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ABSTRACT
Online coding tutorials are increasingly popular among learners, 
but we still have little knowledge of their quality. To address this 
gap, we derived several dimensions of pedagogical effectiveness 
from the learning sciences and education literature and analyzed a 
large sample of tutorials against these dimensions. We sampled 30 
popular and diverse online coding tutorials, and analyzed what 
and how they taught learners. We found that tutorials largely 
taught similar content, organized content bottom-up, and provided 
goal-directed practices with immediate feedback. However, few 
were tailored to learners’ prior coding knowledge and only a few 
informed learners how to transfer and apply learned knowledge. 
Based on these results, we discuss strengths and weaknesses of 
online coding tutorials, opportunities for improvement, and 
recommend that educators point their students to educational 
games and interactive tutorials over other tutorial genres. 
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1. INTRODUCTION
In recent decades, desire to learn programming has increased 
dramatically, while major government and non-policy efforts such 
as the Hour of Code, CS Education Week and CS For All have 
begun to create infrastructure for broad scale learning of 
computing and coding. To meet this high demand, a variety of 
online resources for learning how to code have emerged. Some of 
these tutorials are open-ended, creative platforms such as Scratch 
[24] and Alice [8]. Others are lecture-style courses provided by
massively open online courses (MOOCs) like Coursera
(coursera.org) and edX (edx.org). Some are tutorial-style curricula
such as Khan Academy (khanacademy.org) and Codecademy
(codecademy.com), which offer a range of content to teach
popular programming languages and platforms. There are also
many evidence-based educational programming games like
Gidget [19], Lightbot [15], and Code Hunt [2], which aim to teach
coding by gamifying some form of programming activity. There
are of course also many reference guides with substantial example
code, including W3 Schools (w3schools.com), Tutorials Point
(tutorialspoint.com), and more social forums such as Stack
Overflow (stackoverflow.com) that provide significant reference
resources for learners. Popular tools such as the online Python
Tutor even allow learners to visualize program execution [16].

Millions of people are using these resources every day to learn 
independently, but we have only just begun to understand their 
effectiveness. Recent work, for example, has explored the 
learning outcomes of open-ended creative environments and 
MOOCs, finding that while many learners use sophisticated 
programming language constructs [9, 11], there is still little 
evidence that they produce robust programming knowledge [18, 
20, 34]. There is some evidence that explicit instruction and 
guidance through tutorials can improve learning [17], and more 
recent evidence-based that while e-books for CS teacher training 
can engage, learning is a continued challenge [33]. 

This evidence has several limitations. First, the evidence is sparse, 
only investigating a few types of tutorials; most of them are 
research prototypes [2, 15, 16, 19]. This means that we still know 
little about the current content of the popular tutorials that learners 
are using. Second, most of the evidence is narrow, in that it 
focuses on specific measurements of learning and engagement, 
overlooking many important factors in learning that are more 
difficult to measure and control for. The result is that teachers 
have little holistic guidance about how to choose effective 
tutorials and researchers have little insight into the broader set of 
online materials and how they differ. 

To address these problems, we took an analytical approach to 
evaluating online coding tutorials, investigating what online 
tutorials currently teach and how they teach it by analyzing 
tutorials against a set of curriculum design dimensions. The 
benefit of an analytical approach is that we could assess a large set 
of tutorials and we could assess aspects of tutorials that are 
difficult to measure quantitatively. This approach is inspired by a 
long history of curriculum evaluation frameworks, which offer 
principles and rubrics grounded in theories of learning [10, 28, 
29]. To improve the actionability of our results, we generated 
pedagogical principles specific to coding tutorials, deriving them 
from more general pedagogical design principles. 

In the rest of this paper, we discuss our sampling and assessment 
approach in detail, describing how we derived our assessment 
model. We then discuss our results and their implications in detail. 

2. METHOD
2.1 Selecting Tutorials
To begin, we generated a list of tutorials to evaluate (Table 1). 
One of our criteria for selecting tutorials was popularity. Using 
the Google search engine with two query terms “online coding 
tutorial” and “coding tutorial,” we sampled and reviewed active 
coding tutorial websites appeared in the first 10 pages. We 
ensured Google’s personalized search was turned off to prevent 
any effects from the search history in the browser. We excluded 
the websites that simply aggregated content from other sites.  

In addition to search result popularity, we also estimated the 
amount of web traffic of each tutorial by using Alexa  (alexa.com) 
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on July 29th 2016. We used Alexa’s global rank, an estimate of a 
site's popularity relative to all other sites over the past 3 months, 
updated daily. The rank was based on a combined measure of 
unique visitors, the number of unique Alexa users who visited a 
site on a given day, and page views, the total number of Alexa 
user URL requests for a site. The site with the highest 
combination of unique visitors and page views was ranked the 
first. Based on the global rank provided by Alexa system, we 
included tutorial websites that ranked below 100,000.  

We also considered popularity in educational settings. For 
example, Scratch [24] and Alice [8] are broadly used in 
classrooms but had relatively high Alexa rankings of 4,397,390 
and 212,300, respectively. Educational games such as Lightbot, 
powered by Hour of Code, ranked 214,897. As this paper aimed to 
compare pedagogical approach across genres of online coding 
tutorials, we also included these tutorials. 

Next, because many tutorial sites taught multiple programming 
languages, we also focused our assessments on the tutorials for 
popular languages. To do this, we referred to four online sources 
of programming language popularity: GitHub, tag rankings in 
Stack Overflow, TIOBE programming community index 
(www.tiobe.com/tiobe-index), and PopularitY of Programming 
Language index (pypl.github.io/PYPL.html). We chose courses 
and curricula that taught one of the six most popular languages 
(Java, Python, PHP, JavaScript, C#, C) overlapping across all four 
sources. 

Our resulting sample included 30 tutorials, shown in Table 1. To 
help compare the tutorials, we also categorized them under one of 
five genres of resources: 

• Interactive tutorials required learners to interact with 
command window, text editor, or equivalent in order to pass 
successive stages. This genre included sites such as 
Codecademy, Khan Academy programming, and 
Codeschool.com. Some of these tutorials focused on specific 
functionality such as Regex Golf (regex.alf.nu) and Regex 
101.com. 

• Web references played the role of a “dictionary.” Tutorials 
under this genre, such as Tutorials Point, help learners 
properly code against a library, API, or platform. Some web 
references such as W3Schools or Learnpython.org provided 
code editors or command windows for learners who might 
want extra practice for reference code. 

• MOOCs had a hierarchical structure with step-by-step stages, 
incorporating text-based quizzes and exams after a sequence 
of instruction. This genre included popular lectures in 
Lynda.com, edX, and Coursera. 

• Educational games provided goals, story, and immediate 
feedback and often provided a more visually rich graphical 
environment. They often provided scores based on 
achievement or game items which can be consumed within a 
system. This genre included games such as Gidget [19], 
Code Combat, and Code Hunt. 

• Creative platforms provided learners with an editor and 
content, but little instruction other than a reference guide and 
no explicit goals. This included Scratch [24] and Alice [8]. 

2.2 Dimensions for analysis 
Here we describe our process for obtaining dimensions for 
analyzing the tutorials. First, we needed a framework against 
learning science principles. We based our evaluation on findings 
from learning sciences, focusing on the nine groups of 24 
dimensions, shown in Table 1. These groups spanned four core 

pedagogical principles: 1) connecting to learners’ prior 
knowledge [22, 23], 2) organizing declarative knowledge [3], 3) 
practice and feedback [1, 13], and 4) encouraging meta-cognitive 
learning [14, 21]. We adapted these four principles from the 
major effort over a decade ago to synthesize the seminal 
theoretical and empirical discoveries in learning sciences and 
education research into actionable principles for teaching and 
learning [3]. We decided to exclude principles related to 
collaborative learning, as most of the coding tutorials in our 
sample are not explicitly social experiences.  

To assess the degree to which the tutorials in our sample followed 
the four principles, we generated 24 pedagogical dimensions 
specific to individual learning in coding tutorials. Each of the 24 
dimensions we derived had significant nuance, but to simplify 
analysis and reporting, we reduced all but one dimension to a 
binary yes or no, where “yes” constituted satisfying a particular 
pedagogical design dimension, as defined by a written criterion. 
For example, the criterion for the utilization dimension (Table 
1.2) was “The instruction of the new stage explicitly requires to 
use at least one command or one function taught in the previous 
stage.” If a tutorial met this criterion, we marked a “yes”, and a 
“no” otherwise. 

After analyzing the first few tutorials with a prototype of several 
dimensions we initially created, we evaluated them through 
discussions. We refined the detail of each dimension to see its 
necessity for tutorial analysis and removed unhelpful or 
uninformative dimensions. We iterated until all dimension criteria 
were sufficiently described and assessable. 
With the final dimensions and criteria, we accessed each tutorial 
online and went through the course to checked the criteria for 
each dimension. In case that the category of answers was more 
than binary (Table 1.4), we recorded all answers. Also we marked 
“NA” in case that a tutorial was not applicable for a particular 
dimension (Table 1.3). We analyzed at least one module of each 
tutorial and in some cases analyzed an entire tutorial. It took 
approximately 2 hours per tutorial to check all criteria for 
dimensions and 60 hours overall.  

3. RESULTS 
Our final data set appears in Table 1, showing that tutorials varied 
widely in their compliance with our pedagogical principles, 
though some genres were more principled than others. In this 
section, we discuss each of the dimensions we evaluated in detail, 
organizing our discussion by our four core principles. 

3.1 Connecting to learners’ prior knowledge 
Our first set of dimensions concerned tutorials’ approach to 
learners’ prior knowledge. It is now widely accepted in learning 
sciences that people construct new knowledge based on what they 
already know and believe [6, 7, 22, 23, 31, 32]. Regardless of age 
[23], learners bring prior knowledge in the form of facts, 
perceptions, beliefs, values, and attitudes to the new learning 
context [6, 7, 22]. While accurate and complete prior knowledge 
facilitates learning new knowledge, inaccurate and incomplete 
preconceptions hinders it. Therefore, in any learning context, it is 
important to understand learners’ prior knowledge and deeply 
connect instruction to this prior knowledge. 
To evaluate how the coding tutorials in our sample connected to 
learners’ prior knowledge, we analyzed two groups of 
dimensions: personalization (Table 1.1) and utilization (Table 
1.2) of knowledge. First, personalization of knowledge 
represented whether the tutorials customized teaching materials to 
meet prior knowledge along three dimensions: whether tutorials 
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helped learners select an appropriate learning material based on 
their age range (Table 1.1.a), educational status (Table 1.1.b), or 
prior coding knowledge (Table 1.1.c). Among many ways to 
personalize learning materials, we chose these three because they 
are common factors that curricula use to differentiate instruction 
in formal educational systems. Many coding tutorials did not 
personalize what they teach for their learners when we evaluated 
the level of personalization of three dimensions above. Only 
Code.org, Lightbot, and Scratch explicitly indicated appropriate 
learners’ age range for tutorial selection. Fourteen out of 30 
tutorials considered learners’ education status, but it was rather 
superficial such as vaguely separating beginner, intermediate, and 
advanced levels to indicate difficulty. None of the tutorials 
recommended specific stages or modules, based on learners’ prior 
coding experience.  

For the “utilization” dimension, we analyzed how the tutorials 
helped learners leverage the knowledge they accumulated 
throughout the tutorial (Table 1.2). For example, some tutorials 
summarized the knowledge from prior lessons and showed 
learners how to apply it to new concepts; others taught material 
once, and never mentioned it again. All educational games 
required learners to apply knowledge from stage to subsequent 
stages, which helped learners’ better connection of knowledge 
than other genres of tutorials. A few interactive tutorials like Code 
School and Codingbat Python (codingbat.com/python), and 

MOOCs like Coursera and edX, also had structural stages that 
utilized the information taught in a stage to the new ones. Only 
one web reference tutorial, FunProgramming.org, had the similar 
form of structure. Only Codecademy, Khan Academy, and Code 
Avengers (codeavengers.com) required knowledge from previous 
stages to pass the overview stage at the end of the module.  

3.2 Organizing declarative knowledge 
Transforming factual information into robust declarative 
knowledge is another key principle for effective learning [3]. For 
successful transformation, binding a large set of disconnected 
facts is important as well as connecting prior knowledge to new 
knowledge [1,23,31,32]. Providing a conceptual framework for 
organizing information into meaningful knowledge helps learners 
to gain a deeper understanding of learning material [4,5].  
To apply these principles to our evaluation, we analyzed the 
content of what tutorials taught (Table 1.3), focusing on the eight 
learning objectives in the FCS1 assessment [28], which included 
basic programming language concepts such as variables, arrays, 
loops, and functions. All five genres of tutorials taught all eight 
learning objectives except a few tutorials that focused on specific 
abstractions (namely Regex 101 and Regex Golf). Most of the 
educational games did not teach, or at least not explicitly, the 
concept of objects or object-orientation. 

Table 1. Thirty tutorials analyzed across 24 dimensions. Each check mark represents satisfaction of a pedagogical principle. 
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How information is organized can influence application of 
declarative knowledge [1]. Experts often organize information 
hierarchically, indicating their deeper understanding of how 
various pieces of information fit within a complex structure. In 
that sense, we analyzed the organization of information (Table 
1.4), noting whether the tutorials structured information “bottom-
up” (starting with basic concepts and building up to complex 
ones) or “top-down” (successively breaking down complex 
concepts into smaller ones) (Table 1.4.a), and whether the 
structured information was in a hierarchical form or not (Table 
1.4.b). 

Tutorials organized the information differently across the genres. 
For example, web references and interactive tutorials organized 
content bottom-up, starting with the most elementary concepts, 
using one or two commands or functions at a time to solve a 
problem. The most common case was teaching how to print 
“Hello World” using a certain programming language; in order to 
do this, they explained what kinds of command (e.g. print() in 
python3) should be typed in the text editor or interpreter, and 
displayed how it worked. 

In contrast, educational games, MOOCs, and creative platforms 
combined both bottom-up and top-down approach or mainly used 
top-down approach more than web references and interactive 
tutorials. For example, Scratch suggested a goal (“Make the cat in 
the screen dance”) that learners can model and provided step-by-
step instruction to reach the goal, but also allowed high level of 
freedom for users to apply the instruction to design one’s own 
code. 

Organizing information hierarchically can help learners connect 
scattered facts [1,5]. All games structured information 
hierarchically, which included many simple stages teaching one 
command or function at a time under particular programming 
topics. MOOCs and interactive tutorials with high Alexa ranking 
like Codecademy and Khan Academy did the same. For example, 
a module teaching conditional statements often included many 
sub-stages about how to correctly write if and while structures.  

Finally, we analyzed the context of how the information was 
organized (Table 1.5), judging the story, background, and other 
concrete details in which content was presented [1, 3, 4]. We 
considered three dimensions of context. The first was the use of 
lectures, presenting content authoritatively (Table 1.5.a). MOOCs 
and the popular interactive tutorials used lecture-based contexts 
heavily (Table 1.5.a). We also considered the use of goal-driven 
project contexts, in which learners were given a high level goal to 
achieve by learning lower-level content (Table 1.5.b). Such goals 
can help learners’ active engagement in goal-based practice [13]. 
Only a few tutorials, primarily educational games and creative 
platforms, offered project-based contexts that provided an explicit 
goal of a stage or a module. For example, one of the goals in 
Gidget’s stage was to operate a small robot, named Gidget, to 
carry a kitten to the basket. To achieve the goal, learners should 
think about not only what functions to be written, but also how to 
arrange them. Finally, we considered the use of story-based 
contexts (Table 1.5.c), which were used to connect learning goals. 
For example, Code Hunt supposed learners as “hunters” who 
perform a secret project by fixing fragments in codes.  

Most of the web references did not establish a specific learning 
context for what they taught, whether an authoritative lecture 
based context, a goal-driven context, or a story-based context. 

3.3 Practice and feedback 
Evidence is clear that deliberate practice helps learners achieve 
mastery in a particular domain [12, 25]. Clearly structured and 
articulated goals are critical to enhancing the effectiveness of 
deliberate practice [13]. Deliberate practice, however, must be 
coupled with appropriately targeted feedback, including 
information about learners’ progress to guide them toward goals 
[1]. To evaluate whether the tutorials supported deliberate 
practice, we analyzed two groups of three dimensions: learner 
actionability (Table 1.6) and feedback (Table 1.7).  

Deliberate practice becomes effective when learners actively 
engage in it; the best way to practice coding is to write code. 
Therefore, our learner actionability (Table 1.6) dimension 
measured whether the tutorial required learners to actually write 
programs of some kind to learn. We found that all genres of 
tutorials offered some kind of interactive editor requiring learners 
to provide input, with the exception of a few web references that 
provided read-only information. We also found interesting 
diversity in the type of editors across the interactive tutorials and 
education games. For example, Gidget equipped a sophisticated 
editor panel so that learners even could see the error messages and 
syntax errors in the editor, which was more instructive than just 
providing a text guideline for practices. Khan Academy provided 
visualized walkthrough with the editor panel so that learners could 
modify and run the code to see how their editing changed contents 
in the walkthrough. 

Prior work has shown that immediate, targeted feedback is critical 
for meta-cognitive monitoring [1,3,5]. Therefore, to analyze 
feedback, we judged two dimensions: whether tutorials provided 
feedback at all (Table 1.7.a) and whether that feedback was 
immediate (Table 1.7.b). All interactive tutorials and educational 
games with a code editor provided some form of immediate 
feedback, but much of these was shallow. For example, almost 
half of the tutorials did not provide feedback when learners made 
errors. These tutorials fell into two cases: 1) some tutorials like 
Scratch provided open-ended practice, but did not provide 
feedback about right or wrong code relative to a goal or 2) a 
tutorial’s code editor did not produce feedback about error 
messages. These latter tutorials were usually web references that 
allowed learners to test functionality, but did not explain failures.  

Some tutorials provided feedback through instructor or peer 
communication. For example, MOOCs provided some 
opportunities to communicate with instructors or peers, and some 
resources had online communities in which learners could ask 
questions. While this feedback was available, none of it was 
immediate and learners had no guarantee of receiving answers to 
their questions. 

3.4 Encouraging meta-cognitive learning 
Two key ideas of meta-cognitive learning are learners’ ability to 
predict the outcomes of their learning tasks and monitoring their 
understanding [4, 5]. Focusing self-reflection on what worked and 
what needs improving helps learners transfer what they learned to 
the new settings and events [14, 21, 26, 27]. 

To evaluate whether tutorials encouraged metacognitive learning, 
we analyzed whether they taught how, when, and why learners 
should use a particular command or a function to help learners 
transfer or apply knowledge learned from the tutorials (Table 1.8). 
Few tutorials guided learners in transferring and applying 
knowledge to further learning contexts outside of the curricular 
provided by tutorials. Most of the tutorials strongly emphasized 
how to use particular functions and commands in coding. Only 
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five tutorials across three genres, web references, educational 
games, and MOOCs attempted to explain when and why learners 
should use a particular command or a function. 

We also analyzed whether the tutorials provided support by 
providing additional materials outside the curriculum so that 
learners monitoring their understanding could seek answers to 
their own questions beyond the tutorial content (Table 1.9). 
Almost all genres of tutorials provided some form of additional 
support, whether it was a discussion form or additional references 
or resources. Four tutorials attempted to indicate where a learner’s 
performance was ranked and how high it was, which might 
encourage learners to self-monitor their level of progress in 
learning. For example, Code Hunt provided information related 
how fast and accurate the learner performance was after passing 
every stage, which enhance learners’ engagement in playing and 
level completion speed [20]. Five tutorials proactively helped 
learners recognize errors in their actions. Gidget was a good 
example: The tutorial notified its learners when they omitted a 
required expression at the end of the function (i.e. “When I try to 
access an object in the world, I need to terminate its name with a 
“/” character.”) 

3.5 Tutorial Recommendations 
Despite their limitations, interactive tutorials and educational 
games satisfied the majority of the pedagogical principles 
reflected in our dimension’s criteria. All tutorials in both genres 
required learners’ active engagement in writing code, and most of 
them provided a structured hierarchy including several stages of 
goal-directed practice with subsequent applying of learned 
knowledge. The educational games in particular offered many 
forms of context, which may help learners actively engage in 
deliberate practice. The educational games also provided the most 
immediate and personalized feedback, likely improving the gains 
from deliberate practice. Therefore, from a pedagogical 
perspective, we recommend games such as Gidget, Lightbot, 
Code Hunt, and tutorials provided by Code.org as the tutorials 
most likely to be effective at producing learning. 

4. DISCUSSION 
Our results reveal several trends in coding tutorial pedagogy: 

• They largely teach the same content. 
• Most teach content bottom-up, starting with low-level 

programming concepts, and building up to high-level goals. 
• Most require learners to write programs. 
• Most provide some form of immediate feedback in response 

to learner actions, but this feedback is shallow. 
• Few explain when and why a particular concept is useful in 

programming. 
• Few provide guidance for common errors. 
• None provide personalization based on prior coding 

experience or learner goals, other than rudimentary age-
based differentiation. 

Despite the diversity of languages and content, most of the coding 
tutorials shared a similar paradigm. They dissected coding into the 
most detailed, elemental level. This bottom-up approach in 
organizing information enabled the tutorials provide goal-based 
practices with one simple task for each stage. For example, most 
of the tutorials gave instruction about how to write a few simple 
lines of code (e.g., var1 = 1, var2 = 2, then what would 
be var1 + var2?) and test it by typing the answer to the 
command window. At this low level, the goal was clear (use this 
function to clear the stage) and feedback was also clear (clear the 

stage or not). In that sense, the tutorials might fulfill one 
important criterion of effective learning: providing clearly 
structured, and articulated goals for practice, in the beginning 
stages. 

This paradigm has several limitations. First, coding tutorials gave 
more attention to emphasizing how to practice particular 
commands and functions rather than to provide contextual 
information like when and why to use them. More generally, none 
of the tutorials provided a detailed and systemized problem 
solving instruction other than one- or two-sentence hints when 
learners made errors in each stage. These pedagogical choices 
might limit tutorials’ ability to teach learners’ to apply skills to 
broader learning contexts outside of the curriculum. 

Lacking a personalized instruction might also limit effectiveness. 
As our first learning principle emphasizes, it is important to 
connect existing knowledge to the new knowledge, and to 
consider learners’ incomplete understandings and the false beliefs 
in that connecting process. However, most of the tutorials did not 
provide access to any sort of agent or instructor to give 
personalized feedback to guide deliberate practice. Second, we 
found that while tutorial feedback was immediate, it was rarely 
precise enough to improve learners’ conceptions of the material, 
and it was not customized at all to learners’ prior knowledge. This 
is a major area for future work that has yet to be deeply explored. 

5. LIMITATIONS 
There are many limitations in our study to address in future work. 
Although our sample was diverse, it is not necessarily 
representative of all of the tutorials used around the world, 
particularly those in languages other than English. Although we 
tried to measure popularity by using Google search engine and 
Alexa, these methods could provide only general information 
about how many learners visited the website per day, not about 
their actual progress. Moreover, online coding tutorials are 
constantly evolving as companies seek ways to improve learning 
and engagement. 

Our analysis also has limitations. Most of our criteria were binary 
judgments, even though many of the dimensions have 
substantially more nuance. The first author was also the only one 
who assessed all of the tutorials, and so there may have been 
systematic bias in her evaluations that was not eliminated through 
redundant coding. 

Another major limitation of our study is that we analytically 
assessed tutorials, rather than measuring learning outcomes 
directly. It may be possible that many of the tutorials are effective 
despite failing to satisfy many of the learning principles we 
identified in prior work, as those principles might have been met 
in subtle ways not observed in this study.  

6. CONCLUSION 
Our results suggest that most online coding tutorials are still 
immature and do not yet achieve many key principles in learning 
sciences. Future research and commercial development needs to 
better emphasize personalized support and precise, contextualized 
feedback and explore ways of explaining to learners why and 
when to use particular coding concepts. Based on our sampled 
tutorials, we recommend that teachers be very selective in their 
use of materials, focusing on the more evidence-based tutorials, 
particularly the educational games. All educational games in the 
list provide hierarchical structure, immediate feedback, and 
opportunities that learners actively write code and use subsequent 
knowledge for coding throughout the tutorial. With future 
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research, these tutorials and potentially future commercial 
tutorials will become much better teaching supplements, as well 
as resources for independent learning. 
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