
Understanding Expressions of Unwanted Behaviors in Open Bug Reporting

Abstract

Open bug reporting allows end-users to express a vast
array of unwanted software behaviors. However,
users’ expectations often clash with developers’
implementation intents. We created a classification of
seven common expectation violations cited by end-
users in bug report descriptions and applied it to 1,000
bug reports from the Mozilla project. Our results show
that users largely described bugs as violations of their
own personal expectations, of specifications, or of the
user community’s expectations. We found a correlation
between a reporter’s expression of which expectation
was being violated and whether or not the bug would
eventually be fixed. Specifically, when bugs were
expressed as violations of community expectations
rather than personal expectations, they had a better
chance of being fixed.

1. Introduction

Popular Open Source Software (OSS) projects such
as Mozilla are inundated with hundreds of bug reports
every day from end-users around the world. One way
that the OSS community copes with this daily wave of
issues is to separate them roughly into two categories:
(1) problems that violate developers’ intents, and (2)
everything else, including feature requests, help
requests, issues out of a team’s control, among others
[1,12].

Of course, most end-users know little about
developers’ intents: they simply know that an
application did something unwanted and often users
report that unwanted behavior as a bug. But what is an
“unwanted” behavior from the user’s perspective? And
how are users notions of “unwanted” software
behaviors related to developers’ intents? And how does
this clash between users’ expectations and developers’
intents affect which reported bugs are addressed? This
paper investigates these questions, complementing
recent studies of bug reporting from developers’
perspectives [2,3,7]. We analyzed user contributions to
the bug reporting process in a prior study [9], but in this
paper, we focus on bug report topics that emerge from
user descriptions.

Our approach was to randomly sample bug reports
from Mozilla’s Bugzilla repository, analyzing
unwanted behaviors described in the report titles and
descriptions. We found that in describing unwanted

behaviors, reporters implicitly referred to one or more
common classes of expectations that had been violated,
including the reporter’s personal experiences or the
practices of the user community at large. From this
initial analysis, we extracted a classification scheme of
seven common expectation violations and applied it to
1,000 Mozilla bug reports. Using these classifications,
we analyzed the relationship between the expectations
identified in each report and whether the report was
eventually resolved as fixed. Our key findings reveal
that, at least in the Mozilla project, whether a bug is
fixed depends largely on whether the reporter explicitly
refers to the developers’ intents or to the expectations
of the Mozilla user community. All other forms of
expectations receive little attention.

This work contributes: (1) a conceptualization of
unwanted behaviors described in bug reports as a
violation of expectations, (2) a classification scheme
for capturing the different types of expectation
violations, (3) an analysis of expectation sources from
a large sample of Mozilla reports, and (4) empirical
findings that show the relationship between the
expectation source identified in a bug report and the
report’s final resolution. We conclude by discussing
the implications of our classification scheme on open
bug reporting and bug reporting tools, highlighting
some ways that OSS communities can better leverage
contributions from end-users.

2. Method

To study and classify unwanted behaviors described
in bug reports, we gathered data from the Bugzilla
repository of the Mozilla project. We chose to study
the Mozilla project because of its large user base and
its reputation as a user-centered open source project.
We downloaded all available Mozilla bug reports,
496,766 in total, on August 14, 2009 using standard
HTTP queries. Since we were interested in whether or
not a bug was eventually fixed, we did not include any
bug reports that were still open. We focused on bugs
that had been reproduced and decided upon by
selecting bugs marked as CLOSED, RESOLVED, or
VERIFIED in Bugzilla. This filtering criteria resulted in
420,005 reports. We wrote Perl scripts for our initial
exploration of the bug report data and for computing
some variables of interest.

We next describe the method that we used to
classify unwanted behaviors in bug descriptions and

2010 IEEE Symposium on Visual Languages and Human-Centric Computing

978-0-7695-4206-5/10 $26.00 © 2010 IEEE

DOI

203

2010 IEEE Symposium on Visual Languages and Human-Centric Computing

978-0-7695-4206-5/10 $26.00 © 2010 IEEE

DOI 10.1109/VLHCC.2010.35

203

Parmit K. Chilana, Amy J. Ko and Jacob O. Wobbrock
The Information School, DUB Group, University of Washington

{pchilana, ajko, wobbrock}@uw.edu

our application of the resulting classification scheme
onto a sample of 1000 reports.

2.1 Classification of Unwanted Behaviors

We first selected a sample of 50 bug reports and
analyzed unwanted behaviors described in the report’s
titles and descriptions. Through this analysis, we found
that users implicitly referred to different expectations that
had been violated as they described unwanted behaviors.
We decided that the source of expectation a reporter
believed was violated was a potentially interesting and
important variable. To operationalize source of
expectation, we employed an inductive analysis approach
[6], classifying and reclassifying our descriptions of the
different sources of expectations. The first author
independently examined 3 sets of randomly selected bug
reports (100 reports each), generating descriptions of
what was being violated in the bug report titles and
descriptions. These descriptions converged on a single
coding scheme after numerous iterations and discussions
with the other authors.

Our classification of the different sources of
expectations consisted of seven codes. The first three
codes represent more conventional notions of a bug as a
violation of developer intent:
Runtime logic. Explicit violations of some runtime
expectation, including errors, warnings, assertion
violations, crashes, and hangs (e.g., “…scary deadlock
assertions exiting mozilla after referencing nsInstallTrigger…”).

Specification. An agreed upon functional requirement
among the developers (e.g., “There's an incorrectly placed
PR_MAX in the code for pref width distribution of colspanning
cells.”).

Standards. Specifications shared by the industry in
which the application is deployed (e.g., “'codebase'
attribute of the HTML 4.0 OBJECT element is not supported…”).

The remaining four categories refer to other sources of
expectations, outside the scope of the implementation,
developer community, or industry:
Reporter expectations. A reporter’s personal
perspective about what the system should do (e.g.,
“Every time I Sort By Name by Bookmarks Firefox sorts and
closes my Bookmark menu... Why does it do this??”).

Community expectations. A reporter’s belief about a
“typical” user’s expectations, including specific
references to user, users, user interface, or usability.
(e.g., “The preference to not show the tab bar when only one
tab is open could be set to false by default. This would at least
alert a new user to the possibility that tabs exist) The old tabbed
browsing preferences could be returned.”).

Genre conventions. References to applications with
similar functionality; allusions to how a specific

feature behaves for the same action. (e.g., “Firefox does
not limit the slideshow horizontal size to the window width. The
same source works correctly in IE.”).

Prior behavior: References to the prior desirable
behavior of the system (e.g., “The latest version of Firefox
only imports one certificate from each file. I used to import all
certificates previously.”).

While these categories may not be exhaustive, they
did capture the full range of expectation violations
found in our sample.

2.2 Sampling and Analysis

To test our classification, we next selected a uniform

random sample of 1,000 bug reports from our data set,
excluding those used to develop the classification. The
first author applied the coding scheme described above to
our sample. To assess the reliability of the coding
scheme, the second author coded a subset of 100 reports.
For this subset, there was a 78% agreement on issue
types between the two coders (κ=0.62). Finally, note that
a small portion of bugs in our sample (n=25) did not fit
our coding scheme because they described meta-issues
about the bug reporting process; these were excluded
from our analyses.

Next, we explored the association between source of
expectation and bug resolution. Upon our initial analysis,
we observed that 30.07% were marked DUPLICATE. We
then further analyzed the resolution of these DUPLICATE
bugs to determine their final resolution flags. For
simplicity, we marked the bugs that were fixed as
DUPLICATE_FIXED and grouped all other resolution flags
as DUPLICATE_NOTFIXED. Table 1 shows the distribution
of bug resolution flags in our sample, and a brief
description of each resolution status.1

1 Source of Mozilla-specific bug resolution definitions:
https://developer.mozilla.org/en/What_to_do_and_what_not_to_
do_in_Bugzilla

FIXED
fixed by a check-in

40.00%

DUPLICATE_FIXED
duplicate of another bug and was fixed

16.40%

DUPLICATE_NOTFIXED
duplicate of another bug and was not fixed

13.70%

WORKSFORME
cannot be reproduced

13.40%

INVALID
observed behavior is the intended behavior

9.80%

WONTFIX
valid but cannot be fixed

3.50%

EXPIRED
expired after a period of inactivity

1.80%

INCOMPLETE
steps to reproduce are not complete

1.40%

Table 1: Distribution of Resolution Flags in Our Sample

204204

3. Results

We now report our main findings: (1) the
distribution resulting after applying our coding scheme
to a sample of 1,000 bugs and (2) the correlation
between the source of expectation and bug resolution.

Figure 1: Distribution of sources of expectations.

Figure 1 shows the distribution of sources of
expectations violated in our sample of 1,000 bugs.
Clearly, the largest portion of our bugs in our sample
were reporter expectations, which referred to
violations of reporter’s personal expectations (n=337).
Violations of runtime logic (n=195) and specification
(n=177) were the next largest groups. The remaining
groups each accounted for less than 10% of the sample
and were distributed as follows: community
expectations (n=85), genre conventions (n=71), prior
behavior (n=69), and standards (n=41).

Figure 2: Distribution of resolution categories for

sources of expectations.
To assess how the source of expectation affected

bug resolution, we performed multinomial regression
with source of expectation as a nominal predictor and
bug resolution as a nominal outcome. We found that
the source of expectation had a significant effect on
bug resolution (χ2(7, N=1000) = 35.8, p<.001). Figure
2 shows the relationship between the source of
expectation and bug resolution categories. As shown,
over half of the bugs that were about violations of
specification and community expectations were
FIXED. Although reporter expectations occupied the
largest proportion in our sample distribution (Figure 1),

only about 20% of these reports were first resolved as
FIXED—about half of these bugs were initially marked
as DUPLICATE and only about 20% of the duplicate
bugs were eventually FIXED. Bugs about standards,
genre conventions, and prior behavior were more
likely to get marked INVALID, meaning that the
developers considered the actual behavior to be the
intended behavior and not violations.

Furthermore, the distribution of FIXED bugs shows
that when users identified unwanted behaviors that
were violations of specification, community
expectations, or runtime logic, they were more
successful in getting their bugs resolved as FIXED. On
the other hand, when users cited personal experiences
only, or conventions in competing systems, they
achieved little success.

4. Discussion

Our study contributes a detailed articulation of the
unwanted behaviors that users describe in bug reports.
Our analysis shows that there is a correlation between a
user’s expression of whose expectation is being
violated and whether or not the bug will be fixed.
Although, our results are limited to Mozilla, below we
discuss implications of our classification scheme on
understanding end-user bug reporting behavior and
augmenting the design of bug reporting tools.

4.1 Implications for Expanding the Notion of a
Bug

First, our findings reveal the limitations of simple
divisions between unintended behavior and feature
requests, expanding the notion of a bug to a wide
variety of sources of user expectations. If we look at
the bugs in our sample from the perspective of binary
classifications (i.e.,[1]), real “bugs” (the specification
and runtime logic violations in our scheme) only
accounted for about 37.2% of our sample. By this
measure, over 60% of the other bug reports were
simply “non-bugs.” But through our classification, we
learned that these “non-bugs” encompassed a range of
unwanted behaviors that violated the users’
idiosyncratic personal expectations, exposure to
previous versions of a system or use of other similar
systems. The developers were in fact responsive to
fixing many of these “non-bugs” provided that they
were expressed as violations of the user community’s
expectations. (These findings also contrast the extant
belief (cf. [5,10]) that OSS developers tend to focus
only on issues relevant to errors in code or
functionality problems.)

Our results open an intriguing question: can users
“game” open bug reporting by articulating a problem
in community terms? Or do developers eventually

0% 5% 10% 15% 20% 25% 30% 35% 40%

standards

prior behavior

genre conventions

community expectations

specification

runtime logic

reporter expectations

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
INCOMPLETE

EXPIRED

WONTFIX

INVALID

WORKSFORME

DUPLICATE_NOTFIXED

DUPLICATE_FIXED

FIXED

205205

uncover the reality of an issue? It appears that what
users write and what the real issue is are two
dimensions of a bug report. Future studies should
investigate how an issue’s phrasing really affects the
outcome of a report. Our results suggest that the
answer to this question will depend on the source of
expectation. For example, it appeared that many users
had a difficult time accurately interpreting the meaning
of HTML specifications, which led to several invalid
reports. However, in the case of reporter
expectations, there may be many common, critical
usability issues behind individual issue descriptions
that are never discovered, simply because of how they
are phrased.

4.2 Implications for Bug Reporting Tools

With the current design of open bug reporting tools,

it is likely that end-users will continue to submit a
large number of isolated idiosyncratic descriptions of
unwanted behaviors, most of which will not get fixed.
But if 10,000 such idiosyncratic descriptions were to
point to the same issue, how could we redesign bug
reporting tools so that the community impact of such
an issue is more obvious and the chances of that issue
being resolved are increased?

Current focus on enhancing bug tracking tools has
been on improving the quality of the bug report [3,8],
and the information exchange between end-users and
developers [4]. But these improvements largely benefit
developers. To better leverage user participation in
open bug reporting, our results suggest that bug
reporting tools should provide the user with: (1) more
concrete ways to express a range of unwanted
behaviors, and (2) some form of feedback about the
extent to which the reported issue also affects the
larger user community. For example, if tools could
automatically identify violations of personal
expectations in bug report descriptions, users could
learn up front that their bugs are not likely to get fixed.
This feedback would perhaps encourage users to refine
their reports or investigate other ways of resolving
their individual issue.

Also, if end-users have more concrete ways of
expressing unwanted behaviors, and bug reporting
tools can be designed to aggregate these in a
meaningful way, OSS developers could have a rich
view of community impact and be able to make more
informed software evolution decisions.

4.3. Conclusion

Open bug reports serve as a forum for users to

communicate with developers and express a range of
unwanted behaviors, as seen by our classification

scheme. Our results illustrate how articulation of
community impact can allow users to have more
success in getting problems resolved. Our current
analysis did not take into account possible confounds
that could affect bug resolution, which we plan to
include in future work. It would be particularly
interesting to examine other factors that influence
reporters to describe bugs as violations of their
personal expectations. For example, reporters who
have not yet diagnosed their problems may just tend to
report non-issues and tend to explain things in personal
terms instead of community terms.

Acknowledgements

This material is based in part upon work supported by the
National Science Foundation under Grant Number CCF-
0952733 and a doctoral fellowship by the Social Sciences
and Humanities Research Council of Canada.

References

[1] Antoniol, G., Ayari, K., Di Penta, M., Khomh, F., and
Guéhéneuc, Y. Is it a bug or an enhancement?: a text-
based approach to classify change requests. Proc Conf of
the Center for Advanced Studies on Collaborative
Research, (2008).

[2] Anvik, J., Hiew, L., and Murphy, G. Who should fix this
bug? Proc ICSE, (2006), 361-370.

[3] Bettenburg, N., Just, S., Schröter, A., Weiss, C., Premraj,
R., and Zimmermann, T. What makes a good bug report?
Proc FSE (2008), 308-318.

[4] Breu, S., Premraj, R., Sillito, J., and Zimmermann, T.
Information needs in bug reports: improving cooperation
between developers and users. Proc CSCW, (2010).

[5] Dalle, J., den Besten, M., and Masmoudi, H. Channeling
Firefox Developers: Mom and Dad Aren't Happy Yet. In
Open Source Development, Communities and Quality.
Springer, Boston, (2008), 265-271.

[6] Glaser, B.G. Basics of grounded theory analysis:
emergence vs forcing. Sociology:Mill Valley, CA, (1992).

[7] Glerum, K., Kinshumann, K., Greenberg, S., et al.
Debugging in the (Very) Large: Ten Years of
Implementation and Experience. Proc SOSP (2009).

[8] Just, S., Premraj, R., and Zimmermann, T. Towards the
next generation of bug tracking systems. Proc VL/HCC,
(2008), 82–85.

[9] Ko, A.J. and Chilana, P.K. How power users help and
hinder open bug reporting. Proc CHI'10, 1665-1674.

[10] Lakhani, K. and Wolf, R.G. Why hackers do what they do:
Understanding motivation and effort in free/open source
software projects. Perspectives on Free and Open Source
Software, MIT Press, Cambridge, (2005), 3–21.

[11] Nichols, D. and Twidale, M. The usability of open source
software. First Monday 8, (2003), 1-6.

[12] Weiss, C., Premraj, R., Zimmermann, T., and Zeller, A.
How Long will it Take to Fix This Bug? Proc ICSE
Workshop on Mining Software Repositories, (2007).

206206

