacting with teammates:

Well, if I'm a sole person working on a product…It doesn't matter if I'm open to ideas... If

it's 10 people all working on disparate parts, we have to agree maybe on a common

interface somewhere, but if it's several people working on the same code, they're

maintaining the same thing, they all have to agree on a concise style or the proper vision,

the direction… it makes more of a difference.

– Senior SDE, Windows

In addition to our findings, various research studies also indicated that contextual factors

may affect perceived importance of various attributes of expertise. As discussed above and in

Section 2.4 on ‘new graduates in their first industry jobs’, the amount of experience may affect

perceptions. Gender may affect perceptions due to cultural convention differences and

educational hardships (A. Fisher & Margolis, 2002) (Margolis & Fisher, 2003). Carver et al.

found those non-computer science degrees were more effective in conducting code reviews

(Carver et al., 2008), suggesting that educational background may impact perceptions. Ahmed et

al. examined job postings for software engineers and found the demand for independent workers

(“can carry out tasks with minimal supervision”) to be higher in North America relative to other

regions of the world (Ahmed et al., 2012), suggesting that there may be cultural differences in

perceptions. The existence of different curricula for different types of software engineering

efforts (e.g. games (Hewner & Guzdial, 2010) and embedded systems (Shackelford et al., 2006)),

indicates that the type of software may affect perceptions. Various studies examining the size of

software engineering projects (Brooks, 1995) (Pendharkar & Rodger, 2009) discuss that more

software engineers working together necessitates better communication, suggesting that size of

the engineering team may affect perception. However, despite numerous studies hinting at the

influence of various contextual factors, no prior study has examined these factors in tandem

quantitatively—statistically testing, quantifying, and explaining their effects (if any).

In this study, we expanded our understanding of software engineering expertise by

conducting a worldwide quantitative survey of experienced Microsoft software engineers, along

with qualitative follow-up interviews, to answer the following questions:

 How do experienced software engineers rate the importance of these attributes?

 How are perceptions of importance affected by context of the software engineers?

4.1 METHOD

This study proceeded in two parts. First, we constructed and deployed a large-scale survey to

assess the relative ratings of the 54 attributes we identified in our interview study and to examine

the relationships between the ratings and the contextual characteristics of the respondents. Then,

we performed follow-up qualitative email interviews to understand the rankings and

relationships found in the survey.

4.1.1 Survey

To ensure that we obtained information from the most experienced software engineers we

created two sampling strata, based on their titles in the company address book. We selected

experienced software engineers: employees in the software engineering role with titles at the

‘Software Development Engineer [Level] II’ promotion level up to ‘Senior Software

Development Engineer Lead’ promotion level. These software engineers typically had at least 5

years of working experience. We also selected very experienced software engineers: employees

in the software engineering role above the promotion level of “Senior Software Development

Engineer Lead”. These software engineers typically had 10+ years of working experience and

were often responsible for critical technical areas within Microsoft. The titles of the software

engineers in our survey are in Table 4.3. We included Leads and Managers of engineers in our

sampling because, at Microsoft, nearly all of them had hands-on experience as software

engineers. We consolidated the list of titles, removing various address book anomalies:

expanding abbreviations (e.g. manager and MGR), reconciling numberings (e.g. 2 and II), and

consolidating wording variations (e.g. senior software engineer and senior software development

engineer).

The anonymous survey was hosted on a Microsoft Research website. We emailed

engineers asking them to participate, offering a report of the findings and entry into a gift

certificate raffle as incentives. We personalized the solicitations with the software engineer’s

name, briefly described the purpose of the research, and explained why we needed their

perspectives; these steps help to reduce inattentive survey responses (users providing insincere or

haphazard responses) (Meade & Craig, 2012). Each solicitation had a separate anonymized

survey link to prevent multiple submissions (e.g. via bots, which may introduce bias and lead to

spurious rankings/relationships). The solicitation email is in Appendix A and the full survey is in

Appendix B. We sent reminder emails after the first week and after one month. The survey was

open from Dec 2014 to Feb 2015.

In the survey, after explaining the purpose of the study and respondents’ right not to

participate, we asked questions about the respondents’ demographics, experience level, and

current work context. We focused on contextual factors discussed in prior work and mentioned

in our interview study, as described in the introduction. Appendix B contains the demographic

questions and the type of response solicited. Table 4.4 (Section 4.2.2) lists the contextual factors

and their distributions within the sample.

We sought respondents’ ratings for all of the 54 attributes: 18 on personality, 9 on

decision-making, 18 on interacting with teammates, and 9 on the software produced. In

anticipation of respondent fatigue, we presented the questions in four groups, corresponding to

the four groups above (from our interview study discussed in Section 3.3). To address ordering

bias and to enable analysis of incomplete results, we randomized the ordering of the four groups,

Table 4.3. Titles of expert Microsoft software engineers studied

Titles in ‘experienced’ sampling strata Titles in ‘very experienced’ sampling strata

Software Development Engineer II
IT Software Development Engineer II
Senior Software Development Engineer
Senior IT Software Development Engineer
Senior Research Software Development Engineer
Software Development Lead II
Senior Software Development Engineer Lead

Principal Software Development Engineer
Senior Software Development Engineer Manager
Principal IT Software Development Engineer
Principal Software Development Engineer Lead
Principal Software Development Engineer Manager
Principal IT Software Development Software
Engineer Manager
Application Development Manager
Senior Application Development Manager
Principal Software Architect
Partner Software Development Engineer
Partner Software Development Engineer Lead
Partner Software Development Engineer Manager
Architect
Software Architect
Senior Software Architect
Partner Software Architect
Architect Manager
Director of Engineering
Distinguished Engineer
Technical Fellow

as well as randomized (separately) the ordering of the attributes within each group. Questions

about the attributes were structured and phrased in a similar manner, allowing respondents to

quickly read and respond. Figure 4.1 shows what the survey looked like for the hardworking

attribute.

We took several steps to ensure that respondents accurately understood the attributes. We

presented each attribute by describing a software engineer who possessed the attribute. We then

piloted the survey with five software engineers using the think-aloud protocol to identify

comprehension issues. This led to several changes to match the thinking and understanding of

Microsoft software engineers. We changed ‘software engineer’ to ‘developer’ to differentiate

people on engineering teams that did not write code; supporting quotations were added for 37 of

the attributes; several clarifications were added for potentially confusing attributes (e.g.

‘practices and techniques for building a software product’ was appended with ‘e.g. unit testing,

code reviews, Scrum, etc.’).

Figure 4.1. Survey question for the hardworking attribute

Grounded

attribute

definition

Contextual

example, where

appropriate

Ordinal rating

scale, soliciting

holistic

importance

To get a holistic and absolute rating of importance, we asked “If an experienced

developer—whose primary responsibility is developing software—did not have this attribute,

could you still consider them a great developer?” We gave respondents six Likert-style choices

(see Figure 4.1):

 Cannot be a great developer if they do not have this

 Very difficult to be a great developer without this, but not impossible

 Can be a great developer without this, but having it helps

 Does not matter if they do not have this, it is irrelevant

 A great developer should not have this; it is not good

 I do not know

Pre-testing showed that this negative operationalization of the notion of ‘importance’ was easier

for respondents to answer and was better at eliciting the attribute’s holistic importance.

Positively phrased variants led to responses that lumped together because respondents could

almost always imagine a situation in which an attribute can be important; by asking respondents

to think about situations in which an attribute would not be important, we observed more

differentiation. The highly-rated attributes were the attributes that our informants felt great

software engineers could not be without. This better matched our conceptualization of

importance.

We deployed the survey in two waves, sending the initial set to 200 developers (~100 in

each experience strata) to look for problems. We examined questions with high rates of ‘I don’t

know’ and high median response times, as well as complaints in the closing open-ended

question. We also assessed the expected response rate based on this initial wave. After finding no

issues and assessing the response rate, we deployed the survey to the larger sample, aiming for

500 responses in each sampling strata.

The survey took respondents a median of 28 minutes to complete, with some outliers due

to respondents leaving and returning to the survey at a later time. The minimum, 25th percentile,

75th percentile, and maximum completion times were 7 minutes, 17 minutes, 77 minutes, and 44

days, respectively. Overall, we obtained 1,926 survey responses. We obtained 825 responses

from experienced software engineers (~7% of all experienced software engineers at Microsoft);

of the 1,802 software engineers we solicited in the strata, this was a response rate of 46%. We

obtained responses from 1,101 responses from very experienced software engineers (~35% of the

all very experienced software engineers at Microsoft); of the 2,496 software engineers solicited

in the strata, this was a response rate of 44%. Of the respondents, 1,634 (84.3%) completed the

survey, with an additional 292 providing ratings for at least one attribute. We found no item-

response bias—there was no relationship between attributes and having a response, at the α=.05

level using Logistic regression. We used both complete and partial data in our analysis because,

due to randomization, each attribute had an equal chance of being seen and the assessment of

importance of each attribute was independent of other attributes due to how we asked about

importance.

Our notion of importance for an attribute was the degree to which expert software

engineers believe that a software engineer cannot be considered great without the attribute. There

are two aspects to this conceptualization: the importance rating and the agreement among

respondents. Statistically, this means that the distribution of ratings: both the central tendency

(i.e. criticality) and the dispersion (i.e. agreement). The attributes that are deemed more

important have distributions that are more concentrated at the higher ratings (Table 4.4 has the

ratings distributions for the attributes).

To determine the most and least important attributes, we ranked the attributes by

comparing the rating distribution of each attribute to the rating distribution of every other

attribute, counting the number of distributions for which an attribute’s distribution was

significantly higher (53 was the largest possible number). We did not use average ratings for

three reasons: the data were ordinal (i.e. the distance between rating levels is not uniform and

thus should not be averaged), our response levels were not centered (four positive ratings and

only one negative rating), and averages do not consider the dispersion of ratings. To compare

distributions, we used the Mann-Whitney rank-order test (Hollander, Wolfe, & Chicken, 2013).

The test can be used to compare ordinal data and distributions (i.e. both central tendency as well

as dispersion), and can be used when the number of observations is not equal. For each attribute,

we performed 53 one-sided Mann-Whitney rank-tests, one test against every other attribute. We

then calculated the number of statistically significant pairwise comparisons at α=.05 level.

Finally, we ranked the attributes based on the number of statistically significant tests. For

example, the ratings distribution of the most highly ranked attribute was statistically higher than

all 53 other attributes. See Table 4.4 in Section 4.2.1 for each attribute’s ratings distribution.

To analyze the relationship between contextual factors and the attribute ratings, we used

Ordinal Logistic Regression. We assessed the first order relationships between the contextual

factors and the ratings of each attribute. To account for performing multiple statistical tests, we

used the Benjamini & Hochberg False Discovery Rate (FDR) adjustment at the q=0.1 level. Due

to being optional, only 1,512 respondents provided information on age. To maximize statistical

power, we first fitted models with all factors to assess the effects of age and then fitted separate

models without age, to assess the effects of other factors.

4.1.2 Follow-up Email Interview

To help interpret the importance ranking and relationship to contextual factors, we emailed

respondents to ask for further insight into their responses. We asked about the highest ranked

attributes (the top five ranked attributes in Table 4.3), the potentially detrimental attributes (the

two attributes with the highest percentage of ‘A great developer should not have this; it is not

good’ ratings, at the bottom of Table 4.3), as well as the attributes that were significantly

affected by context (the relationships listed in Table 4.4). For the highest ranked attributes and

positive relationships, we picked respondents with the largest positive difference between their

rating of the attribute and their median ratings, aiming to avoid respondents that rated all

attributes highly. For the detrimental attributes and negative relationships, we similarly picked

respondents that had the largest negative differences.

In our survey, 771 respondents indicated that they were willing to answer follow-ups

questions. We sent follow-up emails to 111 of these engineers, receiving replies from 77

informants (69.4% response rate). When reasonable, we tried to ask a single informant about

multiple attributes, in order to uncover insights that spanned multiple relationships. We

qualitatively analyzed the responses to gain understanding, selected representative quotations,

and then asked the informants’ permission to quote them anonymously.

4.2 RESULTS

We focused on the attributes and relationships that we asked about in the follow-up email

interviews (for which we have the most credible understanding). Regarding the essential

attributes of software engineering expertise, we discuss the top 5 (highest ranked) attributes, the

bottom 2 (potentially detrimental) attributes, as well as the surprisingly low rankings for

attributes associated with ‘interacting with teammates’. Regarding differences in perceptions due

to contextual factors, we discuss each of the statistically significant relationships.

4.2.1 Essential Attributes of Software Engineering Expertise

The ordered list of attributes in Table 4.4 shows the most important attributes at the top and the

least important attributes at the bottom, based on their ratings distribution. The number in the

first column is the number of other distributions for which that distribution is more to the left

comparatively (based on the Mann-Whitney rank-order test). The ratings distribution is in the

second column: the more to the left—right skewed—the better. The third column lists and

explains the attributes.

4.2.1.1 Highest ranked attributes

The most important attribute was pays attention to coding details (ranked 1, higher ratings

distribution than 53 attributes; 63.1% of respondents gave it the highest rating, 28.8% important,

7.5% helpful, 0.3% doesn’t matter, 0.1% detrimental). Respondents explained that first and

foremost, engineers judged other engineers by their code. Therefore, engineers that could not get

the basics correct were not respected:

Table 4.4. Attributes of great software engineers, ranked and with ratings distributions

Another strong driver is the respect of our peers, which you won’t get by writing shoddy

code…

– Principal SDE

Second, informants felt that software could be used in many ways, often unforeseen by

the software engineer; therefore, software engineers needed to pay attention to the details to

avoid costly problems:

This code is performance critical, compatibility sensitive, and is used in a huge variety of

contexts. If a developer fails to handle an error, some customer will hit it, and we will

likely need to issue a hotfix; if a developer implements an inefficient algorithm (N^2 is

not ok)… consumes memory excessively in some environment…etc.

– Principal SDE

This may have been especially important at Microsoft, where software products are often

platforms, components, and/or used in contexts unforeseen by the engineer.

This understanding also underlies mentally capable of handling complexity (ranked 2,

higher ratings distribution than 52 attributes; 54.2% of respondents gave it the highest rating,

36.2% important, 20.1% helpful, 1.6% doesn’t matter, 0.2% detrimental) as a necessary attribute.

Informants felt that great software engineers need to be able to think through complex situations

to produce their software products:

Most useful software has to be highly tolerant of incorrect usage by the user/caller above

it, and interacting with the supporting code below it… Developers who cannot handle

complexity tend to always be fixing bugs or having to do “another” release to take into

account situations they had not thought of…

– Principal SDE

Informants felt that continuously improving (ranked 3, higher ratings distribution than 49

attributes; 51.0% of respondents gave it the highest rating, 34.8% important, 13.5% helpful,

0.7% doesn’t matter, 0.1% detrimental) and open-minded (ranked 5, higher ratings distribution

than 49 attributes; 49.4% of respondents gave it the highest rating, 36.5% important, 13.2%

helpful, 0.7% doesn’t matter, 0.1% detrimental) were important because the software industry

moves quickly; therefore, great software engineers need to not only be open to new ideas but

also to keep learning:

As the technology/technique evolves and better tools come along, the open-minded

developer picks up on these and is willing to apply them to be more productive/effective…

without an effort to continuously improve…developers will soon find themselves lagging

behind the industry and/or state-of-the-art with technology and technique.

– Principal SDE Lead

This thinking also contributed to honest (ranked 4, higher distribution than 49 attributes,

50.8% of respondents gave it the highest rating, 32.1% important, 14.3% helpful, 2.2% doesn’t

matter, 0.1% detrimental) as important. Informants indicated that great software engineers

needed to acknowledge mistakes in order to make optimal decisions for themselves and their

teams:

Lying to yourself is much easier in my profession than in any other profession I

know…It’s so easy to think that you know the topic and miss (subconsciously ignore)

evidence that contradicts your “knowledge”. Great developer… simultaneously knows a

lot and questions everything he knows.

– Principal SDE

Regarding the honest attribute, informants also discussed developers’ dishonesty was

potentially detrimental to others and felt strongly that such behaviors were deleterious:

This has happened to me any number of times… a team which had such a component

would “lie” to me about its availability and maturity in order to get me to be a user and

justify their own existence to management…

– Principal SDE

4.2.1.2 Lowest ranked attributes

Two attributes received negative ratings—“A great developer should not have this; it is not

good”—from more than 5% of the respondents: trading favors (ranked 54, higher distribution

than 0 attributes; 4.0% essential, 15.1% important, 44.1% helpful, 29.1% doesn’t matter, 6.0% of

respondents rated it detrimental) and hardworking (ranked 53, higher distribution than 1

attribute, 11.0% essential, 19.9% important, 36.0% helpful, 27.8% doesn’t matter, 5.0% of

respondents rated it detrimental). These results were unexpected because none of the attributes

were expected to be detrimental; all of the attributes were from the interview study, which

focused exclusively on positive attributes of great software engineers.

Follow-up suggested that these attributes were not inherently bad, but likely reflected bad

situations. For the hardworking attribute, informants believe that needing to work more than an 8

hours a day may be indicative of poor planning or unsustainable software engineering practices:

…workload for a developer is a function of management and planning happening above

that developer. Usually long working hours are needed, because the planning was not

good, the decisions made during the project lifecycle were bad, the change management

wasn’t ‘agile’ enough.

– SDE2

For the trades favors attribute, informants believed that needing to do personal favors

might reflect a biased decision-making culture, where decisions were not based on reason but

rather on subjective opinions of individuals:

They should be totally separated, else what I have seen is we tend to make biased

decisions and opinions about others.

– SDE2

Furthermore, needing undocumented processes to get things done might indicate poor

organizational practices, making it harder for software engineers to operate effectively.

Informants indicated that they disliked not understanding how to achieve their goals:

Once you “trade favors” you are getting into personal give and take and builds

institutional memory around a couple of nodes in a people graph and possibly not visible

outside of that relationship…

– Principal SDE

4.2.1.3 Low rankings for attributes associated with interacting with teammates

Attributes associated with interacting with teammates were rated the lowest, relative to attributes

in the other three groups. The attributes had a median ranking of 40 (lowest among the 4 groups)

and 77.8% of the attributes were in the bottom half of the rankings. Attributes associated with

decision-making were rated the highest with a median ranking of 17 and 33.3% of the attributes

in the bottom half of the rankings; it was followed closely by attributes of the software product

with a median ranking of 17.5 and 33.3% of the attributes in the bottom half of the rankings. The

next lowest group, personality attributes, had a median ranking of 24, with 44.4% of attributes

ranked in the bottom half of the rankings. This can be seen visually in Figure 4.2, which plots the

attributes grouping based on their ranking (x-axis) and the percent of ratings in the top two boxes

(y-axis).

The low rankings were unexpected since numerous prior studies indicated that interacting

with teammates is a large part of engineers’ everyday activities (Ko et al., 2007) (Latoza et al.,

2006), as discussed in Section 2.6. Nonetheless, informants—in follow-up interviews—felt that

that the primary job of the developer is to produce high-quality software, the rest, while helpful,

is non-essential:

A great developer furthers the commercial interests of the company. He does this by

producing software that is so bullet-proof and reliable… Outside of these considerations,

I have no interest in that developer…

– Principal SDE

Another contributing factor to the low rankings was the concept of ‘truth in code’. Many

informants believed that a developer’s idea should demonstrate value by its own merits, not via

the persuasive powers of its presenter. For example, the following is a quotation regarding the

Figure 4.2. Attributes rankings of the four types of attributes

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

Ordered Plot of the Attributes of Great Software Engineers In Groupings
By Ranking (X axis) and By Proportion of Ratings in Top 2 Boxes (Y axis)

Software Product

Decision Making

Personality

Teammates

creates shared context with others attribute, which was the most important component of

‘effective communications’ from the interview study (Section 3.3.3.3), but ranked 43 out of 54

attributes in the survey:

…that feels like imposing your will on someone else…. other devs pushing their ideas

through by controlling the conversation or talking over other people give me a negative

gut reaction to that particular attribute. Ideas should stand on their own merits, not on

how well / how strongly they're sold.

– Senior SDE

4.2.2 Influence of Contextual Factors

Next we sought to understand whether the ratings varied depending on the context of the

software engineer, and, if so, why.

Findings about the influence of contextual factors are in Table 4.5. The table describes the 26

contextual factors, provides descriptive information and descriptive statistics, and summarizes

the statistically significant relationships between the factors and attribute ratings. To facilitate

statistical analysis, we split out only the top 5 countries (each with more than 51 respondents) for

work experience in non-US countries; rest of the 61 non-US countries were combined into Other

(see row 16 in Table 2). Statistically significant relationships, based on Ordered Logistic

Regression (OLR) after FDR correction at the q=0.1 level, are listed in column 5 of the table. We

indicated positive relationships (the presence of the factor or higher values of the factor related to

higher ratings) with (+), and negative relationship (presence of the factor or higher values of the

factor related to lower ratings) with (–). Of the contextual factors, 10 did not have any

statistically significant relationships after the FDR correction, and do not have attribute

relationships listed, indicated’ by ‘–’.

4.2.2.1 Level of experience

We discuss the first five factors in Table 4.5 (Is very experienced, Age, Years as a professional

developer, Years at Microsoft, and Employment at software companies) collectively as level of

experience. This is reasonable because the factors all aim to measure the same underlying

construct of ‘experience’ and are highly correlated with each other. The statistically significant

relationships between level of experience and eight attributes (first 4 rows in Table 4.4) were all

positive (i.e. higher level of experience corresponded to higher ratings).

Informants in our follow-up interviews—all of whom were in the very experienced

sampling strata—suggested four underlying reasons for the observed positive relationships. First

(and most obviously), informants felt that developers with higher level of experience placed more

importance on contributing to ‘business goals’ because software engineers at higher levels were

evaluated based on the contributions they made toward progressively higher organizational

Table 4.5. Contextual factors, distribution in survey study, and significant effects. Rows are

not ordered.

goals. This likely underlies the relationships with aligned with organizational goals and

knowledgeable about the customer and business:

Our evaluation system(s) have always emphasized developers that deliver on the

organizational goals of the company… more experienced developers are likely to

understand, that alignment with the company goals delivers greater rewards.

– Principal SDE Manager

Second, informants felt that developers with higher level of experience valued delivering

results, encompassing the relationships with hardworking, desires to turn ideas into reality, and

executes. Informants felt that, with experience, software engineers gained the understanding that

to make meaningful contributions, software engineers needed to deliver software:

20 years of experience managing engineers in startups and big companies alike…No

matter how talented, sharp minded and skillful one is, if they are not hardworking (i.e.

willing to work long hours to meet deadlines/deliverables) they will not succeed…

– Partner SDE Lead

Third, informants felt that developers with higher level of experience placed more

emphasis on gaining knowledge and making smarter decisions because they had gone through

multiple releases and experienced the pain of mistakes. This encompassed the relationships with

knowledgeable about tools and building materials, knowledgeable about software engineering

processes, and makes informed trade-offs:

‘Knowledgeable’ and ‘Informed’ only come from experience. This is all about breadth

and exposure to lots of situations that let you generalize to new ones… you learn to be

less confident that you immediately know the best answer to a problem. You actually

become more flexible and are willing to trade off among goals you might not even have

considered earlier in your career… It takes a while for most people to really appreciate

the big picture and to be able to make decisions based on a broader context than the one

they naturally work in.

– Architect

Many informants further felt that this knowledge and understanding could only be gained

through actual firsthand experience:

Software engineering processes are there for a reason… The more experienced you are,

the more you saw the pros and cons of process firsthand.

– Principal SDE Lead

Finally, a natural corollary to the previous finding, informants felt that engineers with

higher levels of experience understood that they needed to be continuously improving to stay

ahead. Experienced software engineers recognized that if they did not continue to learn, they

might become obsolete:

Nobody can stay at the top without “improving” because the next wave of technology will

soon obsolete [sic] whatever was at the top.

– Partner SDE

4.2.2.2 Gender

We observed a statistically significant positive relationship between gender and uses the right

process during construction. We asked female informants why they rated the attribute highly and

then attempted to infer the commonality in reasoning behind the responses. It appears that the

female informants believed that processes existed for good reasons and that good software

engineers should not be attempting to ‘reinvent the wheel’:

You cannot be great if you are constantly re-inventing the wheel or using out of date

tools/processes.

– Senior SDE

Furthermore, it appears that the female informants felt more strongly that the engineering

of software should proceed in an orderly manner. Developers should adhere to the agreed upon

process or change the process; they should not go off on their own:

Good engineers MUST know the process of execution and follow it. Each

project/product/team may have a different process, but a good engineer must be aware of

it and follow it, or start a discussion if he/she thinks the process should be changed…A

different process was used each time.

– Senior SDE Lead

4.2.2.3 Educational background

Having a Master’s and/or PhD degree had unexpected negative relationships with asks for help,

challenging others to improve, and walks the walk (for Master’s, see row 10 in Table 4.5; for

Ph.D., see row 12 in Table 4.5). Informants provided two interesting hypotheses. First,

informants felt that a graduate degree was largely optional for success in the software industry;

therefore, software engineers that get those degrees may be more intrinsically motivated than

others. This might have led them to be less inclined to give or to receive help.

They weren’t satisfied with the bare minimum of a bachelor’s degree… getting a master’s

degree doesn’t really impact your paycheck very much in this industry… I think these

people who seek knowledge… they want to find things out for themselves.

– Principal SDE

Second, informants suggested that engineers with graduate degrees were often hired as

technical experts such that they were often given the difficult problems to solve; thus, they rarely

having the opportunity to give or to receive help:

…problems which either nobody has tried to solve before, everyone else has failed

solving before, or handling some major sort of crisis… they operate under the

assumption that there’s nobody to ask help from when there’s a crisis and they will need

to be able to figure out the solutions themselves.

– Principal SDE

We further examined this second explanation by comparing the number of developers

worked with in the past year (row 20 in Table 4.5) between engineers with and without advanced

degrees. We found that the number of engineers worked with in the past year was statistically

significantly less (α=.05) for both engineers with a Master’s degree (p-value=0.004, with

medians of 12 for those with and of 15 for those without a Master’s degree) and with a Ph.D.

degree (p-value =0.037, with medians of 11 for those with and of 15 for those with a Ph.D.

degree) using the Mann-Whitney rank test. These results support the hypothesis that software

engineers with advanced degrees worked with fewer other software engineers.

4.2.2.4 Work experience in another country

We found many positive relationships between attributes and work experience in another

country; qualitative follow-ups suggest five underlying themes. We asked informants about their

ratings and then inferred the underlying themes based on their work experiences.

First, informants suggested that there was intense competition for well-paying software

engineering jobs in some countries. This may be the underlying reason for the 31 positive

relationships between attributes and having work experience in India, as well as the 9 positive

relationships between attributes and having work experience in China. The competitive context

necessitated software engineers in those countries to excel in many areas in order to compete

effectively:

I think from the culture… If you're not the top of your class, you're not getting in. On to

your next thing, whatever. If you're not rank number one, you're not getting into the IITs.

You're not ranked number whatever, you're not getting that job… Doesn't work that way

in the Western world because… population. There's a lot of opportunity... not only one

person wins, ten people can win. In the Eastern side of the world maybe not.

 – Senior Dev Manager

Second, informants felt that cultural norms influenced the practice of software

engineering in some countries. The most salient example is the relationship between having work

experience in China (summarized in row 16 of Table 4.5) and the trading favors attribute. While

the trading favors attribute was the lowest ranked attributes overall, its ratings were significantly

higher for respondents in China. Follow-up interviews indicated that the higher ratings were

influenced by the broader cultural norms in China:

Culturally there is a different perception… ‘guanxi’ [关系] it’s just a part of how

business is done. Well of course, the best, the most successful are the ones that have those

relationships. That would be a positive thing… any career or profession… even in an

engineering context.

– Principal SDE Manager

Beyond trading favors, informants implied that many other attributes (e.g. hardworking and

systematic) were similarly influenced by local practices and expectations:

Systematic, I wouldn’t be surprise if that’s skewed… Part of it is culture. There’s just a

daily grind of getting things done. People there would acknowledge that it doesn’t make

sense; it’s just the way it works, why would you change it.

– Principal SDE Manager

The third theme was distance. Informants felt that some software engineers lacked

visibility into company direction due to being far away from Microsoft headquarters—based in

Redmond, WA, USA. This might have impacted engineers’ perceptions on being aligned with

organizational goals. Some informants suggested that the numerous shifts in company focus in

recent years led engineers to focus on their immediate customers rather than the overall company

strategy:

…organizational goals are usually generic and change quite often… a developer is great

regardless the external happenings, conditions or events…a great developer should take

actions for the good of the product and customer. In good companies, such actions will

pay off and benefit the individual and the organization as well.

– SDE2

The fourth theme was that some attributes were likely tied to the kind of software being

engineered in their country as well as the state of software engineering practices in their country.

For the negative relationship with hardworking, several developers, all with non-US work

experience, reported having worked in the games industry where they had to do “death marches”,

needing to work excessive hours in order to ship the software product. This may have been

especially salient for respondents outside of the US, accounting for the negative relationships

between hardworking and having work experiences in the UK and Other countries (row 16 in

Table 4.5):

I’ve definitely seen this firsthand, as people steadily become less productive over time

and tend to make more short-term decisions… Having previously worked in both games

and visual effects, where the “death march” is not uncommon

– Senior SDE

4.2.2.5 Type of customer

There was a statistically significant positive relationship between having both internal and

external customers and persevering (row 18 in Table 4.5). However, based on follow-up

interviews, we believe this relationship was likely spurious (which was not a complete surprise

since the FDR adjustment reduces, but does not eliminate, statistically significant relationships

occurring by chance).

One informant tentatively offered the possible explanation that having customers with

differing needs leading to conflicting requirements necessitates perseverance to work through;

though, even he felt that relationship could be coincidence:

It is also frustrating to deal with two sets of customers at once, as they often have

conflicting reqs. It requires persevering to being able to battle out which ones to

implement and to persist in the face of conflict.. I have no more thoughts vs what I’ve

mentioned already, so it could be coincidental.

–Principal SDE Manager

4.3 DISCUSSION

In this study, we have sought a holistic, contextual, and real-world understanding of the relative

importance of attributes of software engineering expertise and the effects of context on those

rankings. We surveyed 1,926 expert software engineers to derive rankings and to assess

relationships; we then conducted follow-up email interviews with 77 expert software engineers

to interpret the results. In this section, we will examine overall insights and conclude with a

discussion of the threats to validity.

4.3.1 The Essential Attributes

Ranking indicates that engineering of software at its highest levels (at Microsoft) is a

complicated and complex technical undertaking. Teams need experienced engineers who are

smart, technically savvy, and dedicated to finding and implementing solutions. Informants

indicated that uncertainty and complexity afflict their software from underlying dependencies,

system states, external callers, and/or partner components. Pays attention to coding details and

mentally capable of handling complexity topped the rankings, reflecting this sentiment, as well

as high rankings for other product- and decision-making attributes (see Section 4.2.1 and Table

4.5).

Our analyses also indicate that the field of software engineering is changing constantly.

Even foundational concepts can change over time, such that those who do not grow and evolve

risk becoming obsolete. Consequently, it is not a specific set of knowledge but rather the

desire, ability, and capacity to learn that defines the best software engineers. The theme of

constant learning was prevalent throughout the survey and follow-up interviews; informants

frequently indicated that greatness was attained and maintained over time. This contributed to

multiple related attributes—honesty, open-minded, and continuously improving— to top the

rankings, as well as high rankings for numerous personality attributes related to learning and

improving (see Section 4.2.1 and Table 4.5).

4.3.2 Relationship with Contextual Factors

Influences of level of experience (see Section 4.2.2.1, Table 4.5) suggest that engineers need

real-world experience to become experts. Informants felt that many attributes sound good in

theory or in isolation, but become unimportant when put into real-world contexts, amid

competing concerns and hard deadlines. This sentiment underlies relationships with aligned with

organizational goals and knowledgeable about the customer and business—corresponding to

identifying key objectives—as well as hardworking, desires to turn ideas into reality, and

executes—corresponding to actually delivering the software product. Informants felt that

software engineers needed to experience real-world consequences of their actions to appreciate

the cost and benefit of their decisions. This sentiment supports the relationships with

knowledgeable about tools and building materials and software engineering processes, as well as

makes informed trade-offs.

Results from analyzing the negative relationship between having an advanced degree

(Master’s and Ph.D.) and attributes associated with giving and getting help (see Section 4.2.2.3,

Table 4.5) indicate that the relationships were likely not due to graduate school education (i.e.

graduate schools do not teach software engineers to devalue giving and getting help). Rather

findings were likely due to the conditions that would lead a software engineer to pursue a

graduate degree (a selection bias) and the job assignments of graduates (a survivorship bias).

Informants indicated that a graduate degree was generally not seen as advantageous to a software

engineer’s career (probably compared to hands-on experience, per the previous discussion).

Examining the differences in ratings for those with work experiences in other countries

revealed that many facets of local culture affect perceptions of software engineering expertise.

Contrary to overall rankings, for those working in China—even Americans working in China—

trading favors and ‘guanxi’—关系 (the building of a network of mutually beneficial

relationships, commonly found in Chinese business culture) is a positive attribute (see Section

4.2.2.4).

Though we also found relationships between gender and type of customer with rankings,

those relationships were difficult to explain. We believe that the relationship with type of

customer may be accidental; informants in our follow-up interviews did not have good

explanations for why the relationships existed. The relationship between uses the right process

during construction and gender may be because female engineers have stronger preferences for

proceeding in an orderly and agreed upon manner. This area may be interesting for further

research.

4.3.3 Threats to Validity

As with any empirical study, our study has various threats to validity. Construct validity issues

may arise from engineers interpreting the attributes and the contextual factors differently. While

some amount of personal variation is unavoidable, we sought to limit issues by conducting pre-

tests—adjusting and clarifying survey questions—and examining Microsoft engineers, who share

common understanding (e.g. common Microsoft terms). Ambiguity of the term “software

engineer” is a potential construct validity issue. Based on feedback in pre-tests, we switched to

using the term ‘developer’ to best capture the ACM’s notion of ‘someone who develops software

to be used by others’.

Internal validity issues may arise from several sources. First, use of the FDR adjustment

and the numerous significant relationships with having work experience in India and China may

have hidden other interesting relationships. Second, our analysis examined only the first-order

relationships between ratings and contextual variables. While second-order relationships may

exist, we feel that our choice was appropriate given little prior research to support investigating

second order relationships. Finally, the follow-up interviewees were a self-selected subset of the

respondents; other interpretations of the attributes and relationships may exist.

External validity issues may also exist. We explicitly over-sampled very experienced

engineers, who may exhibit thinking and perspectives that were particularly well-suited to the

Microsoft environment. This might decrease the importance of some attributes that Microsoft

engineers ‘take for granted’ (e.g. hardworking). We also studied only Microsoft engineers. We

felt that they were an interesting, important, and relevant population that may actually strengthen

the external validity of our findings (see the Section 3.1), but they were nonetheless from one

organization. Finally, we did not sample for other interesting attributes, specifically gender and

non-US software engineers; however, we note that we received many responses from both

female respondents (149 responses, 7.7%) and non-US respondents (351 responses, 18.2%). This

should have allowed us to detect significant systematic differences due to these contextual

factors.

In this study, we developed a robust understanding of software engineering expertise

through combining knowledge from our interview study with a survey study of expert software

engineers; however, an important knowledge gap remains. Today, the engineering of software is

interdisciplinary, involving many expert non-software-engineers performing critical tasks. Yet,

we know almost nothing about the perspectives of these expert non-software-engineers on

software engineering expertise. We will address this knowledge gap in the next chapter.

Chapter 5. INTERIVEW STUDY OF EXPERT NON-

SOFTWARE ENGINEERS

Software engineers do not produce software alone. Today, the engineering of software

commonly entails software engineers collaborating not only with other software engineers but

also expert non-software-engineers. Many roles, like artists (Hewner & Guzdial, 2010), data

scientists (Begel & Zimmermann, 2014), designers (Beyer & Holtzblatt, 1995), writers

(Mehlenbacher, 2000), program managers (Aranda & Venolia, 2009), and others, are important

to the engineering of software products. Consequently, a holistic, contextual, and real-world

understanding of software engineering expertise would be incomplete without insights from

these expert non-software-engineers.

Effectively working with non-software-engineers may be even more critical than working

with other software engineers, since non-software-engineers often perform essential tasks that

software engineers are ill-equipped to perform. Furthermore, effective collaborations with non-

software-engineers may be especially challenging since they often belong to different

communities of practice (E. Wenger, 1999) with different vocabulary, culture, norms, and

processes. For example, the ACM (Joint Task Force on Computing Curricula, 2014)

distinguishes between ‘traditional’ engineering and software engineering in the following ways:

 The foundation of software engineering is primarily in computer science, not natural

science,

 The concentration of software engineering is on abstract/logical entities instead of

concrete/physical artifacts

 Software maintenance primarily refers to continued development, or evolution, and not

conventional wear and tear

Despite these distinguishing factors, ‘traditional’ engineers and software engineers

collaborate to develop many products, e.g. Xbox and Microsoft Surface.

Though many software engineering studies mention or involve non-software-engineers,

none directly examine the perspective of non-software-engineers on software engineering

expertise. Trifonova et al. surveyed more than 50 research publications about software

development projects with artist participation (Trifonova, Ahmed, & Jaccheri, 2009). They

found four kinds of topics:

 Requirements/needs for software and software functionality within the artist community,

evaluation in art projects, software tools, software development methods, collaboration

issues, business model

 Artists’ mastery of computer skills, multidisciplinary collaboration between art and

computer science students, art in computer science curricula

 Aesthetic of the code, aesthetic in software art, aesthetics in user interfaces

 Social and cultural implications of software/technology on art

The survey indicates that artists are involved in the engineering of software and that they have

needs (e.g. tools, education, and engagement methods) and concerns (e.g. aesthetics) that differ

from software engineers. However, the survey also indicates that studies have not examined

artists’ perspectives on software engineering expertise.

Begel and Zimmermann surveyed Microsoft software engineers about the questions they

would like data scientists to answer (e.g. how do users typically use my application and what

parts of a software product are most used and/or loved by customers) (Begel & Zimmermann,

2014). Fisher et al. examined challenges analyzing ‘big data’ at Microsoft (D. Fisher, DeLine,

Czerwinski, & Drucker, 2012). These reports indicate data scientist help software engineers

perform important and challenging functions.

Numerous studies (Barry W. Boehm, 1991) (Ropponen & Lyytinen, 2000) indicate that

project managers help teams manage risks in software engineering projects. Some of the top

issues like scheduling and timing risk indirectly implied that great software engineers managed,

mitigated, or avoided these issues.

Lee and Mehlenbacher (in follow-up to a 1991 study that interviewed software engineers

at DEC about attributes they wanted in technical writers (Walkowski, 1991)) surveyed 31

technical writers, including 16 that worked for software companies, about working with subject

matter experts (SMEs) (Mehlenbacher, 2000). Among other questions, the authors asked, “what

do you dislike about working with SMEs?” The most commonly reported issues were ‘time and

accessibility’, ‘respect for the documentation process’, and ‘communication skills’. While these

are likely attributes of good software engineers, the authors were not examining software

engineering expertise directly.

In the well-known book The Inmates Are Running the Asylum, Cooper describes software

engineers (‘the inmates’) as making too many engineering decisions that impact usability of the

product and providing biased information to others (e.g. over estimating costs of features) to

further derail projects (‘running the asylum’) (Cooper, 1999). The author calls for designers to

use a disciplined approach (e.g. using personas) to ensure better products. Cooper’s insights are

relevant—good software engineer should avoid those behaviors—however, his focus is on

usability and design rather than all aspects of software engineering.

Existing literature indicates that perspective on software engineering expertise from

expert non-software-engineers is an important knowledge gap, one that neither existing literature

nor our previous studies of software engineers have addressed directly. As with our previous

studies, not only do we need to know which attributes are important from the non-software-

engineer perspective, we also need contextual understanding of why those attributes are

important for the real-world engineering of software:

 What do expert non-software-engineers think are the important attribute of great software

engineers?

 Why do expert non-software-engineers think those attributes are important for the

engineering of their products?

5.1 METHOD

Since little is directly known about the perspectives of non-software-engineers on software

engineering expertise, we sought to balance depth of understanding, breath of perspectives, and

relevance of insights in this initial investigation. We conducted semi-structured interviews with

46 senior-level employees across 10 roles—non-software-engineers—in engineering teams at

Microsoft. We chose to conduct the study at Microsoft because it allowed us to leverage our

knowledge and learnings from the previous studies presented in this report. We chose to conduct

semi-structured interviews because it afforded us the ability to explore insights in an open-ended

fashion, digging into details and opinions where necessary.

Though many non-software-engineers work with software engineers at Microsoft, we

wanted to focus on the non-software-engineers who were the most likely be essential to

successful engineering efforts. We examined the 20 listed professions on the Careers at

Microsoft site: Business Development and Strategy, Business Program & Operations,

Engineering, Evangelism, Field Business Leadership, Finance, Hardware Engineering, Hardware

Manufacturing Engineering, Human Resources, IT Operations, Legal & Corporate Affairs,

Marketing, Product Manufacturing Operations, Research, Retail, Sales, Services, Supply Chain

& Operations Management, Technical Sales, and Unassigned. We chose to focus on roles within

the ‘Engineering’ and ‘Hardware Engineering’ professions (which included roles other than

software engineering that support the engineering efforts) because they were the most relevant to

the engineering of products containing software at Microsoft. Though, we note that other

professions may have interactions with software engineers and may be interesting areas for

future research. Almost all of the software engineers at Microsoft belonged to these two

professions; also, as indicated by the organization arrangement, the non-software-engineers

within these two professions were likely (or expected to be) collaborating closely with software

engineers.

To ensure that we obtained in-depth and relevant knowledge, we chose to focus on full-

time employees at the ‘senior’ level or above, based on their titles in the company directory. In

order to reach the ‘senior’ level, one must have extensive industry experience—typically 5+

years—at Microsoft or elsewhere. Furthermore, one must have demonstrated expertise in their

field; within Microsoft, to reach the ‘senior’ level, starting as a new college hire, required at least

three promotions. Therefore, via the hiring and/or promotion processes, these individuals have

been affirmed by their peers as experts in their field. In addition to being experts in their own

technical areas, these expert non-software-engineers—due to their extensive work experience—

were also more likely to have worked with software engineers to ship products; thus, they were

better able to provide valid and interesting insight into software engineering expertise.

We organized senior non-software- engineers in the ‘Engineering’ and ‘Hardware

Engineering’ professions into 12 roles based on our understanding of their address book titles.

We then pruned down the roles to 10—requiring at least 50 ‘senior’ level employees working in

the Seattle area—to ensure populations large enough for us to sample for face-to-face interviews.

The 10 roles (with number of ‘senior’ level individuals in the Seattle area in parenthesis) were:

Artists, Content Developers, Data Scientists, Designers, Design Researchers, Electrical

Engineers, Hardware/Mechanical Engineers, Product Planners, Program Managers, and Service

Engineers. Two other roles had fewer than 50 individuals at the ‘senior’ level worldwide: Audio

Engineers and International Managers.

For the 10 roles, we solicited interviewees, via email, by stating that we aimed to

understand software engineering expertise and wanted perspectives of non-developers; an

example solicitation email is in Appendix C. We conducted interviews in a round-robin fashion

among the roles. This process facilitated identification of cross-cutting themes and enabled us to

think of interesting drill down questions for subsequent interviews. Of the 102 people recruited,

we interviewed 46 (a response rate of 45%). The interviews were approximately an hour in

length and were generally conducted in the office of the interviewee or in a near-by meeting

room; in two instances, the interviews were conducted in my own Microsoft office. We

interviewed at least 4 people in each role and a total of 46 people; the roles and titles of the

expert non-software-engineers we interviewed are in Table 5.6.

After explaining the study, the participants’ rights (e.g. to not participate and to ask

questions later), and obtaining consent, in our scripted semi-structured interview, we first asked

about the background of the informant and his/her role: “What is your background? And how did

you come to be a <role> at Microsoft?”, “What—in your opinion—is the function of <role> in

engineering teams?” Then we asked about their engagements with software engineers: “How

have you engaged with developers?”, “How does that engagement vary in the various phases of

development?” Subsequently, we asked about positive and negative attributes of the software

engineers the interviewee had worked with: “What are the positive attributes of good developers

you’ve worked with that you believe contributed to successful outcomes?”, “What are negative

attributes that you’ve seen contribute to less than successful outcomes?”.

Table 5.6. Expert Microsoft non-software-engineers interviewed

Roles Titles of interviewees

Artists Art Director (x2)
Technical Artist
Technical Art Director
Cinematic Animator

Content Developers Senior Content Developer (x2)
Senior Publishing Manager
Senior Content Engineer
Senior Producer

Data Scientists Senior Data Scientist
Principle Applied Science Manager
Principal Data Scientist
Principal Data Scientist Manager

Design Researchers Senior User Researcher
Senior Design Researcher
Principal Design Researcher
Senior Design Research Manager

Designers Senior UX Designer (x2)
User Exp Visual Designer
Principal Creative Director
Senior Design Lead

Electrical Engineers Senior Architect
Director Electrical Engineering
Senior EE Design Engineer
Senior Component Engineer

Hardware/Mechanical Engineer Senior Design Verification Eng (x2)
Dir, Electrical Eng
Senior Engineer
Senior Mechanical Engineer (x3)

Product Planners Principal Product Planning Mgr (x2)
Principal Product Planner (x2)

Program Managers Senior Program Manager Lead
Principal PM Manager
Principal Security Program Mgr
Senior Program Manager

Service Engineers Senior Eng Service Engineer
Senior Service Engineering Manager
Principal Service Eng Manager
Senior Service Engineer

Subsequently, we transitioned to asking the interviewees about the ranked list of 54

attributes of software engineering expertise from our previous studies of expert software

engineers (Table 4.4 in Section 4.2.1). We explained that the table was derived from

interviewing and surveying software engineers, as well as the ordering in the table. We then

asked the interviewee, “Please read through the list of attributes and note any attribute that stood

out as too high or too low, and tell us why. Then we’d like your top five attributes, from the

perspective of successfully collaborations with <role>.” Examining the list of attributes helped to

overcome saliency effects; numerous interviewees amended, added, or clarified their

perspectives on software engineering expertise after looking over the attributes.

For each attribute mentioned, as appropriate, we asked clarifying questions—requesting

explanations, more details, etc.—to better understand the attribute from the non-software-

engineer perspective. We also asked clarifying questions to better understand why that attribute

was important for successful real-world engineering projects. We concluded by asking

informants, “Ideally, how would you like to see people in your role and developers collaborating

together to engineer software products?”

To analyze the over 38 hours of interviews and over 350,000 words of transcriptions, I

used an inductive approach, making three passes through the data. First, I read through the entire

transcript to gain an overall understanding of the data and to tag all relevant discussions about

software engineering expertise; various side conversations about me, the purpose of my study,

and my degree program were omitted. I made a second pass through the transcript to identify key

themes, noting them in comments, as well as to highlight key excerpts. Third, I analyzed all the

informants in each role and organized them alphabetically. I summarized descriptions of the role

when possible, and their engagements with software engineers; I extracted attributes of great

software engineers that informants found to be important and analyzed the attributes’ importance

within the context of collaborating with the informants in that role. I aimed to identify what were

important the attributes as well as understand why the attributes were important. Finally, for each

section I reflected on the findings for that role.

Our choice of separately analyzing each role inductively, was influenced by the work of

Wenger on ‘communities of practice” (E. C. Wenger & Snyder, 2000) (E. Wenger, 1999) and

Tuckman on ‘developmental sequence in small groups’ (Tuckman, 1965). Rather than

‘communities of practice’, according the classification of Wegner, Microsoft teams are ‘project

teams’, assigned by management to specific projects to accomplish specific tasks (E. C. Wenger

& Snyder, 2000). Their tasks and power within project teams, in addition to attributes of other

team members (e.g. software engineers), influenced the experiences and perceptions of expert

non-software-engineers of other roles differently. Furthermore, though the project teams are not

‘communities of practice’ (and not well suited to be analyzed using that framework), many of the

roles clearly were ‘communities of practice’ (e.g. artists, electrical engineers, mechanical

engineers). Those experts had their own distinct ‘domain’, ‘community’ and ‘practice’, separate

from software engineers as well as experts in other roles. Consequently, we analyzed each role

separately, aiming to understand their distinct perspectives, before examining overall themes.

5.2 RESULTS

At a broad level, our expert non-software-engineers described great software engineers as

masters of their own technical domain, open-minded to the input of others, proactively informed

everyone, and saw the big picture of how all the pieces (even non-code-related attributes)

contributed to the experience of customers.

In the 10 subsequent sections, we will discuss the perspectives of expert non-software-

engineers in each role separately (ordered alphabetically by role), since each role had different

functions within Microsoft and interacted with software engineers differently. We will describe

the functions of the role within Microsoft, our expert informants, and the interactions between

our informants and software engineers; for many roles, the interactions directly affect

perspectives. We will then characterize their perceptions of great software engineers; we will

identify and explain the attributes that our informants considered important, supported by

contextual examples. Finally, for each role, we will provide a discussion section about the

perspectives of the experts in that role. Two roles, Data Scientists (Section 5.2.3) and Service

Engineers (5.2.10), were ill-defined within Microsoft; we will discuss the opinions of the

informants within those roles individually.

5.2.1 Artists

At Microsoft, expert artists were concentrated within teams that develop games. These included

software products that were wholly published and produced by Microsoft (i.e. 1st party games,

like Halo and Forza) as well as games that were published by Microsoft but contracted out to

other game studios to produce (i.e. 3rd party games). All our informants had training as artists,

with industry experiences in games (e.g. Ubisoft, Bungee) or entertainment (e.g. Disney,

Industrial Light and Magic) companies prior to joining Microsoft.

In discussing their experiences, several informants commented that their role had grown

significantly more technical over the years. With advances in 3D modeling and game engines,

artists were working more independently than ever before, inserting artistic elements (e.g.

textures and figures) into games without the help of software engineers. However, our

informants felt that, for most games, there were still technical limits to what artists can do

independently, necessitating collaborations with software engineers to bring a game to life:

…Art authoring tools that we have, Maya, Max. This is where we build our 3D models

and environments in… As long as the assets are already brought in, it's a way to pull

everything together. So I don't need to give it to a coder and he puts it together…there's a

level of sophistication to understand the technology that's happening with artists.

There're certain artists that have a certain level of technical savvy…

[Some things] still requires a coder, an engineer, all these people to come to bring this

together because really the engines are a bare bones shell that could be easily [extended]

with extra code written to go one way or the other…. That allows for coders and artists to

collaborate on…

-Art Director, Gaming

While some of our informants focused on visual aspects of the product—creation of

artistic assets—others were technical artists acting as the glue between artists and software

engineers. Technical artists straddle the fence between engineering and art; they wrote scripts

and automations that enable artists to plug in their assets into the game engine, and they managed

processes for integrating artistic assets into the game. Several informants discussed this

increasingly prevalent and important role. Software engineers focused on ‘game engines’ that

enabled artists to plug in their assets (e.g. textures and figures) into the game, and technical

artists facilitating and managing that integration process. With background in art, technical artists

facilitated the collaboration between pure engineering and pure art, commonly acting as

translators between the two communities of practice:

During the meeting room with artists and programmers, "Okay, here's the project,"

discuss those things. It's hard to do it because the language is different, the thought

process is different, so we have a role, technical artists…

Those technical artists translate engineers and artists [sic]… that person understands

script on the engineers' side, and also a little bit about the artist background… "Hey,

what is the problem?" "This is my problem." He collects the information, and if he can fix

it, he fixes. If he can't, he has to report to the graphic engineers, and they can fix it.

Because he understands most of my language, because artists' daily vocabulary is

different than the engineers. So he understands those things, and he understands the

engineers' side so he can help communicate with the engineers. That kind of helps, and I

think it leads to success in the game industry.

– Cinematic Animator, Gaming

5.2.1.1 Making great entertainment products

Our expert artists emphasized that games were entertainment products, necessitating software

engineers and artists to collaborate on a holistic experience for users, including both technical

game play as well as ‘look and feel’. Our informants felt that this mindset was important for

games because it influenced the objectives and priorities of the team, which in turn, changed

decision-making—more importantly, decision makers—within the team. Several informants

discussed changes in engagements between artists and software engineers in recent years; the

informants felt that, in years past, games were commonly engineer-constrained (i.e. teams built

what was technically possible), leading to engineering dictating the direction of projects, often

influencing into artistic choices. The underlying sentiment that decisions about ‘look and feel’

were often inappropriately being made by software engineering leads. However, with technology

advancement and industry maturation, informants felt that game development has grown

increasingly even-handed, with artists having an equal voice in team decisions. Artists viewed

the current engineering approach at Microsoft as balanced between artists and software

engineers:

[At Microsoft] we're all making the game so a large amount of it does hinge on the

infrastructure of the game, the bare bone–that's why engineers are critical to that…but

at the end of the day, somebody else is going to hang something off this. I've got to hang

artwork off this, someone is going to hang gameplay off this…

A lot of the times back in the day and this is going back well over 10 years. [The

engineers] were almost like a semi-lead for the project because of how they architected

the engine… really determined a lot of [the whole team’s] outcomes, what kind of

gameplay could happen, what kind of art could happen… "This is what you got. This is

how you are going to do it."

…It's become much more collaborative now…

–Art Director, Gaming

The primary challenge faced by our informants and their teams was the need to ‘push the

envelope’ under technical constraints while shipping on time. Perhaps due to the competitive

nature of the gaming industry, informants discussed needing to offer something outstanding for

each game and/or each release. However, this was frequently checked by limits of the underlying

technology (e.g. how many shapes can be painted and how fast) as well as how fast the game had

to be completed (e.g. yearly refresh cycles). Consequently, many attributes of great software

engineers emerge from collaborations between artists and software engineers to overcome these

challenges:

Early on it's important for us to understand with engineers and tech artists to understand

budgets… How big can their rig be, their memory, and budget allocation to this? ...If

we're doing a game where it's a single character and he is being overrun by thousands of

zombies, that's a different thing again because now you have that many characters on the

screen, something has got to give, right?

–Art Director, Gaming

For software engineers and artists working on games, these needs led to interesting engagements.

First, since entertainment products had a significant ‘look and feel’ component, artists and

software engineers worked together on technical compromises that actually enhance the ‘look

and feel’ of the game. For example, an artist described working with software engineers to

creatively reduce the number of polygons that needed to be drawn in order to fit the technical

budget, while enhancing the ‘creepy factor’ for a zombie game, by hiding much of the

background in mist. Good art does not always equate to technical perfection for games (e.g. as in

the ‘uncanny valley’, discussed in the next section); therefore, some technical limitations are

phantom problems. Artists worked with software engineers to understand which technical

problems actually needed solving. Finally, artists generally have less knowledge of technical

advances such as new gameplay capabilities with the latest updates to the Xbox hardware.

Therefore, when deciding on features and making cuts, artists typically wanted help from

software engineers to understand new possibilities and new alternatives. Overall, our informants

felt that artists and software engineers collaborated continuously throughout each phase to

achieve lofty goals while avoiding catastrophic problems at the end:

…if it's too easy, you're not pushing it, you're not trying hard enough, or you're not being

aggressive enough, or not innovative enough… You want it to hurt a little bit because

that means you're pushing it, but you don't want to hurt so much that you killed it all.

Our team, we try to stay as collaborative as possible…we all have to collaborate together

to make sure that we're all putting components and pieces together of a cohesive pie

instead of making stuff in a silo and then hoping it all comes together at the end, because

that never works.

– Art Director, Gaming

5.2.1.2 Artistic MacGyvers

Our informants felt strongly that software engineers should not ‘steam roll’ artists in making

decisions for the team. Informants felt that collaboration between artists and software engineers

should be egalitarian, with each side bringing different—equally valued—perspectives and

expertise. Informants described great software engineers as working together with artists to

produce their games; conversely, informants disliked software engineers that were dismissive of

artists and dominated the decision-making process. Several informants described deleterious

interactions where software engineers viewed artistic aspects of the game as merely ‘fit and

finish’—to be bolted on at the very end—rather than working with artists from the very

beginning to shape the direction of the project:

Yeah, so power-wise it's lower, "Okay, the artists just help us. Just make it pretty. Here's

the product, make it pretty." This is not a good situation because, I mentioned a couple of

times, the final product, people care about those. So if engineers understand those, yeah,

definitely there's no such power, like the battle and egos. Those kind of things create

disability [sic].

– Cinematic Animato, Gaming

To facilitate collaborations, all of our artist informants wanted software engineers to have

some understanding of the art domain, most importantly the language and the mindset. The

sentiment was that in order to work successfully with artists, software engineers needed to

develop some understanding of art. Our informants saw many instance of misunderstandings

resulting from software engineers lacking an understanding of artists (and vice versa). Artists

sometimes had difficulties understanding problems in the same way that software engineers

understood the problems. For example, one informant described his initial frustration with time-

consuming integration process imposed by software engineers, since he (the artist) cared only

about seeing the (final) visual outputs. Only after the software engineers explained the process

and the artist experienced the problems (e.g. breaking changes) that the process aimed to avoid,

did the artist start to appreciate the engineering processes. Software engineers also sometimes did

not comprehend what artists wanted. For example, an artist described having to iterate with a

software engineer on the lighting and reflections for an art asset because the software engineer

did not grasp the technical-artistic need for the object:

But sometimes there are engineers…who don't really have an eye for what looks right.

Does it look right to you? Or doesn't it look right to you? And they will just plug

whatever the correct or whatever they think it the right parameters and things… "That

looks blown out, the bloom is way too high on that, the lighting is terrible on that."

-Art Director, Gaming

Furthermore, since artists and the software engineers often had different concerns, each can be

myopic about the implications of their actions. Something that might seem simple or trivial from

an artistic standpoint (or vice versa) could result in significant implications for the project.

Therefore, out informants felt that great software engineers were able to impart understanding of

the relevance to artists:

…being aware that not everybody has the same concerns as you, not everybody works the

same as you. If you're a coder you have different things that make you scared at night

versus the artist, versus the producer. Not that you have to know them all, but you at least

have to know of them so that you can have a conversation with them so that when a coder

is freaking out, "What do you mean change this, this and this?" And the artist is like,

"Dude, it's just this one little thing." "You don't understand you completely broke the

build because you did this." At least have knowledge that, "Okay, sometimes I shouldn't

push that button," or whatever. Just being aware of that.

-Art Director, Gaming

In discussing successful collaborations, our informants described great software

engineers as having an in-depth technical knowledge, which commonly helped artists in three

ways. First, great software engineers used their knowledge to help scope the work (e.g. making

trade-offs) in order to keep the project within bounds of technical feasibility and schedule.

Scheduling was critical for games since development was often time-bound (e.g. in time for the

holiday season), with significant financial ramifications for missing dates. Our informants felt

that artists would commonly suggest “pure fantasy” and needed software engineers to be the

“voice of reality”. Second, great software engineers offered alternatives or novel artistic

possibilities based on their understanding of advances in computing, even predicting future

capabilities. Great software engineers knew the abilities of the existing technology and

anticipated the capabilities of new technologies; they would suggest technical changes to achieve

a better look and feel than what was originally envisioned by the artist. Third, great software

engineers worked with artists on creative solutions within the constraints of the system during

development. Our informants appreciated engineers who were willing to work with them on

workarounds and trade-offs to approximate their artistic goals amidst constraints:

 [Software engineers] who, like the MacGyver kind of attitude where, "Hey, given these

constraints, here's what we can make." … So the ability to be able to say, "Well, what is it

gonna take to get us there in the timeframe that we need?" And so the best software

engineers that we've worked with from an art perspective are the ones who can think

quickly on their feet and improvise to come up with creative solutions to help meet the

needs.

-Technical Art Director, Gaming

Collectively, this indicated that artists envisioned a great software engineers as a ‘MacGyver’,

who was a fictional American TV character famous for being resourceful and possessing

expansive knowledge.

Our informants believed that great software engineers also needed to have certain

mentalities in order to be successful in the gaming industry. Foremost, informants felt that people

working in the gaming industry understood that, in order to produce a successful product, they

needed to ‘push the envelope’. Therefore, software engineers could not be risk-adverse. Second,

software engineers needed to be open-minded and be willing to adapt. Our informants stated that

what is ‘correct’ and ‘best’ may not be known ahead of time, and making and prototyping was

often required to understand the optimal solution, similar to the mentality behind knowing by

doing (Schank et al., 1999). Therefore, what the team set out to do may change once an initial

prototype is produced. Software engineers should adapt to “deliver what's actually useful and

maybe not what was on paper”. Finally, our informants felt that software engineers needed to be

hardworking. In addition to myriad challenges throughout development, there was likely hard

work at the end to push the product across the finish line. This extra work was commonly

necessary because the team was attempting to ‘push the envelope’:

"Aim for the stars and hit the roof." And what is in implying is that shoot for 200%

knowing that you're going to attrition down to 100%. What you don't want to do is aim

for 100 and then naturally attrition down to 50, because then it's just like, there's no

point. There's no point in making that… [Developers] are unsung heroes at the end to

like, "Okay, we're going to make this pile of craziness actually fit and ship and run."

-Art Director, Gaming

5.2.1.3 Discussion

Our expert artists felt that successful games required ‘look and feel’ in addition to game play;

therefore, only through addressing needs of both artists and software engineers can the team

produce a successful product. Software engineers needed to acknowledge and value the

contributions of artists. This is most closely related to the concept of creating shared success in

studies of software engineers, as well as the attribute of well-mannered (or not being ‘an

asshole’). However, most informants felt that current Microsoft teams did not have this problem,

suggesting that this might be a carry-over sentiment from previous companies or previous times

(i.e. prior to the advances in digital art).

Understanding of the art domain is closely related to being knowledgeable about people

and organizations from studies of software engineers; however, the focus of our informants was

on mindset and language. Artists had their own ‘community of practice’, with their own shared

understandings and vocabulary; while much of the existing research on ‘communities of

practice’ (E. C. Wenger & Snyder, 2000) has focused on cultivating communities within

organizations, little attention has been paid to different communities intersecting and colliding in

project teams. Our findings indicate experts from different communities of practice may have

special needs when working together in close synchronicity. Our informants felt that it was

essential for software engineers to be able to communicate effectively. All informants valued

some aspects of the attributes is a good listener, integrates understandings, and creates shared

understanding, which required software engineers to understand the mindset and language of

artists. The underlying sentiment appeared to be that games development involved many

unknowns and uncertainties, and having constant communications was key for success.

The mental aspects discussed by our informants closely matched the attributes of open

minded, willing to go into the unknown, adaptable, and hardworking previously identified by

software engineers. However, needing this combination of attributes to work in game

development might be unreasonable. In our survey study, one software engineer specifically

discussed his disdain for (purposely) overloaded schedules of game projects as the reason for his

low rating for the hardworking attribute (Section 4.2.1.2).

5.2.2 Content Developers

Most of the content developers we interviewed were technical writers. Three of the five content

developers produced written content for Microsoft products, ranging from dialogs boxes in

Windows, to MSDN articles, to technical manuals for Microsoft cloud computing solutions. One

of the remaining two managed the content publishing process and the other was in a ‘supply-

chain’ role, selecting TV, music, and movie content to display in Microsoft online stores. These

last two content developers were excluded from our analysis; their inclusion was likely an

address book title error. In the subsequent sections, we will focus on the perspectives of our three

expert technical writers.

One of our informants was a writer by profession and wrote for magazines and

newspapers prior to Microsoft; the other two informants were trained and worked as software

engineers at Microsoft. Our informants all saw the content developer role as a bridge between

engineering intent and customer needs. Our informants felt that software engineers and technical

writers needed to work together to articulate the value of the software to customers. Furthermore,

our informants felt that customers often did not know how to use the (often very complicated)

software products, even the technically savvy customers like IT professionals. Therefore,

technical writers produced necessary instructions and explanations that enabled customers to

navigate and problems solve on their own. Out informants felt that, no matter how powerful or

feature-rich the software product was, customers will abandon the product if they do not know

how to use it. Finally, our informants also felt that they helped to voice needs of customers,

getting software engineers to clarify features that received many ‘how to’ searches on MSDN or

CSS (Customer Service and Support) calls:

Customers don't buy the product for content. But they can end up really disliking the

product because of content… Our product should be built in a way that customers don't

need content at all, right? But we're not there yet. And so when they do need content, it

needs to work for them. It needs to solve their problems. And if it doesn't, they're going to

blame it on the product.

-Senior Content Developer, Enterprise

In addition to software engineers, writers often worked with program managers and CSS.

Program managers were responsible for the overall vision of the project (program managers are

discussed in detail in Section 5.3.9). Our informants commented that they commonly talked with

program managers instead of software engineers to understand the intent of features, especially

early in the software development process. Once the software product was released, our

informants examined common topics of customer support calls in addition to automated data

collected from online support sites (e.g. MSDN). Technical writers then used these data to work

with software engineers to provide content—MSDN articles, support materials, etc.—to help

customers properly use the software features.

5.2.2.1 Explaining the software product to customers

Our expert content developers worked with software engineers to produce a wide variety of

content to help customers understand the software product. At the very basic level, technical

writers reviewed and edited each display string—messages displayed by the software to the

customer—to ensure that it both conveyed the intent of the software engineer and could be

understood by customers. Technical writers also worked with software engineers to produce

basic ‘how to’ information, typically shipped with the product or online. Our informants felt that

this was especially important for consumer electronics and novel software products. Customers

of consumer electronics (e.g. Windows Phone and Xbox) might have limited understanding of

technology; therefore, our informants felt that describing features (and feature interactions) in a

manner comprehensible for a lay-person was important for a successful software product. For

novel software products (e.g. HoloLens), our informants felt that descriptions and instructions

were especially challenging because they commonly involve new features and interactions,

sometimes requiring novel vocabulary and metaphors.

After the software product releases, technical writers continued to work with software

engineers to tackle emergent issues. By monitoring feedback channels (e.g. MSDN, CSS), our

informants worked with software engineers to select salient issues and produce information for

various help channels (e.g. Knowledge Base articles, MSDN articles, etc.).

The most difficult content for our expert writers were technical instructions (e.g. setup

guides) that required customers to have understanding of the complex system (e.g. cloud

computing infrastructure for enterprise software products). The entire system may involve many

sub-systems and many configurations that all need to be specifically configured to achieve the

desired results. Our informants felt that providing a working understanding of the whole system

and then explaining necessary actions within that complex setting can be highly challenging,

frequently requiring significant communications with software engineers:

…the best type of interactions that you have is to get to that level that is actually useful

and a lot of software developers don't know that level. So you have to then go in there

and say, okay, what about this particular part and figure that out… you may have to

corral or not corral them

-Senior Content Developer, Enterprise

5.2.2.2 Mindful explainers

While generally acknowledging that written content was an ancillary (but necessary) part of

software products, our informants that felt that great software engineers treated technical writers

(and their writing tasks) with respect. Great software engineers did not ignore or put-off requests

from technical writers; they responded to technical writers’ inquiries in a timely manner, meeting

the timelines necessary to produce written materials (e.g. editing and legal reviews). Our

informants found this to be especially important for software engineers working on products with

fast shipping cycles, like online services. Our informants felt that the shipping cycles were so

fast that writing the necessary supporting materials (e.g. setup instructions) needed to start at the

same time as the coding; delays often caused scheduling problems. Great software engineers

were mindful of timing and promptly provided the necessary information:

It's continuous because there are things coming out. [We] ship something every day.

Literally every day, something comes out… you have to go in there and understand how

something is going to ship, have an idea of that sort of thing, and then you put up

something quickly…

-Senior Content Developer, Enterprise

Though none of the informants discussed this in the open-ended portion of the interviews,

when shown the full list of attributes, all three agreed that technical correctness and coding

competency was critical. Our informants assumed the attribute was a given. The sentiment was

straightforward; if the feature was broken (i.e. not coded correctly), then no amount of words

was going to make it better:

…if the code is broken, it doesn't matter what word I put.

-Senior Content Developer, Enterprise

Beyond making a good software product, our informants felt that great software

engineers recognized, acknowledge, and respected that customers were unique. In most cases,

most customers are less technically savvy with low computing self-efficacy. Customers

(especially of consumer electronics) sometimes had trouble with seemingly simple tasks and

features. Great software engineers were willing to work with the technical writer to ensure that

their features could be understood by customers, even if the explanations seemed trifling:

…my job is literally to translate this stuff so that normal humans can understand and use

the product. They're not developers either; they're less technical than I am by a long

shot… a lot of people don't know what their browser is. There's a lot of really low

technology people who are really uncomfortable with tech. So some devs get that and

they're happy to have to help.

-Senior Content Developer, Content publishing

In other cases, the deployment context of the customer may be vastly different from the

development context; therefore, features that worked within the development context would not

work in customer environments. Our informants felt that great software engineers understood the

critical pieces (i.e. specific components or activities that must be configured in a specific manner

for the feature to work) and worked with writers to effectively communicate the important

instruction to customers:

The best [software engineer] I encountered understood the pieces that were going to trip

people up and actually proactively notified me of those. So while he was going through

code he went, "Oh, yeah, somebody is going to stumble on this. Oh, yeah, somebody is

going to stumble on this." … Understanding how their piece fits in with everybody else's

pieces and then the scenario in which it will get used.

-Senior Content Developer, Enterprise

Furthermore, our informants felt that great software engineers needed to be open-minded

to feedback and data from customers. They undertook constructive actions to understand why

customers were having problems and to address the underlying confusion.

5.2.2.3 Discussion

Though almost taken for granted, the most important attribute of great software engineers from

technical writers’ perspectives appeared to be technical competency. Central to technical

competence was the attribute of paying attention to coding details. Our informants felt that error-

free code was essential, since no amount of documentation and explanation can compensate for a

broken feature. Technical competency, as viewed by writers, was also related to several decision-

making attributes. The sentiment was that great software engineers leveraged their technical

competency to avoid problematic decisions (e.g. breaking existing workflows) as well as

understood the implications and potential pitfalls. This allowed great software engineers to work

with technical writers to create appropriate explanations and guides for customers. The growing

their ability to make good decisions and seeing the forest and the trees attributes were closely

related to this sentiment.

Informants also felt that great software engineers understood (or at least acknowledged)

that their customers were not like them. Thus, they were open to feedback (e.g. from CSS and

writers) about customer pain points, and to create content for seemingly obvious features (e.g.

how to make a phone call). These were closely related to the attributes of knowledgeable about

customer and business and open-minded. Our informants felt that these attributes were essential

to willingness of software engineers to collaborate with technical writers.

Finally, all of the things that the technical writers reported to ‘dislike’ about working with

subject matter experts (e.g. software engineers) in Mehlenbacher’s survey of technical writers

were reported in our study (Mehlenbacher, 2000). More than 15 years after Mehlenbacher’s

study, technical writers in our study were still discussing problems with ‘time and accessibility’,

‘respect’, and ‘communication skills’ in collaborating with software engineers.

5.2.3 Data Scientists

Data scientists existed in many engineering teams across the Microsoft; however, they did

disparate tasks. There was no congregation within teams or similarity of functions, as with many

other roles (e.g. artists or content developers). The likely reason for this lack of uniformity was

that ‘data’ pervades software engineering; ‘data’ can be used for many purposes depending on

context (e.g. the software feature itself, the logs for analyzing usage, or the target of software

features). Therefore, there was no simple grouping or explanation of the ‘data scientist’ role

within Microsoft.

Furthermore, the role of ‘data scientist’ was relatively new at Microsoft. All of our expert

data scientists had 10+ years of experience, but most did not start their careers at Microsoft as

data scientists: most transitioned from software engineers or testers at Microsoft. Only one of the

four expert data scientists we interviewed was hired by Microsoft as a data scientist.

Due to their disparate functions within teams, we will discuss all data scientists

separately—their context, their engagement with software engineers, and their perspectives on

great software engineers—instead of examining them together. We will distinguish the data

scientists by their function within their respective software engineering teams.

5.2.3.1 Data scientist who engineered software

Some data scientists at Microsoft were essentially software engineers. This was the case for one

of our informants who managed a team working on the Bing search page ranker. Our informant

had both software engineers and data scientists reporting to him; all of his direct reports

performed similar tasks.

Our informant explained that the organization converted him and some of his team to be

data scientists because their jobs involved extensive experimentation. His team experimented

with improvements to the ranking algorithm (e.g. for speed, for relevancy) and shipped

successful improvements directly in ranking algorithms. All members of the informant’s team

performed the same set of tasks—formulating possible improvements, developing the software,

and experimenting—because he felt that this arrangement expedited development and reduced

issues that were ‘lost in translation’, where software engineers do not fully comprehend

requirements defined by data scientists:

I'm used to our model, where data scientists also are engineers themselves. I think that

works better… There's no handoff. Right? There's no interpretation… I think if you have

scientists who can actually implement code and ship it, that's useful.

-Principal Applied Sciences Manager, Web Applications

In discussing engagement with software engineers, one informant referred to working

with the platform team on infrastructural improvements. In those interactions, our informant’s

perspectives were very similar to those of other software engineers working with partner

software engineering teams. He wanted software engineers to verify that they understood the

requirements and iterated with his team to ensure that the correct software features were being

delivered. Our informant discussed that some requirements may not be feasible and unforeseen

issues can arise; therefore, he wanted software engineers to frequently communicate problems

and to work with his team on appropriate solutions. This approach—constant communication of

status, collective problem solving, and iterative delivery—is essentially the thinking behind both

Scrum (Rising & Janoff, 2000) and Spiral (B. W. Boehm, 1988) software development methods.

Our informant also felt that software engineers obviously needed to be open-minded as

well as pay attention to coding details. Our informant did not discuss these attributes during the

open-ended section of our interview, but when seeing the list of attributes from our previous

studies, commented that these attributes were obviously important:

I think pays attention to coding details certainly makes sense to be the most important

one. It's like saying a plumber pays attention to what he's building when he's doing . . .

Anybody who's in the business pays attention to one's details. It makes a lot of sense.

-Principal Applied Sciences Manager, Web Applications

Our informant singled out one attribute—data-driven— as very important from his

perspective as a data scientist but which he felt was not given enough attention by software

engineers (i.e. not ranked high enough in our survey). The desire for software engineers to be

data-driven would a common theme among the data scientists that we interviewed. Our

informant felt that data driven was important because intuition-driven decisions can often be

wrong; even collecting some basic data can help avoid costly mistakes:

I think data-driven is very low on the list, which surprises me… So I guess there's an

opinion that measuring the software outcomes is not important, but I think that's

extremely important. I think a lot of work you do needs to be data-driven. You can't just

say, "Well, I have a feeling this will work."

-Principal Applied Sciences Manager, Web Applications

5.2.3.2 Data scientist who prototyped data features

Some data scientists at Microsoft prototyped data features that software engineers then

implemented. One of our informants worked on anomaly detection for Microsoft online services.

Our informant had degrees in mathematics/statistics, with work experience in finance prior to

joining Microsoft.

The structure of his team was very similar to that of our first informant (data scientist and

software engineer working together); he sat in the same hallway as the software engineers that he

worked with. The difference was that the data scientists on his team did not write the production

code; the data scientist worked with the software engineers to fully actualize the features. Our

informant focused on this collaborative effort to fully implement the features that he prototyped

in his discussions of great software engineers:

My neighbor is a software engineer and my neighbor's neighbor is a software

engineer…We do models then we kind of close the gap between business and engineers.

We develop strategies and then we figure out how we want to do [them]. Then software

engineers, they really help realize our wishes, so we work really close.

-Principal Data Scientist, Web Applications

Our informant felt that, in his domain, great software engineers need to be very detail-

oriented with a full understanding of behaviors of the software system. Since his features dealt

with large number of transactions involving money, even minor issues affecting a small

percentage of transactions could be costly for Microsoft. Therefore, great software engineers

needed to fully understand the risks and consequences of their choices; our informant felt that,

when problems can result in lost money for clients, an explanation of ‘I don’t know’ was not

acceptable.

Our informant further described great software engineers in his domain as flexible and

fast. Great software engineers understood that issues involving money needed to be fixed

immediately, often outside of regularly planned development cycles. Therefore, our informant

appreciated software engineers who were able to quickly fix (or at least temporarily patch) issues

and were willing to adjust their development plans to accommodate unexpected interruptions.

When you are working on business, you actually impact the customers in real time. You

cannot ask the customer, "Okay. We know that there's a bug. Wait for three days, we're

going to fix the bug." It's not going to work… Sometimes it can be short term solution, but

need to pay immediate attention.

…They need to be very flexible. I know we have some release cycles and we have to do

some code review and we want to make sure our work also has good quality. By it does

not means we can slow down. It doesn't mean we have to follow step by step, without

changing it a bit… you do have to get a little creative sometimes

-Principal Data Scientist, Web Applications

5.2.3.3 Data scientists who consulted on usage of the software product

Some data scientists at Microsoft produced software that reported on usage of the software

product. Two of our informants built data processing and monitoring systems that took usage

logs to report on the status of the software product. These were ‘shadow’ software systems; their

value was in providing information about the actual software product and would not exist

without the original. Nonetheless, our informants believed that having data on the state of the

software system was essential for an organization to improve. These data would allow the

organization to track progress, assess outcomes of investments, and identify new areas for

improvement.

In this monitoring and improvement process, our informants felt that data scientists acted

as consultants to software engineers of the software product. Data scientists worked with

software engineers to clarify vague concepts (e.g. success and failure) and to instantiate them

with concrete metrics. Our informants then created automated systems that enabled software

engineers to track those key metrics and to assess effects of changes. Finally, our informants

worked with software engineers to analyze the data and to develop actions to improve the

software product:

…it's actually more that the data scientist is more on the engineer side to help improve

the system…

.. analyzing the data, provide a daily scorecard. I provide a metrics that the developer

can come and see whether their changes improved, with what they have done actually

had made the system better. But at the same time data is used to improve our system

automatically, programmatically, interacting [sic] with developer.

-Principal Data Science Manager, Web Applications

Our informants felt that great software engineers were open-minded and iterative, willing

to listen to the data and make quick adjustments. Our informants felt that in order to make

progress, software engineers needed to be interested in knowing and understanding more about

their software product (e.g. how many customer did it have, who were these customers, what

features were they using, etc.). The great software engineers were open to experimenting with all

aspects of their software product and to empirically assessing the benefits and drawbacks of

those changes. Our informants felt that great software engineers based their decisions on actual

data rather than intuition. Above all, our informants felt that great software engineers, perhaps

due to the fast-paced nature of online software, made changes continuously and quickly:

"I have idea [sic]. Don't see me for three months. In three months I will build a cool

thing." No. I want to see it the next day, even better, tomorrow, a little bit, and more

better. Can you get feedback about what you just built, just a little bit? Because every

time we build something, every time we have feedback, we can say, "Tomorrow let's

change. Let's change it." Now I am looking for this kind of engineer…

- Senior Data Scientist, Applications

Finally, our informants also wanted software engineers to be intimately familiar with

their software products. Our informants felt their software product were complex; in addition to

complexities within the software product itself, the engineering system (e.g. development

branches with anomalous builds) or client-side software (e.g. browser refresh behavior and plug-

ins) can also have idiosyncrasies that corrupt the data. Therefore, our informants wanted

software engineers to, as much as possible, make error-free changes, and to proactively notify

data scientists when changes may affect their monitoring and reporting data:

Data, it's very hard to be accurate. Data is very hard to be correct. I get garbage data

almost all the time…

However, I work with some developers that are just incredible. I get mail from them.

"Hey, I'm changing this today because of this. I realize the data I feed to you can be

better. I make these changes." That's the best experience I've ever had.

…And they make my life much better. And the worse thing is, sometimes I don't even

know the data is wrong, and I publish the data. I make a big business decision based on

the data, and it can hurt. It can be millions of dollars because the data is wrong. So, yes,

pay attention to detail!

-Principal Data Science Manager, Web Applications

5.2.3.4 Discussion

The fact that our expert data scientists wanted software engineers to be open-minded and data-

driven was no surprise; those are the tenets of data science. The concept of experimentation was

also central in our informants’ discussions of great software engineers. Close to the mental

attributes of continuously improving and willingness to go into the unknown, our informants’

sentiment on experimentation was akin to a philosophy of software engineering. Rather than a

‘build to last’ mentality, our informants felt that great software engineers had a ‘fail quickly’

mentality—getting to the best answer quickly by iterating through variations. This may reflect

emerging trends within the software engineering domain to better leverage data to construct

software products (Economist, 2010).

Our informants wanted technical excellence mostly to ensure that their own features were

correct and did not break. Their underlying sentiment was that of mutual dependence, likely

related to the creating shared success attribute discussed in interviews with software engineers.

Another contributing factor was likely the ‘garbage in garbage out’ problem. Data validation and

data cleansing are commonly the most expensive and time-consuming parts of data analyses

efforts (D. Fisher et al., 2012). Therefore, our expert data scientists’ opinions may reflect the

major pain points that they wanted software engineers’ help to ameliorate.

5.2.4 Design Researchers

Design researchers at Microsoft are also called UX researchers, user researchers, or usability

engineers. Throughout Microsoft product divisions, design researchers conduct qualitative

research on customers. All of the expert design researchers we interviewed had advanced degrees

in psychology or sociology. Our informants felt that design researchers provided engineering

teams with knowledge on the holistic experience of users with the software product.

Even though our informants did a variety of tasks, all had performed usability testing at

some point in their Microsoft careers. Usability testing at Microsoft entailed bringing the

intended customers in, letting them use the software feature or product, observing their usage,

and asking them questions about their experiences. Conducting his qualitative research appeared

to be the central function of design researchers at Microsoft.

In addition to usability testing, our informants performed a diverse set of user-centric

tasks. One informant examined communities around user-generated content (UGC) in online

games to understand user needs and to develop guidelines that would help the development of

other Microsoft games. Another informant organized outreach initiatives to cultivate fans and to

generate interest in Bing. Yet another informant oversaw consistency of user experience across

Office applications when the application migrated to iOS and Android platforms. The common

links between these tasks performed by our expert design researchers were their qualitative

nature and their focus on users.

Microsoft, like many technology companies, is investing in ‘big data’—the collection,

analysis, and leveraging of customer telemetry data. Nonetheless, our expert design researchers

felt that qualitative research will always be needed. Contrasting with the quantitative data

collected by ‘data scientists who consulted on usage of the software product’ (discussed in

Section 5.2.3.3), our informants felt that those behavior data— ‘big data’—cannot explain intent.

Data collected through instrumentation cannot inform software engineers why users are (or are

not) performing certain actions. Our informants felt that design researchers provided that

qualitative understanding to software engineering teams:

We do a lot of instrumentation where we can see what someone is doing, so it's

behavioral data, that's through instrumentation…. It doesn't explain why. What we bring

to the table is the why part of it or what is the intent… It's like "Aha! That's why someone

wants it."

-Principle Design Researcher, Web Applications

5.2.4.1 Ensuring that users can actually use it

The most common interaction between design researchers and software engineers was assessing

near-completed software features using usability studies. Many software engineering teams

worked with design researchers to ensure that their end-users can use their software products as

intended. Our informants felt that software engineering teams, especially the software engineers,

needed to know how the intended user used their features; contextual factors (e.g. established

workflows) and physical limitations like hand size that may affect usage. This knowledge was

especially important for novel features or product, where typical usage patterns were unknown.

The software engineering team might have a desired usage pattern in mind, but customers might

not use the software product as intended. Our expert design researchers provided that

information and often brought software engineers along to see how customers used their

software:

But also kind of late in the cycle, once we've got to a stable alpha or a beta--we often, for

a lot of products, you really need to see it in the user's own context… "Are people really

going to use this new world? We need to see if we need apps to be available. We need

people to be living with it at home for us to really understand how they're going to

integrate that into their real world right now”…

Any time we go out in the field or in the lab, we invite team members to come with us and

that's when dev would have the opportunity to join in and connect with customers.

-Senior Design Research Manager, Applications

Our expert design researchers also conducted user research prior to the initiation of

software project to understand user needs, and then worked with software engineers to develop

prototypes to assess the viability of features. Our informant discussed going out to user

environments to understand the users’ context, their existing solutions, their needs, and any

‘blockers’ they were encountering. Information provided by this process helped software

engineering teams make decisions about what software features to include in their software

products. Based on this understanding, design researchers sometimes worked with engineering

teams to iteratively build and test prototypes via usability testing. Sometimes, these prototypes

were cardboard or HTML mockups; other times, these were interactive prototypes built by

software engineers, which allowed teams to examine user interactions. This process helped

software engineering teams understand user reactions to various design options and allowed the

teams to fine-tune their designs:

So that meant going out and learning about the current state of things, what people were

doing in their working environments, what their needs were, what blockers existed to

accomplish what they wanted to accomplish now. Bringing that back to the developers

and having them start to prototype solutions to these problems then working with them to

sort of hone those prototypes through user testing… help alleviate the decision-making

tax, or your cost on decision about things they see at user end.

-Senior User Researcher, Gaming

Our informants stated that they generally work with program managers—PMs—

(discussed more in detail in Section 5.3.9) instead of the software engineers. PMs were typically

responsible for software features overall and interfaced with the other functional roles. Our

design researchers indicated that they commonly provide information to PMs and worked with

PMs on usability testing. Needing to work through an ‘intermediary’ would prove to be

problematic for many roles, as the PM was sometimes a barrier to getting actual technical

information from/to software engineers:

…we tend to interface more so with the [program manager]… owner of a feature or a

product, and he or she then interfaces with different functional roles to deliver that

feature ultimately. They are responsible for spec-ing it, and they are the people then who

tend to become the project drivers for getting it out the door.

-Principal Design Researcher, Web Applications

5.2.4.2 Respectful collaborators

In discussing great software engineers, our informants focused on three detrimental attributes

that great software engineers should avoid. The first was that great software engineers should

strive to be data-driven and open-minded rather than not believing data. Our informants

discussed software engineers feeling that users in the usability studies were not intelligent

enough to properly use the feature as they had designed it. These software engineers then refused

to adjust their software features to address the usability problems, feeling that ‘dumbing down

the experience’ would compromise their engineering artistic integrity. Our informants assessed

these poor software engineers as having ‘self-referential’ problems; they made decisions by

referring to their own experiences and experiences of ‘folks down the hall’. Informants felt that

great software engineers understood that their users may not be like them or their colleagues.

Great software engineers accepted that they may not know what is best for their customers. Great

software engineers were open to learning from the usability studies to improve their software

features:

I think [this great software engineer] definitely took the approach that he didn't know

best, that it really is our customers that we need to be understanding what is working for

them, what isn't working, what their needs are and that they're right. Yeah, we might be

smarter in different ways and understand, "Oh, if you only did it this way, you could be

getting so much more productivity out of what you're doing," but that's not how the

customer thinks about it. And it doesn't fit in with their approach or their life… He

listens. He's open to input. He always was soliciting input from a variety of functional

teams.

-Senior Design Research Manager, Applications

For this first detrimental attribute, our informants felt that an effective solution was to

bring software engineers to usability testing sessions. Our informants discussed that software

engineers got it once they saw intelligent professionals struggling with their software features.

Seeing usability studies firsthand enabled software engineers to understand that usability study

results come from smart people and the problems they encountered were due to the software

features. This commonly resulted in gaining trust for the information provided by design

researchers and facilitating future engagements:

Usually if you get a developer, even a mildly conscientious developer, even someone who

has any pride in their work at all, into a lab on the other side of the glass watching users,

you can usually break through to them… I was, in their words, testing secretaries. I

wasn't testing smart people. Seeing a lawyer struggle with it, seeing someone who's paid

more per hour than they were by quite a bit, not able to do it, get really frustrated,

clicked with some folks.

…Once someone comes on board and they want to do the right thing for users then

usually it's going to be a good relationship.

-Senior User Researcher, Gaming

The second detrimental attribute discussed by our informants was that software engineers

thought that qualitative research could be done by anyone. Some software engineers did not

respect the design research role; informants discussed software engineers reading various articles

or materials and then believing that they were qualified to conduct and interpret qualitative

research. This caused problems in collaborations because these software engineers would then

question results and suggestions of design researchers, creating adversarial situations. Our

informants firmly believed that, without extensive knowledge in qualitative research and a

foundation in social science, interpretations would not be correct. They expressed frustration at

the lack of respect:

My background is psychology, and behavioral research science is something they can

totally just intuit… they can figure "I can learn languages" so they can learn what we do.

So they'll come to a meetings and say, "I was reading yesterday about this principle and I

think you're doing this the wrong way because XYZ. Sometimes they're applying the

information right, sometimes they're applying it wrong. They're almost always applying it

in too narrow a scope to understand the full context.

Those folks are tough to deal with because they will devote a ridiculous amount of time

actually trying to build a case against anything you're doing and ultimately at some point

you have to deal a blow to them about that to deal with it, and it becomes an adversarial

relationship.

You wouldn't want me to go online and start trying to build code and suggest you inject

that code into your code base… In the same way you might able to give me some

information you've found someplace but you're not going to be able to put it in the full

context of my expertise and you're not going to be able to put in the full context of

understanding human behavior and psychology.

-Senior User Researcher, Gaming

Finally, our informants felt that some software engineers simply did not care. These

software engineers were content ‘checking off boxes’ for their features; they did not take

usability (usually an unspecified aspect of software features) into considerations and would not

fix usability issues. Our informants felt that software engineers should consult design researchers

on how users would approach specific scenarios to ensure that their features were usable; these

discussions would enable software engineers to make better decisions about their software

features. Furthermore, great software engineers did not neglect usability issues; they took the

time to make refinements and corrections based on findings of usability studies:

…this sounds really glib but it's true. I've worked with developers who are lazier... they're

checking off boxes, and they won't want to go any farther outside of that. The little bit of

extra effort to make something work right…

They're smart people, these are smart folks, but they're not going to take the time to

interpret through that intelligence and say, "Oh, what they probably meant here was, or

what is likely here is."

 -Senior User Researcher, Applications

5.2.4.3 Discussion

Above all else, our expert design researchers want software engineers to respect and appreciate

the contributions of design researchers. This discrepancy may be due to the differences between

the quantitative world of software engineers and the qualitative world of design researchers;

software engineers may not understand the value of qualitative data. The notions of respect and

appreciation of others are partly related to the knowledgeable about people and organizations and

open-minded attributes discussed by software engineers (Section 3.3.2.5 and 3.3.1.2);

furthermore, the manner in which our informants discussed poor software engineers suggests

being well-manned (i.e. not being an ‘asshole’) may also relevant.

Problems with ‘self-referential’ decision-making are closely related to the knowledgeable

of customer and business attribute. Great software engineers needed to base their decisions on

knowledge about the intended user and not themselves. Avoiding ‘designing-for-oneself’ is the

underlying concept of ‘apprenticing with the customer’ approach to software design (Beyer &

Holtzblatt, 1995), and is one of motivating factors for Cooper in Inmates Running the Asylum

(Cooper, 1999).

Interestingly, our informants rarely discussed problems with communication, unlike

experts in other roles whom we interviewed. A likely explanation is that the well-defined nature

of engagement—usability testing—simplified communication. The roles and responsibilities of

designer researchers and software engineers were well defined, likely reducing the complexity of

communications. Most of the problems expressed by our informants were around software

engineers not believing the information.

5.2.5 Designers

Our informants characterized the purpose of designers at Microsoft as ensuring enjoyable user

interactions with the software product. Typically, this involved two aspects: visual design and

user interaction design. Most of our expert designers had backgrounds in art and graphic design,

many stating that migrating to interaction design with the rise of the software industry was the

logical career move. Designers are pervasive throughout Microsoft with higher concentrations in

teams with user-facing software features (e.g. Bing).

Our informants felt that there was a general split between visual designers and interaction

designers. Interaction designers focused on user interfaces, ensuring that users can easily use

interfaces and can understand the information presented in those interfaces. As such, in addition

to usability, our informants felt that interaction design involved ‘information architecture’:

showing users the right amount of information, at the right time, and at the right place, to enable

the users to accomplish their tasks without overwhelming them:

[Interaction designers] stick with the information architecture. They stick with the user

flow and the wireframes.

-User Experience Visual Designer, Gaming

Our informants stated that interaction designers typically worked with ‘wireframes’,

which are sketches that specify location, content, interactions, and workflows of user interfaces.

Once the interactions and the user interfaces were finalized, visual designers produced the

specific visual assets (e.g. images, logos, and CSS stylesheets) needed by the designs.

Visual designers made visual elements for the software product, including icons, logos,

background, layouts, and even marketing materials; furthermore, they ensured that the software

product overall was atheistically pleasing. While sharing some of the same tasks (e.g. creating

visual assets) as artists (discussed in Section 5.3.1), in addition to visual aesthetics (e.g. color

pallets, typography, style considerations, etc.) visual designers also focused on the usability of

the artistic assets (e.g. user interfaces atop the images). For example, depending on whether the

image was going to be rendered on a PC or a phone, visual designers might need to change the

size and composition of the images. Visual designers took those factors into consideration in

designing the visuals, made different versions of the visual depending on the intended user

contexts:

…what does this look like on a mobile device? Well, obviously you've only got that much

room for a mobile device and you can see that the page is not set up here to scale… Does

this work on tablet surfaces, because now, a tablet surface might be like that big. But

there's also higher resolutions of tablets now, so what happens?

-Senior UX Designer, Web Applications

Our informants stated that designers transitioned fluidly between visual design and

interaction design; most of the informants had filled both positions in their careers at Microsoft.

Sometimes, especially in small teams, designers provided both visual and interaction designs,

contributing whatever the team needed in the design space:

Something that I've found in this role particularly, it's very much a jack of all trades. So

the ability to be very flexible, because the team size can oftentimes fluctuate… I end up

doing a lot of different things... online advertising and design, even on XBox's splash

page… in addition to the entire website design… not just coming up with the flow or the

user experience that someone goes through when they're on the website, but then also all

the images that go in there.

-User Experience Visual Designer, Gaming

Designers at Microsoft commonly had the same managers as design researchers and

reported up through the same management chain; many of our informants reported working

closely with design researchers. Both designers and design researchers focused on ensuring that

users were able to use the software product. Design researchers commonly conducted usability

studies to assess user reactions to the designs produced by the designers.

5.2.5.1 Crafting enjoyable interactions

At Microsoft, designers worked alongside software engineers to produce software features. The

prevailing sentiment among our informants was that software engineers were responsible for

what happened underneath the covers, getting the software feature to “work just right”, including

reliability, scalability, and compatibility (e.g. across browsers). Designers were responsible for

how users interacted with the software feature, conducting usability testing with design

researchers and iterating on the design to ensure users are able to use the software features as

intended:

Good developers will want to collaborate with designers because developers are all

about what happens behind, in the code base, to make things render on the page. So they

spend a lot of their life writing code… So they're not thinking about how users interact

with the page so much, and that's the job of the designer. The designer is thinking

through these issues, the designer is the one that's in usability lab, testing the prototype,

working with user researchers to try to figure out why a user isn't interacting with the

design so much.

-Senior UX Designer, Web Applications

Our informants discussed engaging with software engineers each step along the software

development process. At the beginning of the software development cycle, designers worked

with software engineers to create a shared understanding of the problem that the software feature

is intended to solve. This mind-melding process was often aided by wireframes to communicate

user interactions and results. Designers and software engineers iterated to arrive on the intended

design, with designers proposing the ideal user interactions and software engineers providing

input into the technical feasibility. While software engineers were developing code to realize the

designs, the visual designers worked to produce the visual assets that developers need to ‘plug-

in’ to the final software feature. In addition to periodic sync-ups to ensure that the design was

being realized as intended, designers and software engineers would often have spontaneous

interactions to clarify understandings about the design. At any time during the development

process, designers might also take the current design (e.g. wireframes or prototypes) and work

with design researchers to better understand design decisions and options. Based on the

outcomes of those usability tests, the designer might propose adjustments to the design. Towards

the end of the software development cycle, visual designers would provide the final artistic

assets, and then the entire team might take a final pass through the product holistically to make

final adjustments:

And then at the very end of the cycle, right before you ship, everybody comes back and

looks, does a review of where it ended up. At that point in time, the visual designer is able

to make small, little visual changes just to make sure everything renders right, and then

you release it into the world.

-Senior UX Designer, Web Applications

Informants felt that the primary challenge facing software engineers and designers was

reducing complexity of software features. Our informants felt that many software features

involved large amounts of technology that would overwhelm and frustrate the typical user;

therefore, software engineers and designers needed to work together to design and implement

software features that are easy and enjoyable for users to use:

To make intuitive user experiences requires obfuscating huge amounts of complexity from

the user. And that is almost always on the backend. The frontend's gonna have one button

on it… it's removed eight. Those eight buttons were all really important, but we can do it

with one. How do we do it with one? That complexity is really critical, and that's hard.

-Senior Design Lead, Applications

5.2.5.2 Deferential creators of shared understanding

The dominant sentiment among our informants was that great software engineers left design

decisions to designers. Great software engineers respected the design discipline, and did not

think that they could do the designers’ job. Our informants felt that great software engineers

understood that designers had specialty knowledge and experience that enabled them to produce

designs that provided users with enjoyable experiences. Therefore, great software engineers left

design decisions to designers and focused on realizing those designs through technology. Our

informants felt that designers would not tell software engineers what code to write, so software

engineers should not tell designers how to design:

An important attribute is when developers also respect the expertise of designers,

understanding that there's a time for feedback… but for them to also defer to designers

when it comes to the design and the user experience.

Because just as a user experience designer will not tell a developer how to do their job,

so too should a developer be very respectful of the designer's position and their years of

expertise in the field.

-User Experience Visual Designer, Gaming

Many informants discussed bad experiences with software engineers that lacked respect

for designers. Some software engineers, when encountering problems with design, would

produce fixes without consulting designers. Our informants stated that the design would usually

be suboptimal; the software engineers had neither the design knowledge nor the (hundreds and

hundreds of hours of) experience observing actual users interacting with interfaces. Software

engineers’ solutions commonly did not fully consider all aspects of the users’ interactions and

needed to be reworked. Also, some software engineers felt that designers only made things ‘look

pretty’, and did not include designers in the designing of software features. Those software

engineers would come to designers towards the end of the development process and tell them to

“put some UI on it”; this commonly results in software features that were unusable and required

substantial redesign. Our informants felt that great software engineers respected the design

discipline and engaged/consulted early and often with designers on the right designs:

A lot of times what happens is, we will get a team that has done a lot of development

work and they will say, “Hey UX guys, can you put some UX onto this app or

feature?”… that makes it really challenging for us because a lot of times the functionality

is really awesome, but a user might not understand it or understand how to use it…

“Well you guys need to rearrange this whole thing.”

-Senior UX Designer, Web Applications

Our informants also felt that great software engineers did not rush into coding, rather they

took the time to fully understand the problem and worked with designers on the best design

trade-offs. Our informants felt that great software engineers thought through problems and were

open-minded when considering input from designers. Great software engineers did not rush into

coding before understanding user goals and the nuances of their needs (e.g. common cases and

edge cases). They worked with designers and design researchers to arrive at designs that best

accounted for all scenarios, instead of blindly rushing to code solutions. The consequences of

rushing ahead without sufficient design consideration were poor or incomplete designs that were

unchangeable (or too costly to change) and that resulted in suboptimal experiences for users.

What happens a lot of the time is…we will be presented with a project, there is a timeline

suggested, and we end up getting dev involved in building code too early. So what design

is doing is, we are doing design and research that may actually go against what is being

built and it becomes this awkward…we are saying you actually need to change it based

on our user research, but they have already invested time into it so they don't want to

change it or it’s already too far along… the end product doesn't meet the users goals or

they are not able to use it as easily as they should be if we had done that upfront

research.

-Senior UX Designer, Web Applications

Our informants also appreciated great software engineers that were willing to try new

designs and go through multiple iterations to perfect design ideas. Our expert designers all

wanted to work with software engineers who were open to trying new or different designs: ideas

that had not been tried before or might be not have been technically feasible previously. Since

software engineers were usually not obligated to try new designs, our informants valued software

engineers that were willing to “try something new”, leveraging their knowledge of the latest

advances in technology or of workarounds to overcome technical challenges:

Developers know what works and what is technically feasible and it’s easy for them to

just say no we are not going to do that. It’s great if they say well, that will be technically

difficult but we can look at it and see and look a little further into it… “Yeah, we are

excited to do something cool so we want to help you make this cool thing.” That’s the

kind of developers I like to work with.

-Senior UX Designer, Web Applications

Our informants also felt that designing (especially for new designs) was a process; designers

often needed to create a design, assess user reactions, and then refine their design. Therefore, our

informants appreciated software engineers who were willing to work with them through multiple

versions to arrive at the best experience for users. This typically involved many iterations of

minor adjustments or fixing interactions at edge cases. Our informants felt that great software

engineers were willing to “sweat the details and try to polish” for a better software product.

Finally, our informants felt that great software engineers worked to clarify understanding.

Great software engineers paid attention to details and recognized missing elements or

inconsistencies in designs. They would then immediately raise questions to get clarity on these

inconsistencies. Our informants felt that designers and software engineers may have different

interpretations of the problem; therefore, to avoid divergent efforts that solved different

problems, great software engineers would get clarity—often using face-to-face meetings—to

ensure that everyone operated toward the same goal. Our informants appreciated software

engineers who did not proceed based on assumptions, but rather they made consistent and

ongoing efforts to reach shared understanding with designers:

…there were a couple of developers that really understood how to pull information out of

you. So if they didn't understand something, they would drill in deeper and get more

clarity to the point where there wasn't any ambiguity so you both knew exactly what was

expected for the best outcome.

And that's probably one of the most important aspects of the process, is just being able to

come together and sit down and talk through things. And the more you can sit down and

get clarity upfront, the more successful the outcome is going to be at the end.

-Senior UX Designer, Web Applications

5.2.5.3 Discussion

Designers had strong feelings about software engineers respecting their expertise and not trying

to ‘do their job’. The underlying cause might be that some roles (e.g. artists, electrical engineers,

and mechanical engineers) performed functions that software engineers readily recognized were

outside of their scope of expertise; some roles were not deemed essential (e.g. content developers

and service engineers). Design of software features appears to be an important task that some

software engineers believed they could do themselves; however, many of our informants

believed that software engineers could not do it effectively.

Deferring to experts is related to the sentiments behind self-reflecting and asks for help;

both involve recognizing one’s own limitations and seeking help from others. However, letting

designers make the design decisions had the added elements of willing to trust others since the

design decisions often directly affected the software feature’s success. The ‘lack of respect’ from

software engineers may not be malicious but rather reflect the desire to control the situation.

‘Not rushing ahead’ is related to the attributes of systematic and grows their ability to

make good decisions. Systematic software engineers did not rush into actions, rather they took

the time to be circumspect about how they should proceed. This matched our informants’

sentiments that software engineers needed complete understanding of the problem space,

including compromise within the design, in order to make the best engineering decisions. Our

informants also hinted that various engineering decisions were not ‘robust’; once made, they

precluded various design options. Software engineers rushing ahead with actions that ‘locked’

the team into poor designs was one central problems discussed in Inmates Running the Asylum

(Cooper, 1999). Therefore, obtaining more information (especially information from designers)

helped great software engineers reduce the likelihood of mistakes.

Finally, our expert designers emphasized establishing and maintaining shared

understanding, which might have been due to the highly coupled and time-sensitive nature of the

tasks performed by designers and software engineers. Our designers expressed sentiments that

included all aspects of being a good communicator found in our prior studies of software

engineers—is a good listener, integrates understanding of others, and creates shared

understanding with others—along with maintaining shared understanding. Other roles with

shared timelines and interdependencies (e.g. electrical engineers and mechanical engineers,

discussed in the next two sections) shared this opinion of needing to be in ‘lock step’ during

development.

5.2.6 Electrical Engineers

Our expert electrical engineers described their role at Microsoft as “making physical things with

electrons flowing through them” which were typically circuitry inside Microsoft consumer

electronics (e.g. Xbox and Surface). Our informants indicated that some of their fellow electrical

engineers also had ‘hardware engineer’ titles; however, our informants drew a distinction

between electrical engineers and ‘mechanical engineers’ (discussed in the next section), who

built physical components that housed the electronics.

Our informants specialized in a variety of tasks involving hardware. Some architected

circuitry: selecting, positioning, and diagraming chips, processors, ports, power supply, wiring,

etc. on circuit boards. Some informants prototyped and debugged circuits, working-out the kinks

in designs prior to full-scale manufacturing. Some worked on specialized chips that performed

special electronic processing. All of our expert electrical engineers had degrees in electrical

engineering.

Many of our informants reported working on ‘matrixed’ teams. To produce a product,

electrical engineers worked on ‘program teams’ that included program managers, mechanical

engineers, electrical engineers, and software engineers; these were the core disciplines that

collectively engineered the product. In addition to their program team, electrical engineers also

reported up through their own specialties (i.e. leads and managers of electrical engineers were

electrical engineers). The sentiment among our informants was that their fellow electrical

engineers were best able to evaluate and help their work. Our informants reported having their

designs reviewed by peers who worked on other program teams but understood electrical

engineering:

Now, think of a matrix structure. You have a vertical structure, which is your

specialties… But each of those electrical engineers will be assigned to a different

program team. And if you look horizontally across that matrix, that would be a program

team. You have these vertical columns where you have job structure, job features like

firmware, like electrical, like mechanical. Then horizontally across, there would be a

program and the program forms for the duration of shipping that product. You'll be

assigned to a program, you'll collaborate amongst not only the different departmental

peers to ship this product but when you need help, you go into your vertical column of

your tree and you start asking your peers for their help for what they might have done in

the past… When you have design reviews, you drag in all the people from your

department and other departments and they all look at your design and critique it and

give suggestions to make it better.

-Senior Electrical Engineer, Devices

Our informants stated that the software engineers they interacted with were

predominantly ‘embedded’ software engineers (also referred to as ‘firmware’ engineers). Though

embedded software engineers tended to be on the same team and had the same titles as other

software engineers, our informants differentiated embedded software engineers as those that

developed code residing on the hardware, whereas other Windows software engineers developed

code residing on the operating system (including drivers and applications). These embedded

software engineers programmed the chips to process the electric signals and translated operating

system commands to electrical outputs. Our informants reported working with embedded

software engineers; several of the informants exclusively dealt with embedded software

engineers and had no interaction with Windows software engineers. Our informants did not

consider embedded software engineers to be electrical engineers because embedded software

engineers did not design the circuitry; they were given the circuitry and were responsible for

writing code that ‘enabled it’. Nonetheless, our informants felt that embedded software engineers

needed extensive knowledge of electronics and hardware, far beyond the knowledge needed by

Windows software engineers:

It could be something like sampling registers, checking for button presses, reading the

data from an optical engine and then doing something with it… That's the embedded

firmware software aspect of it. There's a tight coupling of system level design

architecture between the hardware folks, which is myself, and the embedded firmware

folks.

-Senior Electronic Engineer, Devices

5.2.6.1 Working as a collective to engineer the consumer electronics

Our expert electrical engineers worked on program teams with software engineers (and other

experts, such as program managers and mechanical engineers) to produce consumer electronics.

Some of the products that our informants worked on included the Xbox (encompassing the

Kinect), HoloLens, the Surface (the tablet/laptop, not the table computing device), Microsoft

Keyboard/Mice, and Nokia phones.

The development process typically started with the program team assembling to examine

the high-level requirements for the product. At this point in the project, the people involved are

typically very experienced engineers. This group worked together to define the scope of the

program, choosing the functions and features to deliver as well as the choices in hardware and

software to deliver them. Many of these choices were tightly coupled. For example, one

informant detailed how the electrical engineer’s choice of the CPU (ARM, proprietary, Atom, or

Intel) had implications for the software engineer in terms of memory capacity and memory

speed, affecting the overall functional capabilities of the product. Our informants indicated that

the engineers making these decisions were usually senior engineers (e.g. technical leads) because

they were making difficult decisions with many considerations, amidst great uncertainty, and

sometimes years in advance of product development:

A product kicks off and marketing folks come up with “We need a product X to do this

particular feature.” You start out at the system level. From that you get your design team

involved to try and architect. That would be your mechanical engineers, your electrical

engineers, your firmware engineers, and sometimes your software engineers will come

together and figure out what pieces you're required to achieve that marketing goal of

product X.

…the senior people on the team that have experience in doing that, they take a system

level role at the very beginning when you have a marketing concept for a particular

product. They start architecting the system architecture for it. And then that iterates

multiple times and when it gets to a point that it seems feasible, then you start getting

more team members involved to break it down into actually more tactical, executable

blocks.

-Senior Electrical Engineer, Devices

Due to cost and physical constraints, many of the program team’s decisions were difficult

compromises and trade-offs. Our informants felt that the program team needed to thoroughly

think through the choices to ensure that they considered and addressed as many of the potential

problems as possible ahead of time. This typically involved thinking through the necessary parts

and implications associated with each choice; the choices commonly affected multiple

disciplines. One informant used a scroll wheel on a mouse an example. Mechanical engineers

would choose the physical component based on physical dimensions and functional

requirements. Electrical engineers would then take into consideration how the data comes off the

component (e.g. optically or electronically) to decide how to read and transport the data to the

microcontrollers. The embedded software engineers would then decide how to communicate the

data to the PC, including considerations for efficient algorithms and sampling intervals.

Whenever the program team encountered an issue, the team would have to figure out where an

adjustment—mechanical, electrical, or firmware—should be made to best address the issue.

After the program team set the plans, the individual disciplines independently fleshed out

and produced their own parts; nonetheless, our informants indicated that the program team

continued to work closely throughout the development process. In addition to periodic sync ups,

the program team would usually come together during major milestones (e.g. prototype

complete) to verify that the product was functioning as expected and that the project was

progressing on-schedule. One informant described software engineers as ‘concurrently’

developing code to exercise the hardware that he was designing, based on design documents and

reference platforms, so that the prototype could be tested on-time:

And it's not I close my door to design circuitry, once I have my circuit design on the

paper. I assume it will work. Then I throw over to software guys to write the code…

before I get my hardware, software guy is already working…by reading my schematic, by

looking at my layout… And they also use off the shelf reference platform…

When [the] factory builds the first prototype right off the production line, software guys

will try to load its code into my prototype. Once it's loaded the hardware guys will take it

over. Say okay let me fire it up. Let me start to verify of all the function for each module

step by step. Software guys sitting next to him. Every time he looks at how they probe the

signal, they look at how they verify the functionality, and provide real time feedback

because if this doesn't work the team has to work together to see what causes failing… So

you can see that integrational interaction is real close. This is the only way to make it

work.

-Director, Devices

As alluded to in the quote above, our informants stated that they commonly worked with

software engineers to overcome unforeseen issues during development. Our informants felt that

the best products were almost always trade-offs; many choices were physically impractical or

commercially infeasible. Depending on the desired functionality, a cheaper chip may be perfectly

sufficient and better than a more powerful choice; however, these compromises sometimes lead

to unforeseen problems. One informant discussed an unforeseen issue in an audio controller that

restricted the device from muting completely, which required software engineers to address the

problem in the codec firmware. Our informants felt that to hit market ‘price points’ they often

had to pick hardware that was less than ideal, and then worked with software engineers to fix

problems caused by the selection and to deliver the desired functionality:

I think the biggest burden then drops onto the software guys or firmware guys…where

they become more and more responsible to keep the cost down. So it's anything you can't

do in hardware like, "Oh, can you throw that in software?" They’ll be trying to figure out

now that they had their code written in a nice format…and now they're hacking in new

pieces to fulfill problems we have.

-Electrical Engineer, Devices

5.2.6.2 Hardware-speaking system thinkers

All of our expert electrical engineers felt that great software engineers should be able to ‘speak

hardware’ and have good understanding of both software and hardware domains. Great software

engineers that our informants worked with had knowledge of the vocabulary and nomenclature

of electrical engineering, which enabled them to effectively communicate their needs and

requirements, as well as understand explanations and feedback from electrical engineers. These

great software engineers also had a working understanding of the hardware domain, which

allowed them to understand the limitations and the capabilities of available hardware, and work

within the expectations and processes of electrical engineers. Our informants felt that in order for

software engineers and electrical engineers to work together effectively, they needed to be able

to have deep technical discussions; consequently, software engineers (and electrical engineers)

needed to understand each other’s language and have shared understanding of both software and

hardware contexts:

The really great ones have a really good understanding of both, the software and the

hardware. Like I said, figuring out the limitations of what the hardware can do and what

it can't do and asking the right questions and phrasing it right to get it either in software

lingo or hardware lingo. You know, the people that can do that are fairly rare…there's

different terminologies and different expectations.

-Senior Architect, Devices

Our informants discussed both positive and negative situations in which the software engineer’s

knowledge of the ‘lingo’ and understanding of both software and hardware domains were

important. The most common complaint among our informants was the lack of understanding of

the physical limitations of hardware (e.g. power). Our informants mentioned frustrating

situations when software engineers asked for functions that were ‘ridiculous’:

Sometimes people can get stuck on something that physically isn't going to work… Well,

there is a defined of what bandwidth you get, here is, this is physically what it's going to

take… and just physically not possible… Don't wait on your plans without looking at the

reality of your situation.

-Senior Architect, Devices

Conversely, our informants also discussed software engineers having mistaken

knowledge about the limitations and capabilities of hardware. Because the software engineers

were unaware, they did not ask for available capabilities and functionalities, leading to inferior

products. Our informants felt that software engineers should have meaningful exchanges with

electrical engineers to fill knowledge gaps to decide on the best choice of components and

functions. The sentiment was that software engineers needed to be knowledgeable and needed to

continually update their knowledge; great software engineers knew the limits of hardware, and

would constantly update their understanding.

Since the products were composites of hardware and software, the problems that the

program team encountered could commonly be solved by either software or hardware, but with

different compromises. Recognizing the options and understanding the costs and benefits of all

options enabled great software engineers to select optimal choices. Informants felt that the lack

of holistic understanding often resulted in inferior products despite similar hardware (e.g. worse

battery life, performance, etc.). Our informants felt that great software engineers worked with

electrical engineers to efficiently solve issues:

Sometimes what's very hard to do in software, for instance, is very easy to do hardware.

For instance, one of the things we worked on, call it some accelerator block that did this

and it took many milliseconds to do in software. And we're like, "Well, we can just do this

one little thing and that's really what you want? Okay, that's easy to do."

-Senior Architect, Devices

A direct corollary, our informants appreciated great software engineers that helped out

when issues could be better resolved within software. As discussed in the previous section, our

informants admitted that they frequently had to design hardware “that was not purely the best

from an electrical perspective” because of required compromises (usually cost). They mentioned

working with great software engineers to overcome limitations of the hardware to deliver on the

system-level requirements. Our informants felt that great software engineers recognized the

holistic nature of their product and worked with electrical engineers to make the best collective

system. Great software engineers were not myopically focused on their software parts, but rather,

worked with the program team to deliver the best system under constraints:

There's no perfect hardware. There's no perfect software. How do you make your

software to make my hardware perfect?... So it's help each other, working together.

-Director, Devices

Another common complaint among our expert electrical engineers was the lack of

knowledge about scheduling and development constraints of electrical engineering. Our

informants stressed that the hardware domain operated with very different timelines, and

therefore, software engineers who did not understand the differences were difficult to work with.

Our informants stated that hardware is significantly less malleable than software. Once the

electronics were ‘burned’, changes and fixes could take months, if they were possible at all. One

informant explained that designs can take months to produce, fabrication (which sometimes took

place overseas) can take weeks, and testing can be another several weeks; a typical hardware

cycle may take more than three months. Furthermore, changes and fixes were also expensive due

to the materials and electronic components involved (many of which were prototypes). On the

other hand, our informants felt that software changes and fixes were fast and cheap—

recompilations were essentially free and could be done in less than an hour. Our informants felt

that software engineers that had similar expectations about hardware were often not successful,

because the hardware modifications they wanted did not fit within project timelines. This often

resulted in incomplete or poor quality products that would require future product iterations to fix:

Since [the software engineers’] programs are very malleable, they can make changes up

to the last second, right? … And it's hard to get across, "No this is fixed. Once it's burned

it's not going to change."

-Senior Architect, Devices

Related to the scheduling issue discussed in the previous paragraph, our informants also

discussed needing to be able to trust the information provided by software engineers, especially

scheduling estimates. Due to the highly interdependent nature of their disciplines, electrical

engineers needed software engineers to provide accurate estimates of their deliverables. Software

delays can delay testing and have rippling effects on future deliverables. Our informants felt that

they should be able to trust great software engineers to deliver their parts on schedule:

So we need very specific dates from them early on in order to provide a schedule so that

we can meet our dates… when the chip needs to complete… we're trying to meet a

product cycle.

So we don't even know if we're gonna do the chip yet and it's usually based on when we

get this [software] stuff. So if we don't have any of that with these dates and deliverables

that they guarantee then it could mess up the whole course of the chip.

-Hardware Engineer, Devices

Finally, our informants had interesting perspectives about the code produced by great

software engineers. Our informants felt that coding problems close to the hardware can be very

difficult to isolate and debug, often causing significant delays in development. Therefore they

wanted great software engineers to produce error-free code. However, they also wanted great

software engineers to know when to break the rules to deliver a better product. Our informants

discussed scenarios in which doing what is ‘correct’ resulted in efficiencies, and stated that they

wanted software engineers to make appropriate compromises. One informant discussed

diagnosing differences in battery life differences between two products to find that the firmware

engineer on the better product was delaying writes to the disk—not correct, strictly speaking—so

that the writes can be synchronized and be more efficiently performed:

Those ones who’s willing to break the rules. Not because they were told that's not the

right way to do it… You have to be able to think outside of what you're educated.

…the app want to access the SSD send the request over OS say okay pass over to the

driver, driver say oh yeah you get it, okay. Another app send request over so that your

SSD is busy all the time. The downside is like you consume more power because your

system is never in the low power state.

-Senior Electrical Engineer, Devices

5.2.6.3 Discussion

By all our accounts, electrical engineering was very different from software engineering.

Electrical engineers worked on electrical components that were significantly harder to change

than software, their development cycles were much longer, and they had a different language—

typically the names of components they worked on and the terminology associated with working

with those components. For software engineers to work effectively with software engineers, our

informants felt that software engineers needed to have a working understanding of electrical

engineering. This sentiment resembles the attributes of knowledgeable about people and

organizations, knowledgeable about the technical domain, and creates shared understanding;

however, it goes beyond the sentiment expressed in interviews with software engineers.

Knowledge and understanding in the context of working with electrical engineers involved

knowing and technically understanding electrical engineering, an entirely different technical

field.

Knowledge and understanding of electrical engineering underlies most of the other

attributes of great software engineers discussed by our informants. Being able to have

meaningful exchanges with electrical engineers, to decide on appropriate trade-offs for the

product, to have reasonable schedules, and to collectively solve system-level problems all

required software engineers to understand electrical engineering. The need to have deep

understanding of another technical field was more pronounced for electrical engineers than for

any other group of experts that we interviewed.

5.2.7 Mechanical Engineers

The two mechanical engineers that we interviewed were both in the Xbox division; one worked

on Xbox controllers and the other worked on the Kinect. Initially we included ‘hardware

engineers’ as ‘mechanical engineers’; however, after completing interviews, we found that

‘hardware engineers’ were ‘electrical engineers’. We included ‘hardware engineers’ with

‘electrical engineers’, leaving us with only two mechanical engineers. The low number of

mechanical engineers was not an issue, as mechanical engineering was a well-defined discipline

at Microsoft. Mechanical engineers worked on ‘anything that has a physical embodiment that

ends up in the customer's hands’. As with electrical engineers, mechanical engineers were

concentrated in divisions that made consumer electronics (e.g. Xbox).

The two expert mechanical engineers that we interviewed both had mechanical

engineering degrees and had prior work experience at other electronics manufacturing companies

prior to Microsoft—HP and Xerox. At Microsoft our expert mechanical engineers designed the

parts, the plastics, the metals, and the stuff that goes around the PCBs (printed circuit boards),

and even how big the PCB is.

5.2.7.1 Translating the physical to the digital

Our expert mechanical engineers reported working mostly with ‘firmware’ engineers; their

infrequent interactions with platform-level software developers usually occurred through

program manager (PMs, which are discussed in Section 5.3.9) intermediaries. We focused on

engagements with firmware software engineers in our discussions. As with electrical engineers,

our informants reported working with software engineers in program teams to produce consumer

electronics.

Our informants discussed collaborating with software engineers at three time points.

First, before the product is conceptualized, mechanical engineers worked with software

engineers to prototype and to experiment with the latest advances in technology. Since

mechanical changes often required corresponding firmware changes, one informant reported

working closely with his software engineer counterpart to rapidly try new mechanical changes.

Second, our informants discussed coming together with all the disciplines (e.g. electrical

engineers, PMs, legal, industrial design, etc.) at project initiation to scope and schedule the

engineering effort. As described for electrical engineers in Section 5.2.6.1, this process usually

involved collectively making trade-offs for the product. Finally, our informants discussed

working with software engineers towards the end of the project to resolve last-minute issues,

which, after the physical product was finalized, could be address in firmware:

One thing that happens often at the end of a project when mechanical design is pretty

much firm, electrical design is set, but you find a bug that has to be solved and you have

no time, it's often on the firmware team's shoulders to process those signals or do

something in a certain way, add a new algorithm maybe, that will clean something up or

resolve an issue in a very short amount of time.

-Senior Mechanical Engineer, Devices

5.2.7.2 Informed action-takers

The sentiment among our informants was that great software engineers were doers: just execute

and make it work. One informant discussed a great software engineer that was able to quickly

turnaround a firmware change that enabled him to test a fix, bypassing some typically standard

processes to produce a revised version of firmware. Another informant discussed a great

software engineers that came up with a firmware workaround for a hardware problem to enable

progress while the hardware fix was going to take a month or two. Furthermore, our informants

felt that some problems can often be overanalyzed and some outcomes are impossible to

forecast; therefore, to make progress, great software engineers were willing to take forays into

the unknown:

To do innovative products you need people willing to take the risk. And make the

calculated judgment, get the data they can and make a decision… they may not know all

the details of how do we execute it before the decision is made, but they're willing to do it

anyway.

-Senior Mechanical Engineer, Devices

Our informants felt that though great software engineers were willing to just ‘do it’, they made

sure that their decisions were informed. Our informants discussed several aspects of being

informed. Foremost, our informants felt that great software engineers knew their own domain

and did their jobs well because they understood that mechanical components were useless

without firmware:

I don't know how clean his code has to be to fit in the memory space that we have on the

[system on chip] or I don't know how he has to optimize it for latency. All of that is

obscure to me, or opaque to me. But I know the better he is at writing code for small

spaces or low latency, the better he understands his tools, the quicker I can get my

deliverable into my role.

-Senior Mechanical Engineer, Devices

Second, our mechanical engineers wanted software engineers to understand mechanical

engineering, specifically, the language, the constraints, and the timelines. For example, one

informant discussed wanting software engineers to know that the mechanical hardware

development cycle was much, much longer than that of software or firmware. Our informants

felt that having some understanding of mechanical engineering facilitated and expedited

communications; software engineers and mechanical engineers could quickly understand each

other and avoided unrealistic expectations. Great software engineers intuitively knew the

limitations and capabilities of the system for making and communicating decisions. Finally, our

informants felt that great software engineers wanted to be informed by asking questions,

soliciting feedback, and being open to new information that might change their thinking.

Open, honest, and trusting conversation. I used that word "relationship" earlier… having

people who intend to communicate openly, honestly, collaboratively, that's what that

interaction should be like. That's the most productive, the most innovative way that can

go.

-Senior Mechanical Engineer, Devices

5.2.7.3 Discussion

Overall, sentiments of our expert mechanical engineers matched those of our expert electrical

engineers. This was expected as mechanical engineers and electrical engineers engaged with

software engineers in the same context, working together on consumer electronics. Furthermore,

mechanical engineering, like electrical engineering, is an entirely different engineering field with

its own domain-specific considerations and constraints. Therefore, many of the same

engagement issues like understanding each other’s language, understanding constraints, and

effectively communicating are shared concerns between electrical and mechanical engineers.

As with electrical engineers, it is questionable whether expecting software engineers to

have in-depth technical understanding of another engineering field is reasonable; however, some

luminaries feel that this may be expected of engineers. David Parnas said in his opinion piece on

software engineering programs: “Licensed professional engineers often take responsibility for

some complete product, which means that they require extensive knowledge outside of their

engineering specialty. A mechanical engineer might have to do some electrical power design, or

an electrical engineer might have to look at the mechanical aspects of a motor or servo-

mechanism” (Parnas, 1998).

5.2.8 Product Planners

One informant aptly described the function of product planners as providing engineering teams

with understanding about the ‘five Cs’: customers—who they are, what they want, and why they

want it, company—core strengths of the organization and the executives’ vision of the future,

competitors—not just direct competitors but also substitutes, collaborators—partners that can

help, and context—relevant trends in the market, in society, and in the technology domain.

Informants felt that product planners do the leg work to bring that business information to

software engineers—typically the “engineering leadership team”—enabling them to make

decisions. Product planners were typically in ‘an advisory role or a consultant role’ to software

engineering organizations:

Are we gonna go invest in this or in that? Are we gonna make this a higher priority or a

lower priority? ... in many respects you're sort of an advisory role or a consultant role to

the leadership team who can do the leg work to kinda bring the data to bear and help free

things up for the decision-making, right?

-Principal Product Planner Manager, Enterprise

Our expert product planners came from diverse educational backgrounds and worked in a

variety of areas. One was trained as a bioengineer, started working at Microsoft developing

medical imaging software, and had been a program manager; one had graduate degrees in

statistics and political science; another one came to Microsoft directly from business school and

had been in marketing. Our informants worked in a variety of areas, ranging from software

products (e.g. SQL, Phone, Devices) to specific feature areas (e.g. Education).

Our informants said that product planners typically did two types of work: overall market

intelligence research or specific research for a feature. Our informants described overall market

intelligence as a strategic role, focusing on the overall direction of the market and the technology

area rather than individual features. One informant reported using primary and secondary

research to provide revenue opportunities and projections for various markets:

…through a significant amount of market analysis, looking at syndicated research

reports, things that are talking about the market space in general, where the

opportunities are, doing market opportunity analysis and market sizing exercises to say,

"This is where we think the volume or the revenue play is going to be,"

-Principal Product Planning Manager, Devices

Our informants also discussed conducting targeted market research to guide feature

development. One informant gave an example of doing research to support a ‘classroom

orchestration software’. The informant described researching specific needs of teachers, like

‘turn off these devices and have all eyes on the teacher’ and ‘temporarily block applications or

websites’. The informant also described understanding value propositions of various features to

teachers: which features are ‘table stakes’ and which ones are ‘differentiators’. In addition, the

informant recounted providing information on competitors and their planned features, as well as

helping to make difficult trade-offs—keeping the features that will attract customers to the

product—toward the end of release cycle. While some of our informants focused on one

discipline, others reported doing both kind of market research for their organization:

Think of my role as 50/50. Fifty percent is focusing forward looking. So I'm sitting there

saying “These are trends that I'm seeing based on behaviors that are happening today in

the market and things that you ought to be thinking about…”

Fifty percent of my time is with engineers that are currently building products today, who

are sitting there saying I'm wrestling with this feature… I only have enough resources to

build one of those things. What's the thing I should build? And is anybody else building

it? Does it care? Is it a table stakes, will it really matter?

-Principal Product Planning Manager, Applications

With their focus on understanding customers, product planners share similarities with designers

(discussed in Section 5.3.5) and design researchers (discussed in Section 5.3.4); however, the

focus on business questions is unique to product planners. Product planners not only looked at

the needs of the customer, but also examined the ‘market’ around that need, including

alternatives offered by competitors and revenue potential.

5.2.8.1 Deciding on engineering initiatives for next release

Product planners typically advised engineering leadership teams, designed to help those that

decided the overall direction of the entire software engineering organization. As such, product

planners typically work with very experienced software engineers, those entrusted with making

decisions that affect the actions of other engineers.

Our informants discussed interacting with engineering leadership teams in various ways;

all were variants of providing information about the business implications of their decisions.

Informants stated that engineering leadership teams usually understood the limits of technical

feasibility— ‘what we think we actually can do’. The product planners then helped to provide the

business context around those engineering choices— ‘what do we think we can achieve from a

business standpoint to make money’. Sometimes, the business context provided by product

planners had implications beyond feature choices; one informant discussed strategic decisions

affecting the structure and composition of the engineering organization:

…Not only how we build the products but how we're going to set up our structure and

strategy. How many devs we’re going to put on those new tools and instead of having

enterprise devs who modify something… we need to have dedicated devs that are doing

something very differently.

-Principal Product Planning Manager, Applications

Beyond strategic decisions, our informants also discussed working with software

engineers on tactical decisions during development. Our informants felt that once the

engineering leadership team made the strategic decisions, frontline software engineers often still

needed to make tactical trade-offs—usually selecting between features—that required

understanding of business implications. Software engineers enlisted the help of product planners

to understand the business implications of the trade-offs aiming to meet business goals while

keeping on schedule:

We decided to invest in here, but then when you go and do it, there's choices that still

need to be made. And so there's that interaction with them about well, do we do it this

way or do we do it that way? Can we trade this off for that, or not?

And particularly if schedule comes into it, it's like okay well, this doesn't fit. What can we

give up to do that? And so, you know, we're trying to keep the overall strategy and

business model whole while still working with the practicalities of what's technically

feasible…

a lot of times those decisions get made with some high level technical feasibility but of

course once you get down into the details of it, other things start to come up, right, that

weren't really considered at the top level…

-Principal Product Planner Manager, Enterprise

Several informants also discussed taking software engineers on “field trips” to talk to

customers. Our product planning experts felt that, in addition to secondhand understanding

provided by product planners, software engineers also needed firsthand knowledge of customers

in their element to “really get a sense of what’s going on”. This helped to protect against having

understanding only based on the software engineer’s surroundings—‘the 98052 problem’, zip

code of Microsoft’s main campus in Redmond, WA.

One informant described taking software engineers to the CES show in Las Vegas to see

the real products and to talk to the developers to understand their thinking:

I would love to take a couple of developers on a field trip to CES… most of them are

stuck here at Redmond all the time… why they're building it, how it came to be, what

tools are they using, what frustrations they have, why are they choosing open source,

where did they learn about it, how did education in their university impact their decision

to do things differently in a way.

…I think is super valuable for developers to have firsthand experience… They're getting

it secondhand from us, but I'd like to see more of the firsthand integration taking place.

That would be good.

-Principal Product Planning Manager, Devices

5.2.8.2 Impactful decision makers

With nearly all of the engagement between product planners and software engineers coming

through the course of decision-making, nearly all of the attributes of great software engineers

discussed by our expert product planners concerned effective decision-making. Most of our

informants acknowledged that technical skills were ‘obviously’ important, since buggy code

causes ‘all kinds of problems’ for other people on the team; however, our informants felt that

great software engineers went beyond being excellent coders. Great software engineers

understood the business context and reasoning around the code they were developing, which

enables them to make better holistic choices for the business success of their products:

They understand the full picture…they have an understanding of why the product is being

created, for whom, what kind of problem it's solving and how it does differentiate against

the competition…

So, most senior people have the larger view of the big picture. And the big picture is how

does the product fit in with the business impact? Why are we doing this specific product?

How does a specific feature make that product more viable for the end user or more

competitive against our competitors or more realistic?

-Principal Product Planner, Devices

Our informants felt that fully understanding the context was central to making effective

decisions. By context, our informants generally meant qualitative understanding of customers,

including their habits and their motivations behind behaviors. Our informants felt that

understanding customer pain points was essential to creating software products that customers

would buy. Our informants further believed that this knowledge needed to be thorough, not

simply anecdotal. Great software engineers had a nuanced understanding of the market, and

where variation existed, they understood the differences. The overall sentiment was that unless

great software engineers understood the context and the reasoning behind their software product,

their software product might be technically excellent but not commercially successful:

So it really doesn't matter if you're an amazing engineer and you can write stuff and

you're open minded if you have no idea what the market is telling you and you built a

crap product.

-Principal Product Planning Manager, Applications

Though our informants acknowledged that software engineers were often—correctly—

focused on ‘building the damn product we need them to go build’, our informants felt that

understanding the ‘why’ behind the engineering plans enabled great software to build better

software products. Our informants discussed great software engineers as using their technical

domain knowledge and their understanding of the ‘why’ to suggest enhancements—beyond what

product planners had envisioned—that increased the product’s value proposition to customers;

also, our product planners appreciated great software engineers using that knowledge to suggest

courses of action that were robust to future technological developments:

Great developers are the ones who add two extra layers to their thinking. One is the full

understanding of the business value of the work that they're actually doing. And the intent

of the business oftentimes helps them understand why it's so important to do things,

which leads to the second thing, which is really creativity. Once you've got an

understanding of why we're trying to accomplish something, their ability to get creative

around solutions

-Principal Product Planning Manager, Devices

On the flip side, our informants felt that great software engineers should be open-minded.

Numerous informants discussed frustrating situations when software engineers refused to take

input from product planners. One informant described a bad experience: a software engineer

insisted on his approach ‘come hell or high water’; when other members of the team asked for

clarifications, the software engineer resisted, telling them, “That’s not your problem. It’s mine.

Let me go get it done.” Our informants felt that even though software engineers wrote the code

and decided ‘what goes in and out’, they should not exploit their position of power; they should

be open to letting others influence their decisions. Informants felt that with so many “different

paths to solving the problem” software engineers should not be rigid in their thinking. Not taking

input from other experts and not considering alternatives may lead to an inferior product and

may burn a bridge with colleagues that prevents future collaborations:

…they understand one way to do things, and that's the way that they want to approach it,

and they're going to go off and go do it that way come hell or high water. And even when

people ask for more clarifications so they can understand, like, "Why are we doing it this

way?" there are developers who just resist that and say, "That's not your problem. It's

mine. Let me go get it done."… they look at themselves as being the end game and

recognize that we have nothing if we don't have people who can write code. Therefore,

because they're the ones who write the code, they get to just make the decisions of what

goes in and out. And those are the ones who, I think, are really challenging.

-Principal Product Planning Manager, Devices

Our informants further explained that being open-minded allowed for diverse

perspectives and ideas, leading to a better product: “create something that is better as a whole,

with all of our ideas.” Great software engineers worked with others to combine and integrate

ideas to arrive at better solutions. Seeking a heterogeneous set of perspectives and taking

feedback from other experts helped great software engineers to avoid ‘blind spots’ or problems

that they could not have or had not considered themselves. Our informants felt that being open-

minded also avoided confirmation bias. Software engineers commonly depended on their own

experiences, which caused them to be selective about data that they paid attention to, selecting

those that fit their perspective. One informant described a situation where a software engineer

had experiences with their own children and treated their observations as fact. The informant felt

that while personal experience was valuable, a great software engineer understood that his

personal experience was a single data point and was willing to supplement his understanding

with differing data from other people and other sources:

I think one of the things that all of us, myself, suffer from is something that I call

confirmation bias. Meaning you start to see the environment that you're in and you start

to look at things from your lens… well my child is in this school and we experience this,

therefore that's the answer. When developers have observation or opinion and they treat

it as fact, bad things happen.

And so [a better situations is] when you have devs that are willing to engage to say it's a

piece of information that I need to make a decision…and bring in their own information

too, but looking at that holistically is where I've seen developers make the best trade-offs.

-Principal Product Planning Manager, Applications

Another attribute that our informants felt was common among great software engineers was the

ability to effectively communicate complicated technology concepts. Our informants felt that the

ability to “take a really complex concept” and explain it to others, such as product planners,

enabled the entire team to better understand the situation and to arrive at better and more

cohesive decisions. Our informants felt that software engineers had the best understanding of the

technical reasons for taking various courses of action (e.g. advances in technology will require

costly rework in the next release); therefore, sharing the logic behind the decision was critical,

improving the understanding of others and facilitating goodwill among the team. One informant

described this sharing as the inverse of data gathering activity of product planners; great software

engineers needed to disseminate their knowledge so other team members could use the

information to better plan their activities and to better negotiate with others:

It's almost the reverse if you're an engineer … that V-team is made up of a bunch of

people who are looking for the most efficient way to go get something done, and they may

not all understand all the technical details of what actually has to happen. But if you can

communicate that clearly to them, there's going to a much higher probability that they're

going to listen. They're just going to go, "Oh, yeah, okay. Now I understand why we need

to do this. Now I can go help defend to my management team why this project is a three-

week project instead of a one-week project," right? ...And [other team members] have to

be able to share that out to their management, to leaders, to whoever, and convince them

of that as well.

-Principal Product Planning Manager, Devices

5.2.8.3 Discussion

In our interview study of software engineers, we concluded that effective decision-making was

critical for software engineers, especially those in leadership positions (see our discussion in

Section 3.4). Sentiment from the expert product planners who mostly worked with software

engineers on ‘engineering leadership teams’, reinforced our previous findings. Attributes of great

software engineers discussed by our informants spanned nearly all of the attributes associated

with making effective decisions in our previous study—knowledgeable about their technical

domain, knowledgeable about customer and business, grows their ability to make good

decisions, updates their decision-making knowledge, mentally capable of handling complexity,

and sees the forest and the trees. The attributes not receiving much discussion by our expert

product planners—knowledgeable about tools and building materials, knowledgeable about

software engineering processes, and knowledge about people and the organization—were not

surprising as those attribute concerned everyday technical execution of software engineering

projects, which our informants rarely observed.

Interestingly, most of the attributes not directly related to effective personal decision-

making, were related to enabling effective team decision-making. For example, our informants

highlighted that great software engineers integrated and built upon ideas of others as well as

disseminated technical knowledge; both behaviors are aimed at better team decisions. While

these behaviors were ostensibly for creating shared success, the sentiment of our expert product

planners was that these behaviors helped to improve others’ decision-making.

5.2.9 Program Managers

Of all roles that we interviewed, the largest group, by far, was program managers (PMs). As

described previously (Section 5.1), we studied 3,411 senior level PMs, the most populous group

among the expert non-software-engineers; the next most was ‘service engineer’ at only 506.

Nearly every software engineering team at Microsoft had a PM.

Most program managers at Microsoft were ‘feature’ PMs, working closely with software

engineers to produce the software product; we focused on these ‘feature’ PMs in our analysis.

However, some experts, performing specialized non-engineering tasks, also had ‘program

manager’ titles. One of the PMs we interviewed was responsible for working with governmental

security agencies world-wide to ensure trustworthiness of the Windows platform. The PM

discussed working with governments to provide assurances that Microsoft software had high

integrity and security: “there’s no backdoor, there’s no non-declared functionality.” We also

interviewed ‘process’ program managers; some managed relationships with OEM partners (e.g.

Dell and HP), exchanging technical data that facilitates development and maintenance of

Microsoft software running on the OEM’s hardware.

Among expert non-software-engineers, feature PMs worked the closest with software

engineers in the development of software products, both for pure software products and hardware

products with software components (e.g. consumer electronics discussed in Section 5.3.6 and

Section 5.3.7). With the exception of data scientists (discussed in Section 5.3.3), the feature PMs

we interviewed had offices in close proximity to the software engineers with whom they worked.

In contrast, many other expert non-software-engineers (e.g. product planners) sat with experts of

the same role, located in buildings away from the software engineers that they worked with.

The distinguishing characteristic of the expert PMs that we interviewed was technical

knowledge about their software product (relative to all roles except expert data scientists who

engineered software); almost all of our informants had deep technical knowledge. Most of our

informants had degrees in computer science or their specialty area; many had prior software

development experience. One informant stated that being a PM at Microsoft was not merely

being a ‘schedule jockey’; effective PMs needed to understand the underlying technology in

order to manager programs effectively:

…a weak PM, it's a PM who doesn't have some technical skills. They may be awesome

communicators but they cannot really understand some architecture, some technical

architectures, some backend features, read code, maybe sometimes do some scripting for

analysis. That's not the developer's job to help to unblock the PM with every single

question.

-Senior Program Manager Lead, Applications

The role of program management at Microsoft is seemingly simplistic yet complex in

practice. At a high level, PMs were responsible for ensuring the success of the project; however,

the specific tasks performed by PMs varied greatly between teams.

5.2.9.1 Setting and executing the vision

As explained in the book Showstopper!: The Breakneck Race to Create Windows NT and the

Next Generation at Microsoft (Zachary, 1994), program management at Microsoft originated to

allow software engineers to focus on coding. Consequently, many non-coding software

engineering tasks in the Microsoft engineering teams were performed by PMs. Our informants

stated that PMs owned “the end-to-end experience for a scenario, a feature set, a product...

defining what that looks like and actually driving it with the development and quality teams in

order to deliver.” At a broad level, program management at Microsoft was a combination of

requirements definition and prioritization (tasks commonly performed by software engineering

leads and managers at other organizations), scheduling, budgeting, and tracking (tasks typically

performed by project managers at other organization), as well as communicating and

coordinating with other teams and experts. One informant compared being a PM to being to a

CEO:

Sometimes I'm thinking of myself as CEO because I need to really oversee all the

disciplines, including marketing there as well. So I also have close connection with the

engineer here but… It's really to say there's one team. There's no one directly reporting

to me, working with me as a crew…

-Senior Program Manager, Devices

Though the exact set of tasks performed by PMs varied greatly, our informants discussed

several common themes. In the beginning of the software development cycle—referred to as the

‘conception’ phase of the project—our informants discussed setting the vision for the project,

establishing what the software engineering effort should accomplish. Our informants discussed

looking at the market and customer pain points to identify gaps, and then proposing features to

close that gap. Some of the specific tasks mentioned included triaging user-reported bugs,

conducting user and market research, gathering input from other experts, composing the business

case, and drafting solutions. Many informants discussed producing a “functional spec” that

described the business case, the customer scenarios, the proposed solution, and the requirements

for the solution. However, our informants stated that the functional specifications did not include

technology choices; rather, it described what the new experience should be, leaving the ‘how’ to

the software engineers:

So on that final solution, identify the problem, quantify it, write a functional spec of what

the user wants to see, and propose a solution to the dev team. The solutions should not be

a technical solution... It's more like, this is how we think it should be. And the devs

usually own the implementation side. They own the actual solution for the problem we

are proposing.

-Senior Program Manager Lead, Web Applications

Our informants discussed working closely with software engineers on the functional spec

and the subsequent technical decisions. For specifying functional requirements, our informants

discussed consulting with software engineers to ensure that the proposed requirements were

feasible, since software engineers would ultimately have to implement software features to meet

the requirements. One informant discussed giving “a really early heads up” to the software

engineers so that they can raise any concerns to forestall future problems. For technical choices,

our informants discussed ensuring that all the right questions are asked, enabling software

features to meet requirements in the most optimal manner. For example, one informant discussed

a choice between using of an existing technology and building one of their own; the informant

asked questions about consistency of user experiences across products, the cost savings of

leveraging an existing solution, and risks associated with taking on a dependency. The informant

stated that though software engineers may have preferences for writing their own code, PMs

helped to ensure that “all of the right questions are being asked and that the customer experience

is being thought through” when looking at different technical choices.

The second theme was creating schedules and managing timelines. Our informants

coordinated with their software engineers and, more importantly, partner software engineering

teams on timelines to deliver the requirements on time. These coordination meetings would

commonly involve senior software engineers and PMs from all of the teams. The key was to

ensure that all of the partner teams agreed to the plan (with a schedule, deliverables, and

milestones):

…you can pull together your hardware team that consists of electrical engineers,

mechanical engineers... an audio engineer…optical engineers… industrial design

engineers… We work with partner organizations over in [Windows] then that do the

software development, that do the shell or the drivers, the user, the UI.

-Senior HW Program Manager, Devices

The PMs—frequently working with PMs and senior software engineers in partner teams—

subsequently tracked and monitored progress along the schedule. This commonly meant periodic

‘status update’ emails and sync-up meeting to keep the stakeholders informed, as well as to

discuss issues or problems that come up. Informants discussed “driving dependencies with other

teams” to ensure that the assets developed by partner teams (e.g. hardware engineering) met

expectations and to ‘unblock development on both sides’. In addition to daily activities, our

informants also discussed doing various milestone tasks, such as preparing demos and

presentations for executive reviews, setting business metrics for measuring success, filing

patents, and ensuring compliance with various policies (e.g. accessibility and

internationalization):

Everything… helping to define the metrics around the product, making sure that it's set to

ship from an international perspective, getting it through compliance and actually

shipping it out the door.

-Principal PM, Applications

The final theme was facilitating communication between teams, commonly acting as the

“translator” for software engineers. Among the many functions of PMs, this function—acting as

the intermediary between software engineers and others—was the most controversial. As alluded

to in the previous paragraphs, much of the communications between teams are mediated—

sometimes conducted completely—by PMs. This aligned with the purpose of PMs freeing up

software engineers to focus on coding. PMs helped software engineers by translating user needs

into the ‘lingo’ of the software engineer so that they understood the requirements:

…[my developers] are both PhD. So my key role is how to make sure I can communicate

and manage a project in a way talking all the researchers [sic]. At the same time I can

talk with the product team to make sure they understand, "this is what it means for user."

-- transfer of the different language, research language into product language. And the

second thing is most kind of PhD researcher not really having a scheduled timelines

[sic].

-Senior Program Manager, Devices

PMs were the primary points of contact between many expert non-software-engineers

and the software engineering teams. For some, this bridge was beneficial because PMs helped

facilitate conversations with software engineers, providing clarity about the questions being

asked. However, for others, PMs were considered a hindrance. The PMs blocked access to

software engineers—the people who had actual technical answers—for the purported reason of

keeping software engineers focused on coding.

5.2.9.2 Vocal prognosticators

With their focus on facilitating successful completion of software engineering projects, our

expert PMs emphasized attributes of software engineers that helped to avoid problematic plans

and deviations. The general sentiment among our informants was that software engineers often

had critical insights, during plan formulation as well as during execution, and therefore, needed

to ‘speak up’ in order for the project to be successful:

Be blunt and honest with me. Tell me how it is, why it is… I want to know it upfront. If it's

sugar-coated, you can't address it in as timely manner as probably as needed or in a

direct manner as probably as needed… That can later come back and cause more

problems than good.

- Senior HW Program Manager, Devices

Our informants felt that great software engineers commonly had the best and most

complete technical knowledge about how to implement the desired functionalities; therefore,

PMs appreciated great software engineers that spoke up during the planning phases to help avoid

bad choices. Our informants expressed the sentiment that, too often, software engineers get

recognized for ‘fighting fires’; however, PMs preferred to work with great software engineers

“who prevent the fires before they even start”. Our informants felt that great software engineers

foresaw challenges, asked the right questions, and helped PMs plan the project to avoid

problems. Our informants wanted great software engineers to articulate ‘what it’s going to take’

to implement desired features, helping PMs who commonly only had ‘black box’ knowledge.

Our informants felt that by providing the implementation details, even at a high level, great

software engineers helped PMs to set more realistic schedules. Great software engineers also

asked key questions to ensure that the important decisions were well thought through. Our PM

informants readily admitted that they often did not have the most in-depth technical knowledge

and needed great software engineers to help ask questions and suggest better solutions:

Part of [the software engineer’s] job is to make sure that you understand the technical

hurdles and realistically what it's going to take to deliver so that you're not over

promising, so that you do understand whether or not you can deliver what you're

promising to the customer… if there's a challenge that's going to make it difficult to

deliver that maybe it's not the right feature or the right time or the right implementation.

-Principal PM, Applications

Our informants also felt that great software engineers knew about changes in the technology

domain, underlying technologies, and supporting components (e.g. a rewrite of an existing

component). Therefore, providing expertise helped PMs avoid risky or problematic technology

choices during planning. Our informants depended on great software engineers to provide the

full information (e.g. latent dependencies and points of contact) to allow PMs to fully scope and

manage the software engineering effort. For example, one informant discussed great software

engineers knowing dependencies ‘from the code level’ that PMs may not realize, which may

include ancient code ‘touching ten years ago’. An overall sentiment among our informants was

that software engineers needed to question choices for the good of the project and to be ready to

communicate why certain choices were optimal. Our informants felt that questioning decisions—

especially working across disciplines, such as electrical engineers and mechanical engineers—

led to better products by avoiding choices that lazily followed previous decisions. Furthermore,

our informants discussed PMs had to justify choices and answer difficult questions about the

team’s decisions (often with future of the project in the balance) when presenting plans and

updates to management and executives (e.g. during milestone reviews). Therefore, our

informants felt that hearing challenges and explanations internally first—gaining a better

understanding of the ‘why’—helped them to better represent the team:

And, if we don't challenge amongst ourselves, amongst the functional teams, when we go

up to our management reviews, they're vicious, they're brutal. Our [General Manager]

and our VPs, it's their job not to hold back. They need to challenge us and question us.

And if we don't have appropriate answers, then we failed….we need to be able to all

understand and come together, here's what we're doing and why we're doing it…

-Senior HW Program Manager, Devices

In addition to the planning phase, our informants also felt that software engineers needed

to be vocal during the execution phase. PMs wanted software engineers to speak up when

something could jeopardize the schedule. Our informants discussed numerous disasters where

software engineers did not mention that they were ‘blocked’, leading to bad surprises that

delayed project timelines. Our informants explained that an important function of PMs was

‘unblocking’ software engineers; however, PMs could only do so if software engineers

communicated issues and problems. Great software engineers knew when they were on track and

when they were blocked; they readily communicated issues and enlisted help to address issues

out of their control (e.g. waiting on actions from another team). One informant discussed a

frustrating experience with a software engineer who would constantly only reply with “yes,

we’re making progress” without any details for over a week, causing the team concern about

meeting the schedule and consider cutting an important feature. Our informants felt that great

software engineers were transparent about their progress and any issues that they are

encountering; this effective communication allowed stakeholders (e.g. their manager and PMs)

to properly assess the situation and to prepare backup plans when needed:

[Great software engineers] were able to articulate the problems that they are seeing in

the system, and follow up on them…And we have methods and we have ways to do it. We

have a daily scrum. You should just go surface these things there, just don't sleep on

them…there is some level of transparency between the devs… they minimize risks and

they surface risks and the PM or the dev manager can have a backup plan. The more you

identify these problems early in the process, the better. If you just keep them as surprising

issues at the end, nobody is able to handle them. When the plane is landing, you cannot

just go say, "Oh, the engine is not working now. Oh, I knew about it a week ago."

-Senior Program Manager Lead, Web Applications

Aside from proactively communicating important information, our informants also felt

that great software engineers were willing to adapt and to continuously improve. One informant

discussed a good experience with a software engineer that was willing to learn how to program

iOS apps to help the team. Even though the software engineer was not familiar with iOS

programming (being a Windows programmer), the software engineer was willing to “try to learn

and just help keep this going.” Our informants felt that great software engineers saw changing

needs as opportunities to acquire new skills or to try new things, and admired the attitude and

aptitude of great software engineers to continuously learn and improve. Our informants had low

regard for software engineers that refused to stray from their comfort zones and felt that software

engineers that were intransient quickly ceased to be useful to the team:

They have the attitude to learn more. They have some hunger to learn more and help.

And also, they have the ability to learn… People shy away from some machine learning

problems and some people just actually say, "You know what? I am on this team and

that's an opportunity for me to learn machine learning." And some people say, "You know

what? I am not a machine learning guy. And I don't even have interest to learn machine

learning," …If the team is about machine learning, you can either become flexible and

learn this new technology or get out of the team.

- Senior Program Manager Lead, Web Applications

Our informants also felt that the desire and willingness to improve helped the software products.

Great software engineers were constantly seeking to improve customer experiences and to

leverage better technologies. Our informants felt that great software engineers were not locked

into ‘doing it their way’ and were willing to make the necessary changes to evolve the software

product. Great software engineers were passionate and excited to improve upon the status quo:

I see passionate [sic] here…I go to talk a dev about an idea. I really want to see them

jumping up and down with me about the idea. … "Just think with me about it." The

desire to turn ideas into reality is kind of the entrepreneurial thinking.

- Senior Program Manager Lead, Web Applications

Though none of our informants mentioned technical excellence in the open-ended portion

of interviews, nearly all pointed to the importance of technical excellence when presented with

the entire set of attributes from previous studies. The sentiment appeared to be that having solid

technical skills was a ‘baseline’. Most of our informants felt that all the software engineers they

worked with were technically competent, ‘otherwise they cannot come to Microsoft’. At the end

of the day, software engineers were the ones touching the code; therefore, software engineers

needed to be able to write solid code in order to successfully deliver the software product:

It's very important especially in this company, software engineer is really touching the

code [sic], touching the product closely… if I'm just touching this block because the

whole thing is broken.

-Senior Program Manager, Applications

5.2.9.3 Discussion

The important attributes discussed by our expert PMs involved many aspects of ‘effective

communicators’ discussed by software engineers: is a good listener, integrates understanding of

others, and creates shared understandings with other. In addition, the sentiment among our

informants was that great software engineers were proactive with their communications. Our

informants wanted software engineers to be forthcoming with their information, not simply

communicating when elicited. This may be due to fact that PMs, though technically astute, often

did not have in-depth or full technical understanding of their software products; hence, they often

were not even aware of various options and possible problems. Therefore, in making planning

decisions and managing risks for the team they needed input from software engineers.

The literature on project managers in software engineering teams commonly discussed

risk management for the team (Barry W. Boehm, 1991) (Ropponen & Lyytinen, 2000). Our

findings indicate that an important aspect of risk management—not receiving much attention in

the literature—may be having great software engineers that proactively provide needed

information. They would enable project/program managers to take better and faster remedial

actions.

In other attributes discussed by our informants, proactive action was also evident. The

desired attribute of software engineers informing the team when they were ‘blocked’ has

elements of managing expectations and asks for help discussed by software engineers; in

addition, it reflected PMs desire for software engineers to initiate communication. The need for

software engineers to continuously seek improvement often emerged and echoed the

continuously improving and desires to turn ideas into reality attributes; both reflecting the

sentiment that software engineers should be self-motivated to take actions.

5.2.10 Service Engineers

The role of service engineering at Microsoft is undergoing change; we discerned three kinds of

‘service engineer’ among our four informants. One informant was a ‘network architect’,

managing a team that built network ‘topologies’ that ran Microsoft services (e.g. Azure and

Office 365). Our informant stated that since Microsoft did not have a network architect role,

rather, he (and others like him) was given the title of ‘service engineer’. Two informants ran IT

operations, working where software engineers in a DevOps model—an software engineering

practice that emphasized collaborations and communications between software engineers and IT

profession to automate and expedite the process of software delivery and infrastructure changes

(Roche, 2013). The final informant developed services for internal teams.

In our examination of service engineers, we will discuss the perspectives of the three

kinds of service engineers that we interviewed separately.

5.2.10.1 Network architect

One informant managed of a team of services engineers that “build the networking infrastructure

inside the data centers for Microsoft’s online services”; he stated that in other companies he

would be called a network architect. Our informant stated that his team developed the network

designs on top of which Microsoft services team developed their product, including Office365,

Azure, and Skype. Our informant described working with software engineers to design the

software and then, acting as the customer, deploying it see if it worked as expected in practice:

We also do a lot of testing and piloting with them, so early in beta sort of times, they'll

give us builds of the software, we'll put in our labs here, we'll test it, make sure it works

the way we think it's supposed to and give them feedback on that, too…They'll give it to

us and we'll test it and give them feedback on it, just like what a customer would do

during a beta trial.

-Principal Service Engineering Manager, Enterprise

Our informant discussed service engineers and software engineers at Microsoft having an

uneasy relationship. He lamented that many Microsoft software engineers did not view

networking as a ‘discipline’ and lacked respect for service engineers. Our informant felt that this

was misguided because networking required a specialized set of skills: “if you don't have

experience building a network that will support 500,000 servers, you will do it wrong.” In

addition to interpersonal issues, our informant also discussed industry trends whereby software

engineers threatened the future of the service engineering role. He stated that software engineers

were displacing ‘network architects’ by writing software that automated the deployment process:

In the Cloud space, specifically, like the three big, Google, Amazon, Microsoft, the career

of a network architect or engineer is diminishing to be replaced by a software engineer

because the networks are so large that they can't be done by a person anymore. They

have to be written, they have to be automated in code.

-Principal Service Engineering Manager, Enterprise

With the tension between software engineers and service engineers as backdrop, our

informant discussed several attributes of great software engineers. Our informant felt that great

software engineers—those developing software services—understood that the network had great

impact on the quality of their service; therefore, they had working knowledge of their

infrastructure and worked closely with service engineers to ensure that their services work as

expected. Our informant described an example where the network topology of an existing service

for one team made adoption by another team difficult; he had to implement a temporary work-

around and work with the first team on a permanent solution to “line up the physical

infrastructure and logical infrastructure”.

Our informant also felt that, in order to work effectively with service engineers, software

engineers needed to be willing to take feedback. Our informant felt that great software engineers

did not simply “hand it to us and walk away”; they included service engineers early in the design

process, earnestly listened and discussed problems they raised, and then worked with service

engineers to improve the product after deployment. However, our informant felt that many

software engineers were not open to ideas for improvement, especially from service engineers:

being able to accept feedback from folks that...our experience as an infrastructure team is

often the software engineers sort of think that because it's software it's a higher tier and

more important, and don't often either take criticism well or advice like, "If you wrote

your software this way, it would work much better on this infrastructure."

-Principal Service Engineering Manager, Enterprise

5.2.10.2 IT pro

Two of our informants were in IT Operations, which deployed, tested, configured, and monitored

the software services. One informant discussed deploying services to data centers, and then

setting up the underlying failover and backup settings. The other informant discussed running

tests and monitoring services running on “BigIron routers, which are these hulking beasts that

carry terabits of traffic” to ensure that the service is working as expected on production firmware

under actual load.

In describing engagement with software engineers, both informants used the ‘DevOps

model’ to describe the relationship. Our expert service engineers worked with software engineers

to quickly and frequently deploy iterations of the software services to production. In addition,

when failures occurred, service engineers worked with software engineers to isolate, debug, and

resolve the issues.

As with the ‘network architect’, our two IT pros reported incidences of condescension

from software engineers and highlighted ‘mutual respect’ as an attribute of great software

engineers. Our informants appreciated software engineers who were willing to take input and

feedback on improvements from service engineers based on their experiences from daily

operations. One informant expressed the desire to be able to go to developers with problems that

he was seeing and have a frank back and forth discussion about the issues. Our informant felt

that, regardless of the question, the software engineer should not be dismissive and think, “Oh,

that guy's an idiot.” Our informants felt that there will be instances when the engineer—software

or service—does not understand the situation (e.g. a feature requirement or how a component

works); therefore, great engineers needed to be willing to ask questions as well as provide

explanations. However, both our informants felt that the software-engineering-centric culture at

Microsoft often put service engineers at a disadvantage in engagements.

Our informants also discussed understanding the bigger picture as an attribute of great

software engineers. Our informants felt that great software engineers understood that software

services encompassed the software, the infrastructure, and the daily operations of the software

service; therefore, software development did not end when the code is done. After the software

has been ‘released to the web’ and customers start using it, software engineers should work with

operations to find bugs that escape during development. Furthermore, great software engineer

thought about the holistic impact of their software features, not simply the coding aspects. One

informant described a bad situation when a software engineer only thought about completing his

feature but ignoring the security implications when put into production, viewing it as a concern

to be ‘thrown over the fence’ at service engineers. Our informants felt that great software

engineers took concerns of entire services into consideration:

The [software engineering] guys that we interface with, that I think do a fantastic job of

being able to communicate the requirements is they understand not only the code, but

they understand, at least high level, what the network side of it needs.

-Senior Service Engineering Manager, Enterprise

5.2.10.3 Internal services developer

One of our informants was a solution architect designing SharePoint solutions producing custom

SharePoint services for internal teams, effectively an IT developer. The informant described the

confusion with her title as a result of multiple team mergers and title transitions leaving her with

a job title that did not reflect the actual tasks that she performed. She described her projects as

designing ‘service fabrics’ (e.g. provisioning and configures SharePoint VMs) to bring together

multiple sources of customer usage data for Microsoft products.

Our informant discussed collaborating with software engineers—feature owners of the

target software products—to produce her data processing solutions. She learned about the data in

production by the software engineer’s features and gathered processing requirements, including

about how the data should be connected with other data ‘downstream’ or ‘upstream’.

Essentially a software engineer whose customers are other software engineers, our

service developer expressed admiration for ‘innovative solutions’, designs that met all of the

challenging requirements and contextual considerations:

…smart solution that meets your business goals, requirements, everything that minimal

engineering, and with all around your service fabric…

-Senior Service Engineer, Applications

Our informant further felt that great software engineers had a great depth of knowledge,

and were effective in conveying that knowledge to others. She discussed working with great

software engineers that knew, in great detail, what data were collected and what information (e.g.

user behaviors) those data captured, as well as how that data fit with within the business

objectives and connected other data. In addition, our informants felt that great software engineers

were able to clearly and succinctly explain that understanding to another software engineer so

that another software engineer—our informant in this case—could then comprehend the

scenarios and data processing requirements (i.e. what the software engineer wanted the service to

capture):

[A great software engineer] who is also able to speak out or being very crisp. It needs to

be precise, concise and then able to convey what you want to convey in very small words

[sic], not too much of stories, not derailing from the requirements, or not carried away

by a lot of other stuff… Business goals is going to be the main requirement. You don't get

carried away by the supporting things or lose your track… it's very essential to go in-

depth as well as on breadth.

-Senior Service Engineer, Applications

5.2.10.4 Discussion

Aside from the one service engineer who was effectively a software engineer, the rest of our

service engineers all wanted software engineers to appreciate the expertise of service

engineers—their knowledge of networking and operations aspects of software services. This

sentiment, while related to the concept of knowledgeable about people and organizations

discussed in interviews of software engineers, was closer to the concept of respecting other

experts.

Interestingly, our informants did not emphasize the need to be well-mannered, which is

how software engineers typically discussed condescending behaviors in other software

engineers. Rather, our expert service engineers emphasized attributes related to being open-

minded, as well as being able to see the big picture, sees the forest and the trees. The underlying

understanding appeared to be that service engineers recognized that software engineers were

central and critical to Microsoft’s software services business (i.e. service engineers were, in fact,

second class citizens); nonetheless, our experts wanted the software engineers to recognize that

successful software services required service engineers.

Many of our informants described their relationship with software engineers as DevOps;

Roche, in his description of the DevOps model (Roche, 2013), characterized it as an evolution of

quality assurance. While the migration to combined engineering was largely discontinued with

the traditional tester role at Microsoft (Locke, 2014), our findings indicate that the service

engineer may be the new tester for a services-centric Microsoft. With the responsibility to ensure

that software services ran with quality after release, many of our informants reported the same

issues (e.g. throwing software ‘over the wall’ and lack of respect) reported in historical accounts

of testers at Microsoft (Zachary, 1994).

5.3 DISCUSSION

In this study, we sought to understand the perspectives of expert non-software-engineers on the

software engineering expertise. To our knowledge, this is the first time this topic has been

systematically investigated. Overall, our expert non-software-engineers recognized that software

engineers performed a critical engineering task—writing code—without which their product

would not exist. Consequently, great software engineers were foremost expected to be great at

their own jobs; without quality software, other considerations were often moot. Second, great

software engineers were expected to speak up about potential problems and progress, since they

usually had the best knowledge about the technical details and their implications. This included

scoping and innovating during planning, as well as updating timelines and expectations during

development; great software engineers ensured that all team members had the information they

needed to make their decisions. Third, our informants generally felt that great software engineers

recognized that they were not experts on all aspects of the product; great software engineers

listened to and leveraged the knowledge of other experts. Great software engineers understood

and appreciated the contributions expert non-software-engineers.

For practitioners and educators, this knowledge may help to train and educate software

engineers, particularly those working (or will be working) in interdisciplinary teams. At

minimum, for practicing software engineers, the myriad (negative) stories and examples behind

these findings may spur some introspection about how they are engaging (and should be

engaging) with expert non-software-engineers. For researchers, the findings may be a starting

point for many additional research efforts. For example, numerous studies can examine each of

the important attributes rated by software engineers that were not found to be important by

expert non-software-engineers.

 Aside from the general insight above, we also found two interesting overarching insights

among our findings. In the following three sections, we will detail these two observations and

their implications for research, and then conclude with a discussion of the threats to validity.

5.3.1 Conditions for Equality

Many of our expert non-software-engineers felt that software engineers did not view them as

equals; however, this feeling was not universal and other experts did not have similar sentiments.

Understanding the conditions that lead to equality—real or perceived—between software

engineers and non-software-engineers may be worthwhile future work. As many expert non-

software-engineers perform important functions in software engineering teams, eliminating the

kinds of issues described by our informants may be essential to the long-term success of teams

and organizations.

Informants in numerous roles expressed feelings of perceived inequality, including

Content Developers (Section 5.2.2), Design Researchers (Section 5.2.4), Designers (Section

5.2.5), Product Planners (Section 5.2.8), and Service Engineers (Section 5.2.10). Commonly,

these experts commonly discussed software engineers developing and shipping the software

without involving them. One content developer informant expressed frustration with software

engineers being non-responsive or late with documentation requests; several design researchers

stated that software engineers sometimes made decisions based on their own experience rather

than conducting usability testing. A designer informant discussed bad experiences with software

engineers making UX decisions without seeking their guidance; a product planner informant

discussed software engineers ignoring their suggestions. One service engineer felt that software

engineers sometimes threw software ‘over the wall’ at them. All of these informants wanted

software engineers to appreciate the contributions of their role to the overall success of the

software product and to recognize the specialized skill necessary to do their functions well.

Informants in other roles expressed feeling of equality in their collaborations, including

Artists (Section 5.2.1), Electrical Engineers (Section 5.2.6), and Mechanical Engineers (Section

5.2.7). Historical perspectives provided by artist informants were especially interesting. Several

artist informants discussed ‘steamrolling’ and inequitable decision making by software engineers

in the past. However, they felt that their current Microsoft teams did not have those issues.

Informants hinted that underlying reasons may include maturation of the gaming industry

making art/atheistic essential to success, advances in game development technology (e.g. game

engines) enabling artists to be more self-sufficient, or the culture at Microsoft. More

understanding of the conditions—both what and why—may help software engineering teams

perform optimally, especially teams with non-software-engineers that our study indicate as

possibly treated inequitably by software engineers.

5.3.2 Challenging Engineering Processes

For many of our non-software-engineer informants, problems during collaborations (and

consequently their desired attributes of great software engineers) might have been direct results

of the engineering processes of their products. However, as the engineering approaches were

highly constrained by their software products, we did not see obvious adjustments, making in-

depth investigation of mitigations potential future work.

Informants that worked on games (e.g. Artist and Designers) indicated that their teams

often needed to ‘push the envelope’, necessitating substantial hard work, especially close to

shipping dates. As explained by our expert Artists, the video games industry is hyper-

competitive, and game studios must constantly be ‘aiming for the stars’ to remain competitive in

the marketplace. This context likely contributed to Artists desiring software engineers who can

‘hack’ something together and who are willing to do extra work at the end of the schedule.

However, this engineering process is likely detrimental to code quality (Nagappan & Ball, 2005)

and software engineers working on games disliked being expected to do extra work (see

discussions of the hard working attribute in Section 4.2.1.2). Easy solutions may not exist; given

the competitive nature of the gaming industry, any additional resources would probably be put

towards more features, instead of reducing the strain on software engineers and other experts.

Consumer electronics is another area where informants hinted that the engineering

process led to problems. In this case, the physical nature of consumer electronics necessitated

essentially a ‘waterfall’ process. ‘Physical’ electronics required the program team to make many

important engineering decisions upfront, since even minor hardware changes or fixes took

months (if possible at all). This development approach puts considerable strain on the various

experts involved, including Software Engineers, Electrical Engineers, and Mechanical Engineers.

Not only do they have to be experts of their own technical domains, they also needed

considerable technical knowledge of the other technical domains. They needed to think through

implications of their decisions on others as well as comprehend and communicate with the other

experts; many expert Electrical Engineers and Mechanical Engineers wanted software engineers

to understand their technical domains. However, asking software engineers to have expertise in

multiple separate engineering disciplines may not be realistic.

Today, the typical solutions to the problems above are to find great software engineers

with all the desired attributes; however, finding these ‘unicorns’ is not a sustainable practice,

especially with the increasing demand for software engineers. Therefore, it may be incumbent on

researchers to find workarounds or alternative engineering approaches that address these

structural problems.

5.3.3 Threats to Validity

As with any empirical study, there are various threats to validity. The main threat to construct

validity is our informants’ understanding of the attributes from our previous studies of software

engineers. Since our informants were not software engineers and were commonly from very

different communities of practice, they might not have interpreted the attributes and descriptions

in the same manner as software engineers. Furthermore, due to time constraints we were not able

to describe each attribute in detail in our interviews. This threat is mitigated by our selection of

experts (typically those with 5+ years of experience), as our all our expert non-software-

engineers had worked with software engineers and were likely familiar with the attributes

described. In addition, we selected our informants from the same organization as our software

engineers, increasing the likelihood that our informants were familiar with the terminology and

sentiments described. Most importantly, we did not attempt to pigeonhole the attributes

discussed by our expert non-software-engineers into attributes discussed by expert software

engineers. We examined the data for each role separately, retaining the wording and sentiments

of the expert non-software-engineers.

The key threat to internal validity is from the interpretation of the data; other researchers

may interpret the data differently. Nonetheless, I feel that I may be uniquely qualified to

accurately interpret the data since I work at Microsoft (having an understanding of the

organization context), am familiar with software engineering at Microsoft (having shipped a

feature in Windows Vista SP1), and am knowledgeable about the area (having conducted two

prior research projects on this topic).

We note three threats to the external validity of our study. First, findings from our sample

of expert non-software-engineers might not extend to all expert-non-software-engineers at

Microsoft. Though we interviewed multiple experts for each role, the proportion of experts we

interviewed in each role was small; differing opinions may exist. Second, our findings may not

extend to expert non-software-engineers outside of Microsoft. For example, the Program

Manager role (discussed in Section 5.2.9) is likely unique to Microsoft, and findings may not

extend to project managers at other organizations, e.g. ‘project managers’. Nonetheless, many of

our informants had work experience at other organizations, increasing the external validity of our

study, notably Artists (discussed in Section 5.2.1), Designers (discussed in Section 5.2.5),

Electrical Engineers (discussed in Section 5.2.6), and Mechanical Engineers (discussed in

Section 5.2.7). Furthermore, we believe that our methods and findings are appropriate given the

dearth of knowledge in this area and the exploratory nature of our study.

Chapter 6. WHAT MAKES A GREAT SOFTWARE

ENGINEER

In this thesis, we have interviewed expert software engineers, surveyed many more, and talked to

expert non-software-engineers to gain a holistic, contextual, and real-world understanding of

software engineering expertise. We learned about various attributes considered to be a great

software engineer, how expert software engineers rated those attributes, and the perspectives of

expert non-software-engineers. In this chapter, we will return to our original question: what

makes a great software engineer?

In subsequent sections, we will synthesize our findings and discuss the salient aspects of

being a great software engineer. We will discuss each aspect: how it manifested in our studies

and how it relates to findings in related work.

6.1 BE A COMPETENT CODER

Our results indicated that the most important aspect of being a great software engineering is

being a competent coder. While previous studies about software engineering expertise tout

various ‘soft skills’ (see Section 2.6), the experts in our study—software engineers and non-

software-engineers alike—the ability to write good code was essential.

The understanding is straightforward: without code, there is no software; therefore, great

software engineers need to be able to write good code. Producing software is the basis for

ACM’s definition of a software engineer: ‘people who write software to be used in earnest by

others’ (Shackelford et al., 2006). In addition, our informants felt that the code needed to be a

sufficient quality. Expert non-software-engineers stated that even if everything else about the

software product is great—great art, excellent design, wonderful documentation, etc.—it will not

be successful if the software is full of bugs. Most of our expert non-software-engineers knew

little about software development and depended on the software engineer to write the code;

therefore, they expected and needed the software engineer to do the own job right. Software

engineers agreed; paying attention to coding details was the top rated attribute in our survey. Our

expert software engineers stated that they did not respect software engineers who could not get

the basics right (i.e. “wrote shoddy code”).

Being a competent coder was necessary to be a great software engineer, but not solely

sufficient. While our informants felt that a software engineer cannot be great without this

attribute, they also felt that simply having this attribute does not make a great software engineer.

For many informants this attribute was a ‘baseline’, and felt that most software engineers at

Microsoft were competent.

The threshold for competence also appeared to be low. Software engineers’ rankings of

attributes showed that although paying attention to coding details (entailing error handling,

memory consumption, performance, security, and style) was the highest ranked attribute, the

next software-product-related attribute (the fits together with other pieces around it attribute) was

ranked 10th. There appeared to be a low threshold that software engineers needed to achieve,

beyond which other attributes (like the ones we discuss in subsequent subsections) become more

important.

Nevertheless, coding competence received near universal acknowledgement by our

experts. This finding is a vindication for the ACM’s Computing Curriculum for Software

Engineering (Shackelford et al., 2006), which focused largely on technical coding skills. These

findings also align with various studies that observed everyday activities for software engineers

((Ko et al., 2007), (Latoza et al., 2006), (Singer et al., 1997), (Perry et al., 1994)); though

software engineers spend time doing other activities, much of their time is still spend coding. In

addition, our results largely justified research efforts aimed at understanding and closing the gap

between novice and expert coders (see Section 2.4). Even though focusing on coding may be

myopic, given that it is a necessary skill for software engineers (as our findings confirm),

ensuring that novices are competent coders first is likely a good starting point. Conversely, our

findings suggest that not considering technical skills is a major limitation of several research

efforts that solely focus on ‘soft skills’ of software engineers (Kelley, 1999b) (Ahmed et al.,

2012). The lack of consistent findings between various human factors and engineering outcomes,

as discussed in Cruz et al. (Cruz et al., 2015), may be due to omission of technical skills. After

all, if a software engineer cannot develop software, then all other attributes are probably moot.

6.2 MAXIMIZE CURRENT VALUE OF YOUR WORK

The economic concept of ‘risk and expected returns’ (Ventures, 2000) explains numerous

seemingly contradictory attributes and sentiments in our study (discussed below). When applying

this economic lens, including consideration of probabilistic future value (possibly negative) and

the time available for actions, a coherent theme emerges. Great software engineers, taking into

consideration the context of their software product, maximized the value of their actions—

adjusted for probable future values and costs.

The first area of (apparent) contradiction was that many software engineers discussed

great software engineers designing their software with the future in mind, e.g. long-termed

(discussed in Section 3.3.4.6) and anticipates needs (discussed in Section 3.3.4.8). To them, great

software engineers took time and effort to ensure that their software was resilient to possible

future changes. However, also discussed in those sections, many other software engineers

disagreed. The dissenters felt that predicting the future was futile; they felt that experimentation,

faster iterations, and a willingness to make changes were better. In their view, long-termed and

anticipates needs were detrimental attributes since they wasted effort and resources on a future

that may not occur.

These seeming conflicting opinions reconciled when viewed with an economic lens. The

software may incur future costs to service and repair (i.e. incur ‘engineering debt’). Therefore,

the current value of software engineering work needs to take into consideration probable future

costs of repair and maintenance. For software with long lifespans and high repair costs, software

engineers should think ahead (i.e. be long-termed and anticipating needs). However, in other

situations the software may have a short lifespan or have low repair costs (e.g. updating online

services compared to patching boxed software); in those situations, great software may rightly

defer future costs (i.e. ‘build for now’).

The second area of contradiction was the expectation that great software engineers should

take the time to thoroughly think through the problem. The systematic attribute (Section

3.3.1.13) entailed not jumping to conclusions and not acting too quickly; the elegant attribute

(Section 3.3.4.5) involved thinking deeply to coming up with simple solutions to difficult

problems; the fits together with other pieces around it attribute (Section 3.3.4.2) entailed

accounting for the relationships with surrounding components. However, many software

engineers also wanted great software engineers who would just go ahead and ‘do it’. The

willingness to go into the unknown attribute (Section 3.3.1.10) was about the willingness to take

action with incomplete information, and the executes with no analysis paralysis attribute (Section

3.3.1.3) was explicitly about the need to stop thinking and start doing. The same incongruity was

also present among our expert non-software-engineers. Nearly all of them expected great

software engineers to produce quality software, as discussed in the previous section; however, on

numerous occasions and across many roles, expert non-software-engineers also wanted software

engineers to ‘hack’ a solution together (for example, see Section 5.2.1.2 for Artists) and to

bypass established processes to get them something quickly to ‘unblock’ their tasks (for

example, see Section 5.2.7.2 for Mechanical engineers).

From an economic perspective, software has value (i.e. makes money) only after

deployment; however, for some products there is a timing element that greatly affects these

future benefits. Products like games and consumer electronics have market conditions that incur

significant revenue penalties for missing certain deadlines (e.g. the holiday season). Through this

lens, contradicting opinions about speed of actions makes economic sense. High-quality software

saves on future repair and maintenance costs; however, those savings must be weighed against

possible forfeiting of revenue. Therefore, while having high-quality software is generally good,

there may be situations, especially close to ‘ship dates’, where producing a ‘hack’ makes more

economic sense than having a complete solution that takes more time.

The importance of risks and expected returns may be context specific, as Microsoft is a

for-profit organization. Nonetheless, related concepts are often discussed in research literature on

bug triaging for open source software projects. (Anvik et al., 2006) (Ko & Chilana, 2011); open-

source software engineers take possible future issues (e.g. ‘regression’ or ‘reopen’) into

consideration when deciding whether/how to fix a problem. Interestingly the education literature

is largely silent on this issue. For example, ACM’s curriculum (Shackelford et al., 2006)

prescribes a set of skills but has little information about when or even whether to use those skills.

Things like ‘software architecture’ and ‘software verification’ are great in theory; however, our

findings indicate that, in the economics of real-world software engineering, the best solution may

sometimes be ‘quick and dirty’.

6.3 PRACTICE INFORMED DECISION MAKING

As we discussed in Section 3.4.1, software engineers face myriad decisions about what software

to build and how to build it; consequently, effective decision-making is a critical attribute of

great engineers. However, rather than outcomes (which were often confounded by future

uncertainties and outside factors), we found the process of acquiring needed information to make

good decisions to be the most important aspect of effective decision-making. Great software

engineers differentiated themselves by going through the right processes to make informed

decisions.

In discussing this theme, we use the framework of ‘rational decision-making’ described

in Simon’s 1955 paper (Simon, 1955). We believe this framework captures decision-making in

the software engineering context better than the intuition-driven ‘naturalistic decision-making’

advanced described by Zsambok and Klein (Zsambok & Klein, 1996). In most situations

software engineers identified the decision to be made, systematically identified the alternatives,

thought through potential outcomes, estimated the likelihood of those outcomes, approximated

the value of those outcomes, and then decided among those courses of action (if any).

Many attributes of great software engineers concerned their effectiveness in making

decisions (see all of the attributes in Section 3.3.2); we found those associated with the

‘information gathering’ activities described in Simon’s paper (Simon, 1955) to be the most

important. Software engineers often did not have the information they needed to make their

decisions; great software engineers distinguished themselves by effectively acquiring the

necessary information and then making an informed decision. Viewed within the rational

decision-making framework, the systematic attribute (discussed in Section 3.3.1.13) described

actually undertaking the ‘information gathering’ activity, the asks for help attribute (Section

3.3.3.11) concerned seeking out those with the best information, and the open-minded (Section

3.3.1.2) and data-driven (Section 3.3.1.17) attributes both describe great software engineers

willingness to let new information influence their decisions.

Conversely, many negative attributes of bad software engineers discussed by our experts

were symptoms of not gathering or not using the right information to make decisions. In

discussing the data-driven attribute (Section 3.3.1.17), informants lamented that some software

engineers had confirmation bias, selecting only the information that confirmed their initial

understanding. The same problem was reported by various expert non-software-engineers, like

Product Planners in Section 5.2.8.2. In addition to confirmation bias, numerous expert non-

software-engineers also described self-referential problems. Design Researcher (Section 5.2.4.2),

Designers (Section 5.2.4.2), and Product Planners (Section 5.2.8.2) all described software

engineers as overly reliant on their own experience and not letting other data supplement or

change their understanding.

The process of decision-making has received little direct attention in the software

engineering literature. It is not mentioned in the ACM curriculum, and, as we discussed in

Section 3.4.1, we are not aware of any direct research on the topic within the context of software

engineering. Nonetheless, aspects of decision-making, good and bad, are sprinkled throughout

the software engineering literature. Bug triaging, examined by many researcher (Anvik et al.,

2006) (Jeong et al., 2009)(Podgurski et al., 2003)(Runeson et al., 2007)(Bertram et al., 2010) is

effectively a decision-making process. The work by Gobeli et al. (Gobeli et al., 1998) examining

effective (and not effective) conflict resolution approaches within software engineering teams

touches on making decisions. Consulting with team members to decide how best to implement a

feature or to fix a bug is mentioned in various studies that examine everyday activities of

software engineers (Ko et al., 2007)(Latoza et al., 2006). Perhaps now is the time for software

engineering educators and researchers to pay attention to decision-making within their education

and research efforts.

6.4 ENABLE OTHERS TO MAKE DECISIONS EFFICIENTLY

Shrouded in polite descriptions like creates shared understanding with others (Section 3.3.3.3)

and creates shared success for everyone (Section 3.3.3.15), a major theme in our interviews—

software engineers and non-software-engineers alike—was don’t make my job any harder. Great

software engineers made others’ jobs easier by helping to them make their decisions more

efficiently (or, at minimum, they did not make them worse).

We noticed this theme surface as we discussed software engineers having—though more

commonly, not having—various attributes. This sentiment was most apparent in the honest

attribute; in almost every instance where honest was discussed (Sections 3.3.3.4, 4.2.1.1, and

5.2.9), informants described negative situations when software engineers lacked honesty. One

informant could not act upon the feedback from a software engineer because he would

“misrepresent something or make them look better.” An informant described poor software

engineers that “would lie to me about [their component’s] availability and maturity in order to

get me to be a user and justify their own existence to management.” A program manager

complained that “if it's sugarcoated, you can't address it in a timely manner as probably is needed

or in a direct manner as probably is needed”. Poor software engineers did not provide

information (or worse, provided misinformation) that caused our informants grief.

The theme of not causing problems for others was also evident in the discussions of many

other attributes. The manages expectations attribute (Section 3.3.3.5) contained discussions about

software engineers derailing a project by not speaking up about potential delays. The self-

reflecting attribute (Section 3.3.1.5) entailed software engineers proactively changing plans when

they realized current plans were untenable; the same sentiment underlies the asks for help

attribute (Section 3.3.3.11). In addition, for many informants, the creates shared understanding

attribute (Section 3.3.3.3) was about great software engineers helping them understand the

reasoning—commonly, pitfalls and potential problems—behind various options so they can

make appropriate selections or explain decisions to management. For these attribute, informants

discussed software engineers without the attributes preventing other software engineers from

taking corrective actions to avoid bad outcomes for the team and ultimately making their jobs

harder.

There is little direct mention of “don’t make my job any harder” in the research literature,

even though there are hints in various qualitative studies of software engineering efforts. For

example, Ko et al. (Ko et al., 2007) found ‘maintaining awareness’ to an important concern for

software engineers, and Latoza et al. (Latoza et al., 2006) found ‘team code ownership and the

moat’ (which facilitated understanding within the team and limited outside perturbations) to be a

common theme. This latent sentiment may be especially difficult to detect using research

methods that do not dig deeper into the reasoning behind stated opinions; we found this theme in

the discussions of the implications of attributes. Various research methods like surveys

(Lethbridge, 1998), meta-analysis (Radermacher & Walia, 2013), and secondary analysis

(Ahmed et al., 2012) may not be able to detect this sentiment. Our findings suggest that a

complex phenomenon like software engineering needs to be studied using qualitative studies that

provide in-depth understanding, in addition to quantitative methods.

6.5 CONTINUOUSLY LEARN

Aptly and succinctly summarized in our section on the continuously improving attribute (Section

3.3.1.1), “engineers do not start their careers being great; young software engineers needed to

learn and improve to become great… the software field was rapidly changing and evolving,

unless engineers kept learning, they would not become and would not continue to be great.”

In addition to continuous improving, which is a direct derivative of the continuously

learning concept, numerous other attributes were also related. Many informants discussed the

curious attribute—wanting to know how things work—(Section 3.3.1.7) as a motiving factor

behind learning. Both grows their ability to make good decisions (Section 3.3.2.7) and updates

their decision-making knowledge (Section 3.3.2.8) were about learning and continuously re-

learning how to make the best decisions. Asks for help (Section 3.3.3.11) and integrates

understanding of others (Section 3.3.3.2) both involved effectively learning from others. Finally,

the concept of being open-minded, both as the attribute described by software engineer (Section

3.3.1.2) and as the sentiment in interviews with expert non-software-engineers (Section 5.2.4.2,

Section 5.2.8.2), derived from situations where software engineers had to learn and utilize new

information.

As made evident by attributes and sentiments throughout our research, a great software

engineer is not a one-time designation; it is an ongoing progress. This aligns with sentiments in

relate work. McConnell in Code Complete (McConnell, 2004) stated that curiosity is an

important personal characteristic for software engineers because it promotes “keeping up with

changes and seeking ways of doing their job better.” The Vice President of People Operations at

Google stated, “significant learning and growth occur after college and that many skills to

succeed in industry are not the same ones you need to succeed in school” (Bryant, 2013). Codes

of ethics from other fields, e.g. medicine (AMA, 2001) and traditional engineering (NSPE,

2007), suggest that continuously learning is a requirement that is shared across all learned

professions.

6.6 SUMMARY

In summary, the five aspects of software engineering expertise we found in this dissertation

were:

 Be a competent coder

 Maximize current value of your work

 Practice informed decision-making

 Enable others to make decisions efficiently

 Continuously learn

Overall, software engineering expertise holistically encompassed internal personality traits,

ability to engage with others, technical capabilities, and decision-making skills (an area not

emphasized in previous studies).

 Within software engineering research, the one area that covers as broad a set of concerns

is software development processes/methodologies (Section 2.3); however, we note a salient

difference. While software development processes/methodologies commonly prescribed some of

the same attributes as our findings, their focus was on software engineering teams and many of

their attributes may not be important for individual software engineering expertise. For example,

the Capability Maturity Model (Herbsleb et al., 1997), in Basic Level 2 (‘repeatable’), prescribes

‘software project planning’ and ‘software project tracking and oversight’. In our study at

Microsoft, these activities were commonly performed, with or by the expert non-software-

engineers (e.g. product planners, Section 5.2.8, and program managers, Section 5.2.9). Therefore,

it is likely that some areas of concern discussed in research on software development

processes/methodologies are not essential to individual software engineering expertise. An

interesting area of future research may be to discern which software engineering activities could

be (or should be) off-loaded to expert non-software-engineers to promote organizational success,

freeing software engineers to focus on the critical task of producing good code.

Chapter 7. SOFTWARE ENGINEERING EXPERTISE

WITHIN THE CONTEXT OF HUMAN

EXPERTISE

Software engineering expertise is a part of human expertise, a significantly broader research

area. Within the framework of human expertise research, this dissertation can be viewed as an

‘ecologically-valid study’ of ‘an ill-defined problem’, as defined by Ericsson and Smith in

Toward a General Theory of Expertise (Ericsson & Smith, 1991). Rather than examining actions

and behaviors within constrained or synthetic ‘lab’ situations, we have attempted to understand a

phenomenon as it occurs in real and complex settings. In this chapter, we will relate the findings

in this dissertation to research and knowledge in human expertise, discussing insights and

implications.

Before discussing our findings, we note that various studies in human expertise have

examined aspects of software engineering. Other than software engineering focused studies

comparing novices and experts (Section 2.1) several research studies have examined

programming from a human expertise perspective. Soloway, Adelson, and Ehrlich summarized

their studies examining the cognitive underpinnings of program comprehension; the authors

proposed two constructs that help advanced programmers to comprehend programs quickly:

program plans (program fragments that present typical sequences) and rules of programming

discourse (conventions in programming) (Soloway, Adelson, & Ehrlich, 1988). The authors

tested their theory by creating two programs that adhered (and did not adhere) to plans/rules and

analyzed novices and experts by using fill-in-the-blank questions. The authors found that experts

performed better than novices in adhering programs but performed at a level similar to novices in

non-adhering programs. Adelson and Soloway examined expertise in software design by

studying three expert software designers; the authors observed that the experts used mental

models that began as abstract but became progressively more concrete, used balanced

development in which components were iteratively designed to the same level of detail, kept

notes about what needed to be done later, and mentally ‘executed’ their designs (Adelson &

Soloway, 1988). Sonnentag, Niessen, and Volmer surveyed studies involving software design

expertise; they identified five areas of concern (requirement analysis and design, program

comprehension and programming, testing and bugging, knowledge, and communication and

cooperation) and two ways of defining experts (more experience and higher performance)

(Sonnentag, Niessen, & Volmer, 1991). The authors discussed the distinguishing characteristics

of experts in each of the five areas. Though prior work contains interesting insights about

understanding and developing code, real-world software engineering goes beyond programming

(in isolation). In the subsequent sections, we will examine insights from our study of the broader

and more complex phenomenon of real-world software engineering.

A thorough discussion of the voluminous literature in human expertise is beyond the

scope of this dissertation. In our discussions, we will describe and reference relevant theories and

studies where appropriate. Readers interested in a deeper and broader understanding of human

expertise are encouraged to read comprehensive texts on the topic: The Cambridge Handbook of

Expertise and Expert Performance (Ericsson, Charness, Feltovich, & Hoffman, 2006), and The

Nature of Expertise (Chi, Glaser, & Farr, 2014).

7.1 ACTIONS AMID CHAOS

Real-world software engineering is significantly more challenging (and complex) than

constrained scenarios studied by prior work on human expertise. Compared to the programming

and program comprehension tasks examined by prior work, software engineering (as we

observed at Microsoft) involved many activities outside of coding (e.g. consulting experts),

spanned significantly longer periods of time (several weeks to several years), and had more

complex technically-contextual considerations beyond correctness (e.g. long-term viability of

changes, Section 3.3.4.6, and structuring components to be updated/changed efficiently, Section

3.3.4.4). More importantly, real-world software engineering is replete with unexpected

disruptions. These disruptions often involved important changes in underpinnings of project;

teams changed priorities/objectives, underlying technology evolved constantly, and

time/resource shortfalls occurred frequently (e.g. partner teams missing deadlines).

Writing good code, while critically important, is not sufficient. ‘Being a competent

coder’ is one of the most important aspects of software engineering expertise (Section 6.1);

however, most informants considered this attribute as a ‘baseline’. Once the requirements were

well-understood and documented (and remained unchanged), informants felt that most software

engineers—at least those working at Microsoft—could competently produce the needed

software. The challenge, it appears, is what to do when something unexpected happens.

Prior research found that unknown situations and perturbations in well-understood

patterns was where human expertise typically breaks down. Chase and Simon found that by

placing chess pieces in unfamiliar arrangements (e.g. impossible position), the ability of experts

to recall board positions regressed to the abilities of novices (Chase & Simon, 1973). Soloway et

al. found the same regression in novice and advanced programmers when programming

rules/plans were broken (Soloway et al., 1988). Johnson found that when “uncontrolled

intervening events occurs between the choice and the outcome”, decisions of experts were not

consistently better than those of novices (Johnson, 1988). The advantages of expertise appear to

disappear when confronted with the unexpected.

Yet, in our studies of great software engineers, we found that some attributes of their

expertise lie precisely in their ability to effectively deal with the unexpected. Being adaptable to

new settings (Section 3.3.1.14) and willing to go into the unknown (Section 3.3.1.10) involved

the mentality of expert software engineers facing the unknown and the unexpected. Expert non-

software-engineers discussed successful collaborations where great software engineers adroitly

reacted to unexpected problems, often by-passing or short-cutting processes (e.g. fixing an

unexpected bug in the payment processing system, Section 5.2.3.2, and quickly producing

firmware to unblock prototyping, Section 5.2.7.2). Great software engineers were also unafraid

of trying new technology and going into the unknown (e.g. trying new gaming technologies

discuss by artists, Section 5.2.1.2, and programming iOS apps discussed by a program manager,

Section 5.2.9.2). We found that great software engineers handled disruptions (which were very

common) gracefully.

Our findings suggest that a distinguishing trait of software engineering expertise may be

how expert software engineers deal with unexpected situations, where traditional human

expertise would normally breakdown. More investigation of dealing with unexpected disruptions

may be an interesting area of future research for software engineering expertise as well as human

expertise.

7.2 DECISION-MAKING BUT WITH POSSIBLY INCORRECT OR

INCOMPLETE INFORMATION

Nearly all research into human expertise involves, to some degree, the ability of experts to

process information. Notably, in studying expert and novice chess players, Newell and Simon

found that experts were able to quickly translate ‘patterns’ into ‘chunks’ for efficient mental

processing (Newell & Simon, 1972). Subsequent research would find that efficient pattern

recognition (selective intake of information) and reductions in the ensuing search for optimal

actions are hallmarks of expertise (Chi et al., 2014). Yet, our findings suggest that expert

software engineers are often confronted with incorrect or incomplete information, often

unbeknownst to the engineer. What happens when the information expert software engineers

depend upon is not dependable?

Informants indicated that information others provided was sometimes incorrect.

Sometimes this was accidental; people often only had partial knowledge of the situation (see the

discussion of the integrates understanding of others attribute in Section 3.3.3.2.). Other times

people deliberately provided bad information; informants discussed deleterious situations where

software engineers would misrepresent the situation to their own benefit (see discussion of the

honest attribute in Section 3.3.3.4) or selectively used data that suited their purposes (see

discussion of the data-driven attribute in Section 3.3.1.17).

Our informants also discussed important information being missing—some bad software

engineers simply did not communicate anything. Missing needed information is the sentiment

behind the manages expectations attribute (Section 3.3.3.5). Needing undeclared knowledge was

also behind 6.0% of software engineers rating the trades favors attribute as ‘detrimental’; follow-

up interviews found that software engineers did not like needing undeclared processes (i.e.

information they did not have) to achieve their goals. Numerous expert non-software-engineers

also criticized lack of communications from software engineers. Product planners discussed

wanting software engineers to provide technical understanding so that rest of the team can make

informed decisions (Section 5.2.8.2); program managers discussed needing progress updates

from software engineers so they can avoid deviations from timelines and plan for mitigations

(Section 5.2.9.2).

By all accounts, expert software engineers (and even expert non-software-engineers) did

not have good solutions or strategies for dealing with bad or missing information. Many resigned

to criticizing bad behaviors and calling on software engineers to improve their abilities to

provide needed information (see discussion of ‘enabling others to make their decisions

efficiently’ in Section 6.4). Some informants declared that they would simply leave teams with

significant problems (honest, Section 3.3.3.4). Dealing with bad or missing information may be

an area where researchers can devise processes and procedures to help software engineers and

their teams. For example, the practice of ‘daily stand up’ in the Scrum development process

(Rising & Janoff, 2000) helps software engineers develop the habit of providing updates of their

progress.

7.3 TEACHERS: A REQUISITE FOR DELIBERATE PRACTICE

Ericsson et al. (Ericsson et al., 1993) found that expertise required deliberate practice:

…to improve performance it is necessary to seek out practice activities that allow

individuals to work on improving specific aspects, with the help of a teacher and in a

protected environment, with opportunities for reflection, exploration of alternatives, and

problem solving, as well as repetition with informative feedback.

Among the many requisites discussed above, the most interesting were ‘help of a teacher’ and

‘informative feedback’. Many of our expert software engineers discussed great software

engineers who mentored and helped them. As teachers, the expert software engineers provided

important feedback and guidance that helped our informants improve and become great software

engineers themselves. Many aspects of ‘positively influencing others’ are related to great

software engineers effectively growing other great software engineers (e.g. mentoring, Section

3.3.3.8, and creates a safe haven, Section 3.3.3.10). This aligned with the perspectives of

research in human expertise; having teachers and receiving feedback were requisites for

becoming an expert.

Human expertise literature finds training of other (future) experts to be an important

element of expertise for many fields. Amirault and Branson discusses ‘masters’ training

‘apprentices’ as one of the key aspects of expertise in craftsman guilds (Amirault & Branson,

2006); the same approach persists in universities today, underlying the doctorial process (both

how a candidate attains a doctorate and who is qualified to train those candidates). Software

engineering, based on interviews, appeared to be another field where having ‘teachers’ is

essential.

Yet, both mentors and creates a safe haven ranked low in our survey of expert software

engineers, ranking 48 and 49 (respectively) out of 54 attributes. The apparent disconnect

between the importance of teachers and the low importance ratings for its associated attributes

may be an area of future research. It may well be that the attributes connected with being a good

teacher—providing feedback and creating a safe environment for growth—are not attributes of

individual expertise, but are critical for the growth of expertise in the software engineering field.

7.4 SUMMARY

Software engineering, as we observed, is a complex phenomenon. The expected expertise goes

beyond ‘practiced skills’, like typing, memory, and calculations (Chi et al., 2014). Software

engineering involves actions, but does not include ‘motor skills’ expertise, like music, sports, or

dance (Ericsson et al., 2006). It is not a single isolated activity—software design—and

constitutes many other activities involving many other agents.

Even though our ‘ecologically-valid study’ examination of software engineering

expertise did not aim to contribute to theories of human expertise, our findings (when related to

existing knowledge in human expertise) yielded several interesting insights. First, human

expertise literature indicates that expertise commonly breaks down in unexpected situations; yet,

many aspects of software engineering expertise involved effectively handling the unexpected.

Software engineering expertise may specifically involve ‘gracefully’ dealing with situations

where traditional expertise breaks down. Second, human expertise (software engineering

expertise included) is dependent on having good information; yet, we find that software

engineers often have to deal with bad or missing information. Experts in our studies did not

appear to have effective strategies for dealing with these informational problems. Finally, human

expertise literature indicates that having teachers who can provide informative feedback is a

requisite for acquiring expertise. Yet, even though many of our expert software engineers

discussed mentors helping them gain expertise, attributes associated with growing and

developing others received low importance ratings in our surveys. There may be a disconnect

between needing those attributes to be an expert and needing those attributes to have experts in

the software engineering field. We feel that investigating these questions may lead to interesting

findings that may advance our understanding of software engineering expertise, and possibly of

human expertise.

Chapter 8. CONCLUSION AND FUTURE WORK

The goal of this dissertation was to gain a holistic, contextual, and real-world understanding of

software engineering expertise. The dissertation described three studies triangulating on this

understanding using different methods and from different perspectives.

We started our research arch by interviewing experienced software engineers to

understand attributes of software engineering expertise. Not only did we extract a holistic set of

attributes of software engineering expertise from interviews with 59 experienced software

engineers (over 60 hours of interviews and 388,000 words of transcripts), we also elicited

understanding about why each attribute was important in real-world engineering of software.

In the next study, we built on the qualitative understandings from our interview study

with a mixed-methods study examining the relative importance of the attributes and relationships

with contextual factors as well as exploring why the attributes rated highly (and lowly) and why

various contextual factors affected the rankings. In one of the largest studies of real-world

software engineers that we are aware of, we received survey responses from 1,926 experienced

software engineers. In addition to quantitative data, we also gained qualitative understanding

about the most importance and the least important attributes from follow-up email interviews

with 77 respondents.

Finally, we complemented our understanding by interviewing expert non-software-

engineers that collaborated with software engineers. We interviewed 46 expert non-software-

engineers in 10 different roles: Artists, Content Developers, Data Scientists, Designers, Design

Researchers, Electrical Engineers, Mechanical Engineers, Product Planners, Program Managers,

and Service Engineers. We gained different and diverse (yet in many ways similar) perspectives

on software engineering expertise in practice, enriching our understanding of what makes a great

software engineer.

We discussed key findings, insights, and limitations of each study; furthermore, we

synthesized the findings from all three studies to deduce what we know about software

engineering expertise. Finally, we compared our findings about software engineering expertise

with expertise in other professions to identify key differences and similarities.

In the subsequent sections in this chapter, we will first discuss an idea for future research

that can build on findings in this dissertation (and address some of its limitations). Then, we will

restate the major contributions of this dissertation. We will then close with some final remarks.

8.1 FUTURE DIRECTION

Software is ubiquitous today, understanding of what makes a great software engineer—the

person that produces the software—is increasingly important. Our dissertation has provided

foundational knowledge about the attributes of software engineering expertise, including

definitions, explanations, and ratings. However, our understanding comes from a single

organization, albeit a diverse and important organization, Microsoft is very different from other

software producing organizations in several ways. Future studies may wish to replicate and

expand the work detailed in this dissertation at other organizations to expand our understanding.

Foremost, Microsoft is a for-profit organization. However, some software producing

organizations do not aim to make money and do not pay their software engineers; the most

common and the most important is open-source software projects. Open source software projects

generally do not pay their software engineers and do not charge money for acquiring their

software (though some are supported by for-profit organizations, e.g. Eclipse backed by IBM).

Since many aspects of software engineering expertise in our findings being related to economic

considerations (e.g. ‘maximize current value of our work’, Section 6.2), future studies may want

to examine software engineering expertise where the organizational objective is not to the

economic goal of making money.

Second, Microsoft is a software-centric organization where software engineers are held in

the highest esteem (Section 5.3.1). However, in many other organizations, software engineers are

ancillary roles, supporting other parts of the organization. Several expert non-software-engineers

felt that some of the software engineers’ perceptions (and the actions they engender) were due to

software engineers having too much power at Microsoft. Software engineers in non-software-

centric organizations may have different opinions about the importance of various attributes of

software engineering expertise. Some software engineers mentioned in the interviews that the

difference in treatment at Microsoft versus other non-software-centric organizations may lead to

differences:

I will not work at a company where what I do is not what the company does… Financial

firms is a good example too because while certain benefits are attractive, you are not the

reason they exist. You have to suffer to make the people whose existence is crucial

happen.

-SDE2, Windows

With important software engineering taking place in non-software-centric organizations (e.g.

financial organizations as mentioned in the quotation above), understanding differences in

perspectives—not simply what attributes are viewed different, but also why—may be valuable

future work.

Third, future studies may want to explore difference (and similarities) at similarly

successful software engineering organizations like Google, Apple, Amazon, or Facebook. Like

Microsoft, many of these organizations have diverse product offerings and development contexts

(e.g., Apple has consumer electronics and cloud-based services). Therefore, not only would

replicating our studies at these organizations enhance confidence in the findings in this

dissertation, the studies may further explore product-related effects on software engineering

expertise (e.g. consumer electronics and software services-related issues, Section 5.3.2).

Finally, investigating the negative aspects of bad software engineers may be important

future work. This dissertation has focused on positive attributes of great software engineers at

Microsoft; yet, we have found that informants often discussed avoiding bad mindsets and actions

that would preclude a software engineer from being considered great. There will be

methodological and ethical challenges with studying the darker side of software engineering;

nonetheless, evidenced by hidden feeling in qualitative interviews (e.g. the ‘don’t make my job

any harder’ sentiment discussed in Section 6.4), the findings may be important. Software

engineering expertise likely involve not only the acquisition and practice of positive attributes,

but also the recognition and avoidance of negative ones.

Regardless of the direction, future studies should utilize both qualitative and quantitative

methods. As discussed in Section 6.4, software engineering is a complex phenomenon,

necessitating qualitative methods to deeply understand the reasoning and meaning behind

statements and quantitative data to elucidate important insights and findings. Future studies

should begin with qualitative interviews to gain a contextual understanding of perceptions of

software engineering expertise in these organizations as well as to check understanding of the

attributes identified in this dissertations—both similarities and differences. After adjustments and

modifications to fit the organizational contexts, studies should follow with quantitative surveys

at each organization to understand perceptions at scale. Finally, the studies should follow up with

additional qualitative interviews to understand differences (and similarities) with findings in this

dissertation. Through both qualitative and quantitative methods, future studies can further our

understanding of software engineering expertise.

8.2 SUMMARY OF CONTRIBUTIONS

In this thesis, we have contributed a holistic, contextual, and real-world understanding of

software engineering expertise. Specifically, we have provided the following eight contributions

to our knowledge:

 A list of attributes of software engineering expertise from expert software engineers

 Contextual understanding of why expert software engineers think the attributes are

important for the engineering of software

 A model that relates the attributes together

 An importance ranking of the attributes by expert software engineers

 Understanding of the reasoning behind the importance rankings

 Understanding of the relationship between contextual factors and the importance rankings

 Attributes of software engineering expertise that expert non-software-engineers think are

important

 Contextual understanding of why expert non-software-engineers think the attributes are

important

8.3 IMPLICATIONS FOR RESEARCHERS, EDUCATORS, AND

PRACTITIONERS

The knowledge in this dissertation may have wide-ranging implications for software engineering

research, practice, and training.

8.3.1 Researchers

Our findings may have several implications for researchers. Foremost, to better understand and

leverage attributes of software engineering expertise examined in this dissertation, we need

measurements that operationalize the attributes. These will be essential in enabling rigorous

science to better understand how the attributes vary and their effects on teams and outcomes.

Such measurements may also form a critical foundation for managers to identify and cultivate

talent, for novices to improve, and for educators to assess learning outcomes.

Second, our findings pinpoint several pain points that software engineering methodology

researchers may want to address. We discussed several challenging software engineering

processes in Section 5.3.2, caused by nature of the software products being developed. We

discussed problems that expert software engineers (and expert non-software-engineers) have

with bad information in Section 7.2. Better software engineering methodologies that address

these issues may help software engineering teams.

Third, researchers may also want to look deeper into cultural variations and the impact on

effective software engineering. Our findings indicate that cultural differences impact perceptions

about software engineering expertise, as discussed in Chapter 4. Since many software

development organizations are multinational, researchers may want to help practitioners

understand the conditions in which software development organizations should (or should not)

adapt to local cultural norms (versus instituting organizational standards) in their distributed

software engineering efforts.

Finally, our results suggest several new directions for tools research. For example, we are

not aware of any tools that help engineers be more well-mannered in emails or evaluate tradeoffs

or see the forest and the trees when making decisions. Tools research may also explore

facilitating and training engineers, especially novices, in the attributes of software engineering

expertise.

8.3.2 New Software Engineers

Our findings have possible implications for new software engineers. Foremost, new software

engineers should prioritize joining teams/organizations with good mentors and teachers.

Software engineering expertise likely requires having mentors and teachers to provide guidance

and feedback, as is the case with other kinds of human expertise, discussed in Section 7.3.

However, our findings suggest that serving as teachers/mentors may not be a priority for many

software engineers, and thus may be neglected in some software engineering teams. Young

software engineers should avoid those organizations, and instead seek organizations that will

provide the guidance and environment they need to become great software engineers.

For new software engineers who are unsure of how to become great (beyond being a

good coder), our findings enumerate a prioritized set of attributes that they may aspire to

achieve. Improvements may come from training, projects at work, mentoring, or self-adjustments

(e.g. for personality traits). This may also yield interesting insights on whether various attributes

(especially personality attributes) are trainable or innate.

Finally, our findings may also help new software engineers better present themselves to

employers. Since our findings indicate that expert software engineers and managers value these

attributes, novice software engineers may consider demonstrating to employers that they have or

can develop these attributes. This also extends to highlighting the qualities when authoring their

resumes or presenting themselves in interviews.

8.3.3 Leaders of Software Engineers

Our findings have possible implications for leaders of software engineers. Foremost, our findings

conclude that many attributes that are important for engineers in senior and leadership positions,

such as mentoring, raising challenges, and walking the walk. Therefore, software engineers in

leadership positions (or those working to become leaders), may seek to acquire or improve in

those areas.

Beyond improving themselves, our findings may help managers make more effective

hiring decisions. Managers may better identify candidates that fit the culture and context of the

team. They may also be better equipped to avoid engineers without various important attributes,

such as not aligned (off doing their own projects), not well-mannered (being an ‘asshole’, as

many engineers described it), or not asking for help.

Our findings also suggest that current hiring practices—typically, one-day interviews—

could be improved. Some important attributes of software engineering expertise (Section 4.3.1),

such as the ‘desire, ability, and capacity to learn’, may more longer time to assessed in that short

time. Approaches like Microsoft’s successful internship program may be better alternatives; over

several months and based on real-world projects (albeit scoped and non-critical), teams can

better assess applicants’ abilities, behaviors, and growth potential.

Finally, our findings strongly suggest that managers of software engineers should

cultivate the attributes within their teams. Managers may consider using the findings to build a

culture that is conducive to attracting, producing, and retaining great engineers.

8.3.4 Educators

Lastly, our findings have various implications for educators. Foremost, educators may consider

adding courses on topics not found in their current curricula. While decision-making is not a part

of the ACM’s Computing Curricula (Shackelford et al., 2006), we found this attribute to be a key

part of software engineering expertise (Section 6.3). A course specifically about decision-making

(e.g. discussing Simon’s model of rational choice (Simon, 1955), Klein’s naturalistic decision-

making approach (Zsambok & Klein, 1996), or case studies of software engineering decisions)

may be valuable to students.

Another important area that may need more attention from educators is collaborations

with non-software-engineers. The fact that expert non-software-engineers continue to be plagued

by decade-old problems in their collaborations with software engineers is vexing. As software

engineering is a sociotechnical undertaking, educators may need to improve the ability of

software engineers to collaborate not just with other software engineers, but also expert non-

software-engineers who are essential to the success of real-world software engineering efforts.

Software engineering educators may need to reexamine their teaching methods. Most

attributes of software engineering expertise involve how rather than what, whereas most

instructions in software engineering focus on teaching skills and knowledge (the what), such as

prior work on tools for automated testing and analysis. Educators may consider improving how

software engineering goals are attained. For example, existing project-based courses can use

attributes presented in this paper to help student evaluate each other’s behavior, as well as

grading non-functional attributes of the code, such as elegance, anticipates needs, and creative.

Educators may also consider providing students with knowledge about when to use various

skills. Our results indicate that various conditions exist in which eschewing best practices makes

the most economic sense (Section 6.2). Educators may want to provide their students this

knowledge to enable them to be effective under real-world conditions.

Finally, educators may consider explicitly discussing what students will not learn in

school, allowing them to be aware of potential knowledge gaps and empower them to seek out

opportunities outside of the academic setting (e.g. internships or open-source projects). For

example, attributes like self-reliant may not be reasonable to teach in an academic setting and

might be better learned through mentorships/internships; nevertheless, educators should consider

informing students that it is a critical component of software engineering expertise.

8.4 FINAL REMARKS

This dissertation has demonstrated the following thesis:

Experts involved in the creation of software view software engineering expertise as holistically

encompassing internal personality attributes, attributes regarding engagement with others, in

addition to technical capabilities in designing and writing code. Furthermore, the ability to

make good decisions (e.g. choosing what software to write and how to write), which has not yet

been articulated by previous research studies, is also critically important. The key aspects of

being a great software engineer are: writing good code, adjusting behaviors to account for

future values and costs, practicing informed decision-making, avoiding making others’ jobs

harder, and learning continuously.

As our society grows increasingly software dependent, studies like ours and others that

our work may inspire will be critical. After all, great software cannot exist without great software

engineers—a butt in a seat somewhere—to type ‘SD Commit’.

BIBLIOGRAPHY

Adelson, B., & Soloway, E. (1988). A model of software design. In Nature of expertise (pp. 185–

208).

Ahmed, F., Capretz, L. F., & Campbell, P. (2012). Evaluating the demand for soft skills in

software development. IT Professional, 14(1), 44–49.

AMA. (2001). American Medial Association Principles of Medical Ethics. Retrieved January 1,

2016, from http://www.ama-assn.org/ama/pub/physician-resources/medical-ethics/code-

medical-ethics/principles-medical-ethics.page?

Amirault, R. J., & Branson, R. K. (2006). Educators and expertise: A brief history of theories and

models. In The Cambridge handbook of expertise and expert performance (pp. 69–86).

Anvik, J., Hiew, L., & Murphy, G. C. (2006). Who Should Fix This Bug? In Proceedings of the

28th International Conference on Software Engineering (pp. 361–370).

Aranda, J., & Venolia, G. (2009). The secret life of bugs: going past the errors and omissions in

software repositories. In Proceedings of the IEEE 31st International Conference on

Software Engineering (pp. 298–308).

Beck, K., Beedle, M., Bennekum, A. van, Cockburn, A., Cunningham, W., Fowler, M., …

Thomas, D. (2001). Manifesto for Agile Software Development. Retrieved December 3,

2016, from http://www.agilemanifesto.org/

Begel, A., & Simon, B. (2008). Novice software developers, all over again. In Proceedings of the

Fourth International Computing Education Research Workshop (Vol. 1, pp. 3–14).

Begel, A., & Zimmermann, T. (2014). Analyze this! 145 questions for data scientists in software

engineering. In Proceedings of the 36th International Conference on Software Engineering

(pp. 12–23).

Bellovin, S. (2013). Why healthcare.gov has so many problems. Retrieved January 1, 2015, from

http://edition.cnn.com/2013/10/14/opinion/bellovin-obamacare-glitches/

Bertram, D., Voida, A., Greenberg, S., & Walker, R. (2010). Communication, collaboration, and

bugs: the social nature of issue tracking in small, collocated teams. In Proceedings of the

2010 ACM Conference on Computer Supported Cooperative Work (pp. 291–300).

Beyer, H. R., & Holtzblatt, K. (1995). Apprenticing with the customer. Communications of the

ACM, 38(5), 45–52.

Boehm, B. W. (1988). A spiral model of software development and enhancement. IEEE

Computer, 21(5), 61–72.

Boehm, B. W. (1991). Software Risk Management: Principles and Practices. IEEE Software,

8(1), 32–41.

Borchers, G. (2003). The software engineering impacts of cultural factors on multi-cultural

software development teams. In Proceedings of the 25th International Conference on

Software Engineering (pp. 540–545).

Brechner, E. (2003). Things They Would Not Teach Me of in College : What Microsoft

Developers Learn Later. In Proceedings of the 18th annual ACM SIGPLAN Conference on

Object-oriented Programing, Systems, Languages, and Applications (pp. 134–136).

Brooks, F. P. (1995). The Mythical Man-Month: Essays on Software Engineering. Addison-

Wesley Professional.

Bryant, A. (2013). In head-hunting, big data may not be such a big deal. Retrieved March 10,

2015, from http://www.nytimes.com/2013/06/20/business/in-head-hunting-big-data-may-

not-be-such-a-big-deal.html

Bureau of Labor Statistics, U. S. D. of L. (2015). Software developers. Retrieved January 1,

2015, from http://www.bls.gov/ooh/computer-and-information-technology/software-

developers.htm

Burrus, D. (2013). The internet of things is far bigger than anyone realizes. Retrieved January 1,

2015, from http://www.wired.com/insights/2014/11/the-internet-of-things-bigger/

Capretz, L. F. (2003). Personality types in software engineering. International Journal of Human

Computer Studies, 58, 207–214.

Carver, J. C., Nagappan, N., & Page, A. (2008). The impact of educational background on the

effectiveness of requirements inspections: an empirical study. IEEE Transactions on

Software Engineering, 34(6), 800–812.

Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive Psychology, 4(1), 55–81.

Chi, M. T. H., Glaser, R., & Farr, M. J. (2014). The nature of expertise. Psychology Press.

Clark, H., & Brennan, S. (1991). Perspectives on Socially Shared Cognition. American

Psychological Association.

Cooper, A. (1999). The inmates are running the asylum:[Why high-tech products drive us crazy

and how to restore the sanity]. Sams.

Cruz, S., da Silva, F. Q. B., & Capretz, L. F. (2015). Forty years of research on personality in

software engineering: A mapping study. Computers in Human Behavior, 46, 94–113.

Czerwinski, M., Horvitz, E., & Wilhite, S. (2004). A diary study of task switching and

interruptions. Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, 6(1), 175–182.

Dabbish, L., Mark, G., & Gonzalez, V. M. (2011). Why do I keep interrupting myself ?:

environment, habit and self-interruption. In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems (pp. 3127–3130).

Economist. (2010, February). Data, data everywhere. Economist.

Edmondson, A. (1999). Psychological safety and learning behavior in work teams.

Administrative Science Quarterly, 44(2), 350–383.

Ericsson, K. A., Charness, N., Feltovich, P. L., & Hoffman, R. T. (2006). The Cambridge

handbook of expertise and expert performance. Cambridge University Press.

Ericsson, K. A., Krampe, R. T., & Tesch-romer, C. (1993). The Role of Deliberate Practice in

the Acquisition of Expert Performance. Psychological Review, 100(3), 363–406.

Ericsson, K. A., & Smith, J. (1991). Towards a general theory of expertise: prospects and limits.

Cambridge University Press.

Fisher, A., & Margolis, J. (2002). Unlocking the Clubhouse: the Carnegie Mellon Experience.

ACM SIGCSE Bulletin, 34(2), 79–83.

Fisher, D., DeLine, R., Czerwinski, M., & Drucker, S. (2012). Interactions with big data

analytics. Interactions, 19(3), 50.

Fitzpatrick, B., & Collins-Sussman, B. (2009). The Myth of the Genius Programmer.

Gobeli, D. H., Koenig, H. F., & Bechinger, I. (1998). Managing Conflict in Software

Development Teams: A Multilevel Analysis. Journal of Product Innovation Management,

15, 423–435.

Gugerty, L., & Olson, G. M. (1986). Debugging by skilled and novice programmers. ACM

SIGCHI Bulletin, 17(4), 171–174.

Guo, P. J., Zimmermann, T., Nagappan, N., & Murphy, B. (2011). “Not My Bug!” and Other

Reasons for Software Bug Report Reassignments. In Proceedings of the ACM Conference

on Computer Supported Work.

Herbsleb, J., Zubrow, D., Goldenson, D., Hayes, W., & Paulk, M. (1997). Software quality and

the Capability Maturity Model. Communications of the ACM, 40(6), 31–40.

Hewner, M., & Guzdial, M. (2010). What game developers look for in a new graduate:

Interviews and surveys at one game company. In Proceedings of the 41st ACM Technical

Symposium on Computer Science Education (pp. 275–279).

Hollander, M., Wolfe, D. A., & Chicken, E. (2013). Nonparametric Statistical Methods (3rd

Editio). Wiley.

International Game Developers Association. (2008). IGDA Curriculum Framework: The Study

of Games and Game Development. IGDA Education SIG, (February), 41. Retrieved from

http://www.igda.org/wiki/images/e/ee/Igda2008cf.pdf

Iqbal, S. T., & Horvitz, E. (2007). Disruption and recovery of computing tasks: field study,

analysis, and directions. Proceedings of CHI ’07, 677–686.

Ivory, M. Y., & Hearst, M. A. (2001). The state of the art in automating usability evaluation of

user interfaces. ACM Computing Surveys, 33(4), 470–516.

Jeong, G., Kim, S., & Zimmermann, T. (2009). Improving Bug Triage With Bug Tossing

Graphs. In Proceedings of the 7th joint meeting of the European Software Engineering

Conference and the ACM SIGSOFT Symposium on the Foundations of Software

Engineering (pp. 111–120). Amsterdam, Netherlands.

Johnson, E. J. (1988). Expertise and decision under uncertainty: performance and process. In The

nature of expertise (pp. 209–228).

Joint Task Force on Computing Curricula. (2014). Software Engineering 2014: Curriculum

Guidelines for Undergraduate Degree Programs in Software Engineering. ACM Curricula

Recommendations.

Kelley, R. E. (1999a). How to Be a Star at Work: 9 Breakthrough Strategies You Need to

Succeed. Crown Buisness.

Kelley, R. E. (1999b). How to be a star engineer. IEEE Spectrum, 36(10), 51–58.

Kidder, T. (2000). The Soul of a New Machine. Back Bay Books.

Ko, A. J. (2006). Asking and Answering Questions About The Causes of Software Behaviors, 1–

23.

Ko, A. J., & Chilana, P. K. (2010). How power users help and hinder open bug reporting. In

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp.

1665–1674).

Ko, A. J., & Chilana, P. K. (2011). Design, discussion, and dissent in open bug reports.

Proceedings of iConference ’11, 106–113.

Ko, A. J., DeLine, R., & Venolia, G. (2007). Information needs in collocated software

development teams. In Proceedings of the 29th international conference on Software

Engineering (pp. 344–353).

Kohavi, R., Frasca, B., Crook, T., Henne, R., & Longbotham, R. (2009). Online experimentation

at Microsoft. In Workshop on Data Mining Case Studies and Practice.

Krishnamurthi, S., & Felleisen, M. (1998). Toward a formal theory of extensible software. In

ACM SIGSOFT Software Engineering Notes (pp. 88–98).

Latoza, T. D., Venolia, G., & DeLine, R. (2006). Maintaining Mental Models: a Study of

Developer Work Habits. In Proceedings of the 28th International Conference on Software

Engineering (pp. 492–501).

Lethbridge, T. C. (1998). A Survey of the Relevance of Computer Science and Software

Engineering Education. In Proceedings of the Conference on Software Engineering

Education and Training (pp. 56–67).

Locke, C. (2014). Combined engineering @ Microsoft. Retrieved January 1, 2016, from

http://blog.teleri.net/combined-engineering-microsoft/

Margolis, J., & Fisher, A. (2003). Unlocking the Clubhouse: Women in Computing. The MIT

Press.

McCabe, T. J. (1976). A Complexity Measure. IEEE Transactions on Software Engineering,

2(4), 308–320.

McConnell, S. (2004). Code Complete: A Practical Handbook of Software Construction (2nd

Editio). Microsoft Press.

Meade, A. W., & Craig, S. B. (2012). Identifying careless responses in survey data.

Psychological Methods, 17(3), 437–455.

Mehlenbacher, B. (2000). Technical writer/subject-matter expert interaction: The writer’s

perspective, the organizational challenge. Technical Communication, 47(4), 544–552.

Myers, C. R. (2003). Software systems as complex networks: Structure, function, and

evolvability of software collaboration graphs. Physical Review E, 68(4).

Nagappan, N., & Ball, T. (2005). Use of relative code churn measures to predict system defect

density. In Proceedings of the 27th International Conference on Software Engineering (pp.

284–292).

Newell, A., & Simon, H. (1972). Human problem solving. Prentice-Hall.

NSPE. (2007). National Society of Professional Engineers Code of Ethics for Engineers.

Retrieved January 1, 2016, from http://www.nspe.org/resources/ethics/code-ethics

Parnas, D. L. (1998). Software engineering programmes are not computer science programmes.

Annals of Software Engineering, 6, 19–37.

Pendharkar, P. C., & Rodger, J. A. (2009). The relationship between software development team

size and software development cost. Communications of the ACM, 52(1), 141–144.

Perlow, L. A. (1999). The Time Famine : Toward a Sociology of Work Time. Administrative

Science Quarterly, 44(1), 57–81.

Perry, D. E., Staudenmeyer, N. a., & Votta, L. G. (1994). People, organizations, and process

improvement. IEEE Software, 11(July), 36–45.

Podgurski, A., Leon, D., Francis, P., Masri, W., Minch, M., Sun, J., & Wang, B. (2003).

Automated support for classifying software failure reports. In Proceedings of the 25th

International Conference on Software Engineering (pp. 465–475).

Poile, C., Begel, A., Nagappan, N., & Layman, L. (2009). Coordination in Large-Scale Software

Development : Helpful and Unhelpful Behaviors. Microsoft Research Technical Report.

Radermacher, A., Walia, G., & Knudson, D. (2014). Investigating the skill gap between

graduating students and industry expectations. Proceedings of the 28th International

Conference on Software Engineering, 291–300.

Radermacher, A., & Walia, G. S. (2013). Gaps Between Industry Expectations and the Abilities

of Graduates : Systematic Literature Review Findings. In Proceeding of the 44th ACM

technical symposium on Computer science education (pp. 525–530).

Raymond, E. (2001). The Cathedral & the Bazaar: Musings on Linux and Open Source by an

Accidental Revolutionary (Revised Ed). O’Reilly Media.

Rising, L., & Janoff, N. S. (2000). The Scrum Software Development Process for Small Teams.

IEEE Software, 17(4), 26 – 32.

Robillard, M. P., Coelho, W., Murphy, G. C., & Society, I. C. (2004). How effective developers

investigate source code: An exploratory study. IEEE Transactions on Software Engineering,

30(12), 889–903.

Roche, J. (2013). Adopting DevOps practices in quality assurance. Communications of the ACM,

56(11), 38–43.

Ropponen, J., & Lyytinen, K. (2000). Components of software development risk: how to address

them? A project manager survey. IEEE Transactions on Software Engineering, 26(2), 98–

112.

Rothwell, J. (2014). Short on STEM talent. Retrieved January 1, 2015, from

http://www.usnews.com/opinion/articles/2014/09/15/the-stem-worker-shortage-is-real

Runeson, P., Alexandersson, M., & Nyholm, O. (2007). Detection of Duplicate Defect Reports

Using Natural Language Processing. In Proceedings of the 29th International Conference

on Software Engineering (pp. 499–510). Minneapolis, MN, USA.

Sackman, H., Erikson, W. J., & Grant, E. E. (1968). Exploratory experimental studies comparing

online and offline programmmg performance. Communications of the ACM, 11(1), 3–11.

Sandusky, R. J., & Gasser, L. (2005). Negotiation and the coordination of information and

activity in distributed software problem management. In Proceedings of International

Conference on Supporting Group Work (pp. 187–196).

Schank, R. C., Berman, T. R., & Macpherson, K. A. (1999). Learning by doing. In C. M.

Reigeluth (Ed.), Instructional-design theories and models: A new paradigm of instructional

theory (pp. 161–181). Lawrence Erlbaum Associates.

Schraw, G. (1998). Promoting general metacognitive awareness. Instructional Science, 26(1-2),

113–125.

Shackelford, R., Andrew McGettrick, Robert Sloan, Topi, H., Davies, G., Kamali, R., … Lunt,

B. (2006). Computing Curricula 2005: The Overview Report. SIGCSE Bulletin, 38(1), 456–

457.

Simon, H. (1955). A Behavioral Model of Rational Choice. Quarterly Journal of Economics, 69,

99–188.

Simon, H. (1976). Administrative Behavior (3rd ed.). The Free Press.

Singer, J., Lethbridge, T., Vinson, N., & Anquetil, N. (1997). An examination of software

engineering work practices. In Proceedings of the 1997 Conference of the Centre for

Advanced Studies onf Collaborative Research (pp. 174–188).

Soloway, E., Adelson, B., & Ehrlich, K. (1988). Knowledge and processes in the comprehension

of computer programs. In Nature of expertise (pp. 129–152).

Sonnentag, S., Niessen, C., & Volmer, J. (1991). Expertise in software design. In The Cambridge

Handbook of Expertise and Expert Performance.

Sowe, S., Stamelos, I., & Angelis, L. (2008). Understanding knowledge sharing activities in

free/open source software projects: an empirical study. Journal of Systems and Software,

81(3), 431–446.

Trifonova, A., Ahmed, S. U., & Jaccheri, L. (2009). SArt: towards innovation at the intersection

of software engineering and art. Information Systems Development, 809–827.

Tuckman, B. W. (1965). Developmental sequence in small groups. Psychological Bulletin, 63(6),

384–399.

Turley, R. T., & Bieman, J. M. (1995). Competencies of exceptional and nonexceptional

software engineers. Journal of Systems and Software, 28(1), 19–38.

Valett, J. D., & McGarry, F. E. (1988). A summary of software measurement experiences in the

software engineering laboratory. In Proceedings of the 21st Annual Hawaii International

Conference on System Sciences (pp. 293–301).

Ventures, C. B. S. and C. U. D. K. (2000). Risk and return: expected return. Retrieved January 1,

2016, from http://ci.columbia.edu/ci/premba_test/c0332/s6/s6_3.html

Walkowski, D. (1991). Working successfully with technical experts—from their perspective.

Technical Communication, 38(1), 65–67.

Wenger, E. (1999). Communities of practice: learning, meaning, and identity. Cambridge

University Press.

Wenger, E. C., & Snyder, W. M. (2000). Communities of practice: the organizational frontier.

Harvard Business Review, 78, 139–145.

Wikimedia Foundation. (2015). Sony pictures entertainment hack. Retrieved January 1, 2015,

from https://en.wikipedia.org/wiki/Sony_Pictures_Entertainment_hack

Zachary, G. P. (1994). Showstopper!: The Breakneck Race to Create Windows NT and the Next

Generation at Microsoft. Free Press.

Zetter, K. (2013). Target admits massive credit card breach; 40 million affected. Retrieved

January 1, 2015, from http://www.wired.com/2013/12/target-hack-hits-40-million/

Zsambok, C. E., & Klein, G. (1996). Naturalistic Decision Making (Expertise: Research and

Applications Series). Lawrence Erlbaum Associates.

APPENDIX A: SURVEY RECRUITMENT EMAIL

From: Paul Li

Sent: Wednesday, December 10, 2014 2:55 PM

To: [Expert Software Engineer at Microsoft]

Subject: Microsoft Research: What Makes A Great Developer?

Hi Adi,

We're doing a study on what makes someone a great developer. Would you be willing to fill out

a quick 20 minute survey, providing us with your expert opinion? We selected you from the

company directory based on your title and experience.

The survey is anonymous and you are not obligated to participate. If you complete the survey,

you will receive a report of the insights, as well as be entered into a drawing for one of two $75

Visa gift cards.

[Customized link to survey]

Thanks,

Paul Li

Senior Data Scientist, Microsoft; Ph.D. Candidate, Information School, University of Washington

Andrew Ko

Associate Professor, Information School, University of Washington

Andrew Begel

Senior Researcher, Microsoft

https://surveys.research.microsoft.com/s3/What-Makes-A-Great-Software-Engineer?sguid=65124341677

APPENDIX B: SURVEY

What Makes A Great Developer?

__

Welcome!

What makes a great developer?

We need feedback from experienced developers, like yourself, about the importance of a set of

attributes for being a great developer, based on developers you've worked with. We will be

asking about attributes of developers in four groups: personal characteristics, decision making,

interacting with others, and producing software.

This 20 minute survey is anonymous, you are not obligated to participate, and you can return to

the survey later if you don't finish. If you complete the survey, you will receive a report of the

insights, as well as be entered into a drawing for one of two $75 Visa gift cards.

Thanks

Paul Li: pal@microsoft.com: Senior Data Scientist, Microsoft; Ph.D. Candidate, Information

School, University of Washington

Andrew Ko: ajko@uw.edu: Associate Professor, Information School, University of Washington

Andrew Begel: abegel@microsoft.com: Senior Researcher, Microsoft

Sweepstakes Rules | Privacy | ©2014 Microsoft

__

To get started, we'd like to know a bit about you

1) What is your current Microsoft job title?*

2) What is your gender?*

() Male

() Female

() Other

() Decline to state

3) What is your age? (optional)

4) How many years have you been a professional software developer (not including

internships)?*

5) How many different software development companies/organizations---including for profit

companies, universities, and open source projects---have you worked for or contributed to?*

6) How many years have you worked at Microsoft?*

7) How many years have you been working on your current product area at Microsoft?*

8) What educational degrees have you received?*

[] Bachelors/Associates

[] Masters (not Masters of Business Administration)

[] MBA (Masters of Business Administration

[] Doctorate

[] Other

9) What was the area of concentration of your Bachelors/Associates degree?*

10) What was the area of concentration of your Masters degree?*

11) What was the area of concentration of your Doctorate degree?*

12) What degree did you receive?*

13) Have you ever been a manager of developers (not including interns or vendors) at Microsoft

(e.g. Lead or Manager)?*

() Yes

() No

14) Do you work in the United States?

() Yes

() No

15) What non-US country do you work in?*

16) Have you ever worked, as a developer, in a non-US country?*

() Yes

() No

17) What non-US country did you work in the longest?*

18) For how long (in years)?*

19) What was the first language you learned (e.g. English, Spanish)?*

20) What best characterizes the target customers/users of your software?*

() Our target customers/users are internal teams

() Our target customers/users are external people/organizations

() Both

21) How frequently do you release your software?*

() Daily

() Weekly

() Monthly

() Yearly

() Other

22) Please explain...

__

__

__

__

23) What best characterizes the software you currently produce?*

() The software run on customer/user devices. To change or upgrade the software, updates are

shipped to customer/user devices to be installed.

() The software run on our servers and are accessed remotely (e.g. a service). To change or

upgrade the software, changes are made on our servers; all future access are updated.

() Both

24) In the past year, how many developers have your worked with closely in producing your

software?*

__

Personal Characteristics

In this section, we ask about 18 attributes of a developer's personality. We'll describe an

experienced developer---whose primary responsibility is to develop software---with the attribute,

along with a supporting quote. Please judge the importance of the attribute for being a great

developer, based on developers that you've worked with in your career.

__

Continuously improving

A developer that is continuously improving is constantly looking to become better. This can

mean improving themselves (e.g. learning new skills, learning new technologies, learning to do

things better), their product (e.g. simplifying features, refactoring code), or their surroundings

(e.g. automating processes)

25) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Passionate

A passionate developer is intrinsically interested in the area they are working in (i.e. they are not

just in it for a pay check).

26) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Open-minded

An open-minded developer is willing to let new information change their thinking. They do not

believe they know everything and will consider new information if it has merit.

" ... the problem is sort of in a way the inverse of sharing, which is people not being

willing to take the input of others, to take what others are trying to share with them

...You’ve heard of NIH – not invented here. That’s a huge problem." -Office developer

27) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Systematic

A systematic developer does not rush to conclusions or jump to conclusions; they address

problems in a systematic and organized manner.

28) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Data-driven

A data-driven developer measures their software and the outcomes of their decisions. They let

actual data drive actions, not depending solely on intuition.

"If you're designing your feature, you need to put some telemetry features into there,

collect customer data, and take some of that into account while you're making the next

wave of decisions... Being data driven rather than instinct driven."–Server & Tools

developer

29) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Productive

A productive developer achieves the same results as others faster, or takes the same amount of

time as others but produces more.

30) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Persevering

A persevering developer is not dissuaded by setbacks and failures; they keep on going, keep on

trying.

"Ultimately, I will never give up. I will live here day and night to make sure it happens...

intelligence is required but the people that continuously say, ‘okay, I won’t give up. I will

try to find out a solution.’ Those people always succeed." -Dynamics developer

31) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Hardworking

A hardworking developer is willing to work more than 8 hr days to deliver the software product.

"Sometimes there’s something that’s just arduous. You really just need to grind through,

like running a marathon. It’s a long grind, hours and hours... " -Server & Tools

developer

32) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Curious

A curious developer desires to know why things happen and how things work (e.g. how the code

and the conditions produce a software behavior).

"A curiosity. I think having [a need to know] how things work, why things work the way

they work... Wanting to tear something apart, figure out how it works, and understand the

why's" -Xbox developer

33) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Willing to go into the unknown

A developer that is willing to go into the unknown is willing to step outside of their comfort zone

to explore a new area (e.g. new technologies, new tools, new role, etc.), even when there might

be risks or when benefits are not immediately known.

"People are just naturally going to gravitate towards their comfort areas and just kind of

hang out there... But if you're willing to take those risks and learn about other things, and

then actually apply them, they can help move you forward. But applying them might mean

getting out of your comfort zone." -Windows developer

34) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Adapts to new settings

A developer that adapts to new settings continues to be valueable to the organization even with

changes in their environment, such as changes in what they work on and changes in their team.

"Things are going to change. What are you going to do about that? Are you going to be

one of the people that is helping to change? ... everything from values to fit into the

group, or the product, or the problem you're trying to solve... How are you going to take

and adapt your situation to move forward, and how do you adapt to work with what you

have to work with?" -Service Engineering developer

35) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Self-reliant

A self-reliant developer gets things done independently and does not get blocked easily; they get

around problems by leveraging their abilities and other resources (e.g. asking experts for help).

36) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Self-reflecting

A self-reflecting developer can recognize when things are going wrong or when their current

plan is not going to work, and then self-initiate corrective actions.

"... a little bit of an intuition, and maybe the ability to see where you're going wrong, and

then step back. So, self-reflection is important: being able to recognize, yeah, this ain't

working, I better start over." -Xbox developer

37) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Aligned with organizational goals

A developer that is aligned with organizational goals takes actions for the good of the product

and the organization, not for their own self-interest. They do what is good for the organization,

not just what interests them.

38) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Executes

A developer that executes does not have analysis paralysis. They know when to stop thinking

and to start doing.

"They should not be just idealistic software designers, where you can think a lot; they

should not get into analysis paralysis... write the most optimal solution for the problem

on hand."-Phone developer

39) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Craftsmanship

A developer that has craftsmanship takes pride in their work. They want their output to be a

reflection of their skills and abilities.

"Really being able to demonstrate something that you've done, that you're really proud of

it, and speak to it well. When you do your work, you take pride in the fact that it's quality

work." -Xbox developer

40) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Desires to turn ideas into reality

A developer that desires to turn ideas into reality takes pleasure in building, constructing, and

creating software.

"You have an urge to create. You get satisfaction from creating...They feel more

accomplished at the end of the day if they’ve actually built something... wrote some

code." -Windows developer

41) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Focused

A focused developer allocates and prioritizes their time for the most impactful work. They do not

let the numerous daily distractions and tasks overwhelm them.

"In an environment like Microsoft where there’s a lot of meetings and interruptions… A

developer has to figure out how to get their focus and when to get their focus. ...Figure

out when he can get away from the chaos of the day-to-day, [and then] he could come

back and make very good use of that time."-Windows Services developer

42) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Decision Making

In this section, we ask about 9 attributes of a developer's ability to make good decisions. We'll

describe an experienced developer---whose primary responsibility is to develop software---with

the attribute. Please judge the importance of that attribute for being a great developer, based on

developers that you've worked with in your career.

__

Knowledgeable about people and the organization

A developer that is knowledgeable about people and the organization is informed about the

people around them: responsibilities (i.e. organizational structure), knowledge (i.e. the domain

experts), and tendencies.

43) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Sees the forest and the trees

A developer that sees the forest and the trees can reason through situations and problems at

multiple levels of abstraction: technical details, industry trends, company vision, and

customer/business needs.

"The really great developers are the ones who find the sweet spot in between two

extremes. [They] are able to understand and consider the very large picture; while at the

same time, work at a very detailed level, and not get lost and bogged down in the

details." -Office developer

44) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Updates their decision making knowledge

A developer that updates their decision making knowledge does not let their understanding and

thinking stagnate; they update their decision making with regards to changes around them (e.g.

new technologies, industry trends, organizational changes).

"...the world has changed ...Unlearning: the things that I used to do five years ago that

made me successful don't matter anymore; in fact, they can get me into trouble right

now... I would assess their ability to unlearn: after a while, two thirds or three quarters

of what you know is still valuable, quarter to a third is the wrong thing... the trick is to

figure out which is which really quickly..." –Server & Tools developer

45) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Mentally capable of handling complexity

A developer that is mentally capable of handling complexity is able to comprehend and

understand complex situations, especially ones involving multiple layers of technology and many

interacting/intertwining software.

"... [Being] able to solve deep architectural problems, come up with a design that spans

multiple different components... Some people's brains operate faster than others... [it's]

an indicator of intellectual horsepower."-Servers & Tools developer

46) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Knowledgeable about their technical domain

A developer that is knowledgeable about their technical domain is thoroughly conversant about

their software product, their technology area, and their competitors.

47) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Knowledgeable about customers and business

A developer that is knowledgeable about customers and business understands the role their

software product plays in the lives of their customers and the business proposition that it entails.

"...understanding your customer, find out what they've got, what they want, what they

already do, what's the delta you can provide, how can you help, and then go find a simple

solution to it. Because at the end of the day, we are a for profit company." -Xbox

developer

48) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Knowledgeable about tools and building materials

A developer that is knowledgeable about tools and building materials knows the strengths and

limitations of the tools and building materials used to construct their software product (e.g.

algorithms, programming languages, code libraries, etc.).

"If you write in Java, you're probably not going to have performant code... It's just the

constricts you're given in Java... language is like a tool... a good developershould be able

to realize that a certain language is not the right tool for that particular job."–Windows

developer

49) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Knowledgeable about software engineering processes

A developer that is knowledgeable about software engineering processes knows the practices and

techniques for building a software product (e.g. unit testing, code reviews, Scrum, etc.): their

purposes, how to do them effectively, their cost in time and effort, and when best to use them.

50) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Grows their ability to make good decisions

A developer that grows their ability to make good decisions builds their understanding of real

world situations, identifies alternative courses of action, projects likely outcomes, and estimates

the values of the outcomes.

"When you’re right, evaluate it: why were you right? were you lucky? ...When you’re

wrong, do the same thing: was it bad luck? or was it bad insight? …Correcting things as

you go… you'll soon be operating on theories about how things should work... rework

that theory until you converge at something that’s functional." -Xbox developer

51) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Interacting with others

In this section, we ask about 18 attributes of a developer's interactions with others. We'll describe

an experienced developer---whose primary responsibility is to develop software---with the

attribute, along with a supporting quote. Please judge the importance of that attribute for being a

great developer, based on developers that you've worked with in your career.

__

Creates shared understanding with others

A developer that creates shared understanding with others molds another person’s thinking of the

situation: tailoring the communication to be relevant and comprehensible to the other person so

that the other person can incorporate the information into their thinking.

"Understand how to most compellingly relate the value of that abstraction... to each

person in the communication chain: their peers, as developers, their testers, their PMs,

their designers, their management. Or if they were to speak at a conference or do demos

or interviews... empathize with your audience, whether they are groups or individuals, in

order to get them to get it..." -Windows developer

52) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Creates shared success for everyone

A developer creates shared success for everyone involved (i.e. win-win situations). They engage

with others to decide on actions that is beneficial to everyone---not just themselves---commonly

involving establishing a common big picture or long-term goals that everyone can buy into.

"...find the common good in a solution, and be able to say: 'I’m pushing for a solution,

here’s the value for me, and also here’s the value for you.' Understanding their concerns

to the point where you can actually have them saying, 'Yeah this is the right thing to do.

This is the right thing to approach and go with.' Even though you’re still accomplishing

the goals you want, they’re feeling like they’re winning. It’s a win-win situation." -

Windows developer

53) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Creates a safe haven for others

A developer creates a safe haven for others, where others are not afraid of being blamed for

mistakes, empowering others to do what they feel is right, and to learn and grow.

"I think failing is good, if you learn something from a failure, that’s a wonderful sort of

thing. I don’t even think of failing as taking a risk; that should just be part of your normal

learning experience... If you’re afraid of getting smacked upside the head because you

made a failure, you’re taking a smaller risk there." -Office developer

54) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Honest

An honest developer is truthful: not sugar coating or spinning the situation for their own benefit.

They provide credible information and feedback that others can act on.

"'You know what? I know that this person always speaks the truth.' ...they say whether

something is good or bad ...whether or not something was successful that they did.

They’re not trying to paint a too rosy picture... when they say something is good, I will

totally believe them because they are not trying to misrepresent something or make them

look better.” -Windows Services developer

55) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Integrates understandings of others

A developer that integrates understandings of others can combine and integrate the knowledge of

others---especially when there are multiple people, each with their own understanding of the

situation---into a more complete understanding, noticing and asking questions about the gaps.

"If they say something that doesn't really line up with your intuition... ask questions and

try to figure out where the discrepancies lie... internalize it and connect it with the way

you think about things... incorporated into your own; mesh it with you own knowledge

base." -Xbox developer

56) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Well-mannered

A well-mannered developer treats others with respect: not obnoxious about titles, accolades, or

knowledge.

57) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Is a good listener

A developer that is a good listener effectively obtains, comprehends, and understands others'

knowledge about the situation.

"Being a good listener is important: you’re really hearing the other person’s concerns

and opinions." -Windows developer

58) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Does not make it personal

A developer that does not make it personal avoids personal biases. They act and react based on

fact and reason, avoiding dysfunctional behaviors based on personal feelings and perceived

slights.

"You can have a very good discussion... it never gets personal. Oh, this is your idea, and

it's good or it's bad. It's all very professional." -Server & Tools developer

59) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Mentoring

A developer that is mentoring teaches, guides, and instills knowledge to others, helping others---

often new team members---to improve and to be more productive.

"...[He’s] seen stuff that you haven’t seen yet, and he’s willing to share his knowledge.

The kind of people that horde their own knowledge, I have no time for that. It’s great that

they have the knowledge and they can be successful, but we’re a company, we’re trying

to survive, let’s spread some of that good knowledge around." -Office developer

60) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Challenges others to improve

A developer that challenges others to improve, challenges others to take action (e.g. doing

something new or taking on more responsibilities), expanding others' limits and capabilities.

"... the way he communicates implies that he believes that you can do it. There's this

shared confidence: it's like he's done it and so you can do it... he has to be able to spark

your imagination and your sense of self confidence for you to boot strap yourself up to

being a productive developer." -Windows developer

61) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Walks-the-walk

A developer that walks-the-walk is an exemplar for others: being a great developer themselves,

letting others see their actions, and inspiring others to follow.

"...I would like to model myself against that [developer's] behavior. It inspires me to do

the same thing..." -Ad Platform engineer

62) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Manages expectations

A developer that manages expectations sets forth what they are going to do and by when, updates

expectations (e.g. explaining impacts and implications of unexpected problems), and then

delivers on promises.

63) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Has a good reputation

A developer that has a good reputation has the belief, respect, and confidence of others. They

have a track-record of success such that they are trusted with current and future decisions.

"... it's because I trusted [him]. I've seen his previous work. I knew about it. I've seen him

probably make other recommendations that turned out to have good outcomes... You

have to build up that reputation and that trust through your years... so that when you

make that recommendation, they go, I am going to listen to him." -Windows Services

developer

64) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Resists external pressure for the good of the software product

A developer that resists external pressure for the good of the software product will articulate and

advocate actions that are for the good of software product (e.g. not doing last minute features or

slipping the schedule for bug fixes), being firm against outside pressures (e.g. management,

partner teams).

"If what they're asking him to do jeopardizes something else, he'll say no. He can stand

up and be brave about it. He might come back and say 'Well, we can think about this and

try to plan it the right way for next time around, but right now we'd just be bolting it in

and asking for more trouble.'" -Windows developer

65) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Trades favors

A developer that trades favors builds personal equity with others, such that the developer can call

upon others to do them personal favors.

"It’s you returning a favor here and there... someone goes above and beyond to help

somebody else out, and then somewhere down the road that person has that extra good

will to come help you out." -Windows developer

66) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Personable

A personable developer is a person that others enjoy interacting with; they establish good

personal relationships with others.

"... one of the characteristics I look for in every person that I get, coder or not, but

definitely if it was a coder is, 'Can I have a beer with this guy?'... That’s important,

because if I can’t then we can’t really work together." -Servers & Tools developer

67) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Asks for help

A developer that asks for help will find and engage others with needed knowledge and

information. They know the limits of their knowledge and supplement their knowledge with the

knowledge of others.

"Without asking for help, you won't learn anything in big company like Microsoft... To

get to the right thing, you are dependent on so many people... You should not be afraid,

just go, reach out to people, 'Tell me this thing.'" - Windows Services developer

68) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Does due diligence beforehand

A developer that does due diligence beforehand searches for and examines available information

(e.g. documentation, code samples, wiki, etc.) before engaging. They are prepared when they

discuss situations and do not waste others' time.

"I don't respect people who don't do their homework... they don't read the MSDN article,

they don't download the SDK, they don't read the help files, they don't read the sample

code... they just shoot off an email to the distribution list...'" - Windows developer

69) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Software Product

In this section, we present 9 attributes of the software and designs that a developer produces.

We'll describe an experienced developer---whose primary responsibility is to develop software---

with the attribute, along with a supporting quote. Please judge the importance of that attribute for

being a great developer, based on developers that you've worked with in your career.

__

Elegant

The developer can produce elegant software: intuitive (i.e. minimum complexity) design

solutions that others can understand.

"...very clean, very concise. Just looking at it, you can say, 'Okay, this guy, he knew what

he was doing.'… There's no extra stuff. Everything is minimally necessary and sufficient,

as it should be. It's well thought-out off screen." -Windows developer

70) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Creative

The developer can come up with creative solutions: novel and innovative solutions based on

understanding the context and limitations of existing solutions.

"...a traditional solution ...usually with solutions we often have constraints. Being

creative is... take these constraints, take the difficult circumstance, and actually make it

into something that could still work, but without a huge complex overhead." -Windows

Services developer

71) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Anticipates needs

The developer produces software that anticipates needs---problems and needs not explicitly

known at the time of creation---based on their knowledge and understanding.

"He was really good at coming up with examples of how people might want to use

technology... How would you maybe change your design with that in mind? Or that we

might have to accommodate inter-operating with that technology in the future?" -

Windows developer

72) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Makes informed trade-offs

The developer makes informed trade-offs in their software (e.g. code quality for time to market),

meeting critical needs of the situation.

73) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Pays attention to coding details

The developer produces software that pays attention to coding details, including error handling,

memory consumption, performance, and style.

74) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Fits together with other pieces around it

The developer produces software that fits together with other pieces around it, such as

environmental constraints, complementary components, and other products.

75) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Evolving

The developer can produce software designs and architectures that are evolving: structured to be

effectively built, delivered, and updated in pieces.

76) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Long-termed

A developer that is long-termed considers long-term costs and benefits in producing software

and designs, not just short-term gratification.

"If you packaged up a bunch of isolated, fragmented, short-term solutions together, what

do you get? Not something great... long-term vision and say, 'We make decisions not

based on the immediate problem. We make decision based on some long-term goal and

some real principles we follow.'" -Corp Dev developer

77) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Uses the right processes during construction

The developer that uses the right processes during construction using the right processes (e.g.

unit testing and code reviews) to construct their software and designs, in order to deal with

potential problems.

78) If an experienced developer---whose primary responsibility is developing software---did not

have this attribute, could you still consider them a great developer?*

() Cannot be a great developer if they do not have this () Very difficult to be a great

developer without this, but not impossible () Can be a great developer without this, but

having it helps () Does not matter if they do not have this, it is irrelevant () A great developer

should not have this; it is not good () I do not know

__

Did we miss anything?

79) Finally, may we contact you learn more about your answers? (Optional)

() Yes

80) Did we missed any attributes of great developers that you've worked with? If so, what are the

attribute(s) and how have they been important, in your experience? (Optional)

__

__

__

__

__

To receive the report and be entered into the raffle

81) (Optional) To receive the findings, as well as to be entered into the drawing for one of two

$75 Amazon gift certificates, please provide your email below. Your email will be not be

associated with your answer, will not be shared, and will be deleted once the drawing is

completed.

__

Thank You!

Thank you for taking our survey. Your time and input is greatly appreciated.

__

APPENDIX C: INTERVIEW SOLICITATION EMAIL FOR

EXPERT NON-SOFTWARE ENGINEERS

From: Paul Li

Sent: Sunday, June 7, 2015 12:57 PM

To: [an expert artists]

Subject: Understand artists and developers

Hi [Name]

I’m working on a research project with the University of Washington and Microsoft Research

aiming to understand attributes of great developers, which includes examining insights and

opinions of non-developers working on engineering teams, like yourself.

Your ‘artist’ role is one of the ones I’m particularly interested in. I know little about what you

do, your interactions (if any) with developers, and your perceptions about the great developers

that you’ve worked with.

So, I was wondering if you might have an hour free for me to interview you (anonymously), to

learn about what you do and to get your take on the subject.

Thanks

Paul

VITA

Paul Luo Li

Senior Data Scientist

Microsoft

Research Area

My research interests are in software engineering expertise: the distinguishing attributes of great

software engineers and why those attributes are important in the real-world engineering of

software.

Education

2016 Ph.D. in Information Science

 University of Washington

 What Makes a Great Software Engineer?

Andrew J. Ko (Chair), David Hendry (Washington), Andrew Begel (Microsoft),

Charlotte P. Lee (Washington)

2007 M.S. in Software Engineering

 Carnegie Mellon University

2001 B.S. in Mathematics – Actuarial Statistics

 University of Virginia

Professional Experience

2015-present Senior Data Scientist

 Microsoft

2007-2015 Program Manager

 Microsoft

2005-2006 Data Analyst

 IBM

2005-2005 Software Researcher

 ABB

2004-2004 Research Intern

 IBM

2003-2003 Research Intern

 Avaya

Patents

2011 Network Hang Recovery

 Patent No. 7,934,129

Paul L. Li, Andrew J. Lagattuta, Matt Eason, Baskar Sridharan, Abdelsalam

Heddaya, Stephan Doll

Publications

What Makes a Great Software Engineer?

Paul Luo Li, Andrew J. Ko, Jiamin Zhu (2015)

International Conference on Software Engineering: 700-710

Characterizing the differences between pre- and post- release versions of software

Paul Luo Li, Ryan Kivett, Zhiyuan Zhan, Sung-eok Jeon, Nachiappan Nagappan, Brendan

Murphy, Andrew J. Ko (2011)

International Conference on Software Engineering: 716-725

Reliability Assessment of Mass-Market Software: Insights from Windows Vista®.

Paul Luo Li, Mingtian Ni, Song Xue, Joseph P. Mullally, Mario Garzia, Mujtaba Khambatti (2008)

International Symposium on Software Reliability Engineering: 265-270

Estimating the Quality of Widely Used Software Products Using Software Reliability

Growth Modeling: Case Study of an IBM Federated Database Project

Paul Luo Li, Randy Nakagawa, Rob Montroy (2007)

Empirical Software Engineering and Measurement: 452-454

Experiences and results from initiating field defect prediction and product test prioritization

efforts at ABB Inc.

Paul Luo Li, James D. Herbsleb, Mary Shaw, Brian Robinson (2006)

International Conference on Software Engineering: 413-422

Predictors of customer perceived software quality

Audris Mockus, Ping Zhang, Paul Luo Li (2005)

International Conference on Software Engineering: 225-233

Forecasting Field Defect Rates Using a Combined Time-Based and Metrics-Based

Approach: A Case Study of OpenBSD

Paul Luo Li, James D. Herbsleb, Mary Shaw (2005)

International Symposium on Software Reliability Engineering: 193-202

Finding Predictors of Field Defects for Open Source Software Systems in Commonly

Available Data Sources: A Case Study of OpenBSD

Paul Luo Li, James D. Herbsleb, Mary Shaw (2005)

IEEE International Software Metrics Symposium: 32

Empirical evaluation of defect projection models for widely-deployed production software

systems

Paul Luo Li, Mary Shaw, James D. Herbsleb, Bonnie K. Ray, Peter Santhanam (2004)

ACM SIGSOFT International Symposium on the Foundations of Software Engineering: 263-272

