
Individual Differences in Program Comprehension Strategies in

Unfamiliar Programming Systems

Bob Uttl

Department of Psychology

College of Liberal Arts

Oregon State University

Corvallis, OR 97331 USA

bob.uttl@alfalab.com

Abstract

This study examines the effect of individual differences
on the program comprehension strategies of users
working with an unfamiliar programming system.
Participants of varying programming expertise were
given a battery of psychological tests, a brief
introduction to a statistical programming environment,
and a 20-minute debugging task. Our data show three
distinct comprehension strategies that were related to
programming experience, but individuals with stronger
domain knowledge for specific bugs tended to succeed.

1. Introduction

To make successful modifications to a program, not
only must programmers have an adequate understanding
of a program, but they also must adequately understand
the programming system (comprised of an environment
and language). However, programmers frequently must
gain understanding of a program and programming
system at the same time. For example, students in
introductory programming courses are often given
modification tasks and must learn a new language and
environment while understanding an existing system.
Software engineers often face the same challenge, except
with more complex tools and larger programs. This is a
difficult process, in which programmers rely heavily on
the support of more experienced individuals [1] as they
acquire new skills and domain-specific knowledge.

While there are many program comprehension theories
and findings that can predict comprehension strategies
programmers may use in unfamiliar programming
systems, the majority of this work only addresses
unfamiliarity with a program, and not unfamiliarity with
a programming system. How does the effect of individual
differences on comprehension strategies and debugging
change in this situation? In particular:

ü What comprehension strategies do programmers
use in unfamiliar programming system?

ü What individual differences predict these
comprehension strategies?

ü How do these individual differences and
comprehension strategies affect debugging?

The participants in this study, which had widely
varying programming expertise, used three distinct
strategies, some of which map to strategies in previous
studies. While the comprehension strategies were related
to programming experience, no particular strategy resulted
in the best debugging performance. Rather, individuals
with stronger domain knowledge for specific bugs and
positive attitudes towards computers tended to succeed.

2. Related Work

A number of theoretical analyses have suggested
models of program comprehension, and these models
make certain predictions about the strategies programmers
using an unfamiliar programming system might use. For
example, von Mayrhauser and Vans’ model [11] suggests
that programmers build a mental representation of a
system’s control and data flow from the bottom up as
code, documentation, and domain-knowledge are
acquired. In this model, unfamiliarity with an
environment and language may make a programmer use
documentation and domain-knowledge more than normal,
since programmers may not be able to view and
understanding code in familiar ways.

Gilmore’s model of debugging [6] depicts a flexible,
reconstructive process in which programmers compare
perceived design decisions of a system with the actual
performance of the system. In this model, the
comprehension process draws from domain knowledge
and expertise until mental models of the systems’ goals
and the program code are reconciled. Under this model, it
would seem that unfamiliarity with a programming
system could impact a programmer’s ability to explore

Amy J. Ko
Human-Computer Interaction Institute

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213 USA

ajko@cmu.edu

Proceedings of the 11 th IEEE International Workshop on Program Comprehension (IWPC’03)
1092-8138/03 $17.00

and comprehend code, placing a performance bottleneck
on comprehension, but not changing their strategy.

Many empirical studies relate comprehension strategies
to individual differences, suggesting ways in which
unfamiliarity with a programming system could influence
comprehension strategies. For example, Davies [3] argues
that working memory and domain knowledge interact to
determine comprehension strategies, suggesting that
unfamiliar environments may make programmer’s
working memory capacity and domain-knowledge more
influential than in a familiar environment. Also, in
Koenemann and Robertson’s [10] study, participants’
choice of an as-needed comprehension strategy seemed
influenced by their frustration with the unfamiliar code
viewer in the experiment. This suggests that unfamiliarity
with a programming system may make programmers
resort to strategies they would not otherwise use.

Many findings on how expert programmers differ from
novices may not apply to programmers using unfamiliar
environments. For example, Nanja and Cook [12] and
Jeffries [8] observed that experts, but not novices, used a
strategy of reading a program in the order in which it
would be executed. If experts are unfamiliar with a
programming system, they may revert to the novice
strategy or another strategy altogether in order to read a
program. Also, Teasley [14] found that variable naming
style can affect the functional program comprehension of
novices, but not of experts; this effect may not appear if
experts are unfamiliar with the language. Wiedenbeck and
colleagues [16] suggest that experts’ memory for program
representations is better because they recognize the
procedural nature of a program and can more efficiently
utilize their working memory. Given Davie’s finding [4]
that experts rely greatly on external displays for
comprehension, this advantage may not appear if experts
are inexperienced with an unfamiliar programming
system’s external representation of code.

Clearly, individual differences such as expertise and
domain-knowledge can affect program comprehension
strategies and performance. The question investigated in
this study is how these findings change when
programmers are unfamiliar with a programming system.

3. Method

An exploratory experiment was designed in which
participants comprehended and debugged a simple
program in an unfamiliar programming system.
Participants were exposed to the same experimental
condition, so the only variation was in participants’
backgrounds, experience, and comprehension strategies.

3.1 The Unfamiliar Environment

The unfamiliar programming system participants used
was Intercooled Stata 7.0, a commercially available
programmable statistical package (www.stata.com). A
typical view of Stata can be seen in Figure 1. Stata
provides a single window interface which contains a
variables window, which shows the variables in the
current data set being used, a review window that shows a
history of user-generated and computer-generated
commands, a results window, that shows a history of
textual output generated by Stata, and a command
window in which users enter textual commands. When
graphs are generated, Stata displays the graph in a
resizable, non-interactive window. Stata also provides a
spreadsheet-like data editor with limited functionality.

Creating a data set in Stata consists of setting a
system variable that specifies the number of objects in a
data set to the desired size (for example, “set obs 1000”
makes a data set of 1000 objects). To create variables
within this data set, the “generate” command is used;
for example, the command “generate height = 5”

Figure 1. A typical view of Stata. Commands are entered in the window at the bottom, results are
displayed in the large window with the black background, and a history of commands is displayed
in the window on the upper-left labeled “Review.” Printed with permission from Stata Corporation.

Proceedings of the 11 th IEEE International Workshop on Program Comprehension (IWPC’03)
1092-8138/03 $17.00

would create a variable named height, which has the value
5 for all 1000 objects. Stata provides many functions that
can be used in conjunction with the generate command,
such as in “generate height = uniform()” which
creates a variable named height in which each observation
is a random number between 0 and 1.

Stata provides an online help system with descriptions
and examples of command use. The online help can be
reached through the commands “help” or “search”, in
which case help is displayed in the results window. The
same help is available through the help menu in the main
Stata window, but is displayed in a graphical window.

3.2 Testing Instruments

A number of tests were used to assess participants’
individual differences.

The Vocab27 test measured verbal intelligence, a
correlate of general IQ, and consisted of 27 multiple-
choice questions from Ekstrom [5]. For each item,
participants saw a target word and chose the word most
closely related in meaning out of the four alternatives. No
time limit was placed on the test. Cronbach’s alpha, a
widely used measure of a psychological test’s reliability,
was .75.

The problem-solving test obtained a measure of general
problem solving ability. Fifty items were selected from
various intelligence tests. In the first section, the
participant was asked to determine the next number in a
series of numbers. For example, the sequence “1, 2, 4, 8,
__” would be provided and the participant would fill in
the next number in the sequence. In the second section,
participants were given a word pair with an unidentified
relationship and were asked to choose two words from a
list that had the same relationship. The other three
sections tested synonyms, antonyms, and visual
sequences in similar ways. Participants were given 20
minutes to complete the test. Cronbach’s alpha was .78.

The statistics test assessed domain knowledge (since
Stata is a statistical programming environment, domain
knowledge was statistics). The test consisted of 10
multiple-choice questions (varying from three to five
choices) and tested material from introductory statistics
and hypothesis testing courses. Participants were given 10
minutes to complete the test. As participants scored near
the floor, no reliability measure is reported.

A background questionnaire was administered to
gather basic information about participants’ age, major,
gender, native language, as well as self-reported
experience with statistics software, mathematics,
computers, and programming (Cronbach’s alphas were
.60, .97, .67, and .80, respectively). Attitudes towards
computers, statistics, mathematics, and the experiment
were also measured (Chronbach’s alphas were .80, .76,
.93, and .60, respectively). Attitudes and prior experience
were measured using a seven-point Likert scale, ranging
from Strongly Disagree (1) to Neutral (4) to Strongly
Agree (7).

3.3 Participants

To allow for the possibility that expert programmers
might use the same strategies as less experienced
programmers, sampling was blind to programming
expertise. Participants were recruited from undergraduate
computer science, psychology, and statistics courses. All
participants had at least one introductory statistics course
and experience with hypothesis testing. Participants were
offered extra credit in their class and entry into a raffle for
a $100 prize in exchange for their participation. The
original sample consisted of 86 participants, but those
who did not understand the experimental materials
because of poor English skills were removed from the
sample, leaving 75 participants. Scores and responses on
the tests of individual differences are listed in Table 1 by
academic major and gender.

Two-sample independent t-tests were performed by
gender, major, and native language to test for differences
in self-reported ability and experience, and performance on
the Vocab27, problem solving, and statistics tests.
Participants whose native language was not English
performed significantly lower than native English
speakers on Vocab27 (p < .001); females had significantly
less self-reported experience and ability with mathematics
(p < .05), programming (p < .001), and software (p <
.05), but these results are likely confounded by the low
proportion of female computer science majors. Computer
science majors reported greater ability and experience with
mathematics (p < .01) and programming (p < .01).

Major
Measure

Psychology Computer Science Other

Gender M F All M F All M F All

Count 8 12 20 21 3 24 12 19 31

Age
20.6
(1.3)

22.4
(3.6)

21.7
(3.0)

25.4
(8.2)

26.7
(7.4)

25.6
(8.0)

24.3
(3.9)

26.1
(6.7)

25.4
(5.7)

Vocab27
.59

(.09)
.57

(.10)
.58

(.10)
.62

(.12)
.68

(.21)
.63

(.13)
.60

(.15)
.58

(.11)
.59

(.12)

Problem
Solving Test

.57
(.09)

.51
(.10)

.53
(.10)

.54
(.15)

.68
(.20)

.55
(.16)

.48
(.16)

.52
(.18)

.50
(.17)

Statistics
Test

.25
(.15)

.33
(.21)

.30
(.18)

.36
(.16)

.27
(.15)

.35
(.16)

.34
(.11)

.34
(.17)

.34
(.15)

Mathematics
Experience

3.91
(1.52)

2.96
(1.43)

3.34
(1.51)

5.55
(.99)

5.25
(.66)

5.51
(.95)

4.96
(2.28)

4.71
(1.39)

4.81
(1.76)

Stats Soft
Experience

1.25
(1.34)

1.93
(1.08)

1.66
(1.21)

1.08
(.99)

2.25
(.75)

1.23
(1.02)

2.15
(.98)

1.26
(1.33)

1.60
(1.27)

Programming
Experience

.58
(.85)

.31
(.91)

.42
(.88)

4.24
(1.16)

3.39
(.92)

4.13
(1.15)

2.19
(1.89)

.96
(1.09)

1.44
(1.55)

Computer
Experience

5.44
(1.45)

5.50
(1.11)

5.48
(1.09)

6.12
(.71)

5.83
(1.26)

6.08
(.76)

6.04
(.72)

5.66
(1.21)

5.80
(1.05)

Experiment
Attitudes

4.72
(.92)

4.52
(.95)

4.60
(.92)

5.36
(.97)

4.14
(.63)

5.24
(.97)

4.88
(.66)

4.83
(1.12)

4.85
(.96)

Computer
Attitudes

4.28
(1.45)

3.88
(1.19)

4.04
(1.28)

6.45
(.46)

6.17
(.63)

6.42
(.48)

5.48
(.96)

4.89
(1.07)

5.11
(1.05)

Statistics
Attitudes

2.81
(1.18)

2.77
(1.58)

2.78
(1.40)

3.43
(.93)

3.83
(.88)

3.48
(.91)

3.98
(.88)

3.32
(1.31)

3.57
(1.19)

Mathematics
Attitudes

3.63
(1.74)

3.67
(1.84)

3.65
(1.75)

5.36
(1.21)

5.25
(1.15)

5.34
(1.18)

5.10
(1.63)

4.43
(1.51)

4.69
(1.56)

Table 1. Means (and standard deviations) of
individual differences by major and gender.

Proceedings of the 11 th IEEE International Workshop on Program Comprehension (IWPC’03)
1092-8138/03 $17.00

3.4 Two Tasks

Participants were given two problems in the
experiment. The first asked participants to create a data set
of 1000 objects, create two variables with random
numbers between zero and one, perform a t-test to
compare the means of the two lists of data, and then
report the p-value returned by the t-test to the
experimenter. The task was intended to give participants
practice with the environment and language. Participants
were given 30 minutes for the problem. If they did not
complete the problem or completed it incorrectly, they
were given a standard solution so that all participants
would have the same understanding for the next problem.

The second problem was intended to elicit
participants’ program comprehension strategies, and is the
focus of this paper. The problem consisted of a short
sequence of Stata commands in a text-file (see Figure 2)
and a problem description, which served as the program
specification. The purpose of the program was to create a
graph that visualized the influence of increasingly large
outliers on the p-value from a t-test. The program created
a data set of 1000 objects with two variables with random
values between zero and one, and then looped ten times,
each time changing five of the values in the first data set
to increasingly large outliers from values 1 to 10. As
these outliers increased from 1 to 10, the means of the
two lists of data became increasingly different, and thus
the p-value from the t-test between these two lists became
smaller. The graph listed the outlier values from 1 to 10
on the x-axis, and the p-value generated by the t-test for
each value of the outliers on the y-axis.

The resulting graph was supposed to be a smooth
curve with ten data points, as seen on the left in Figure 3.
However, four bugs were inserted into program that the
participants received (highlighted in Figure 2), which
changed the graph significantly, as seen on the right in
Figure 3. Each of the bugs had a specific rationale:

ü The bug starting on the line “for num 10/1:

replace rand…” (hereon referred to as the for
loop range bug) changed the order of execution to
count values from 10 to 1 instead of 1 to 10.
Since this did not affect the data or the graph, this
was a test of participants’ syntax understanding.

ü The bugs in the line “generate pvalues = 0 in
1/100;” and “generate valueofoutlier = _n

in 1/100” (hereon refered to as the pvalues range
and valueofoutlier range bugs) were supposed to
be “1/10” instead of “1/100” because only ten p-
values were being calculated. This bug required an

* This script will generate two sets of 1000 observations of uniformly ;
* distributed numbers, and put an outlier in the first five observations ;
* of the first set. The goal is to graph the p-values of unpaired ;
* two-sample t-tests as this outlier changes from 1 to 10. Here is ;
* the basic order of execution: ;
* - clear all variables from the system ;
* - set the number of observations to 1000 ;
* - generate two variables with random numbers from 0 to 1 ;
* - generate a variable to store all of the p-values ;
* - loop from 1 to 10 and ;
* - change the outliers in the first set to the current value ;
* - execute the t-test between the two sets ;
* - put the resulting p-value into the p-value variable in the ;
* current row ;
* - generate a variable that contains the values from 1 to 10 ;
* - graph the p-values against the values 1 to 10 ;

* Tell the system that every command ends with a semi-colon ;
#delimit ;

* Clear the system before we start! ;
clear;

* First we set the number of observations ;
set obs 1000;

* Generate two variables for which all observations are a random ;
* number from 0 to 1 ;
generate rand1 = uniform();
generate rand2 = uniform();

* Next, we need to generate a variable to store the p-values in. ;
* We put 0's in every observation for now. ;
generate pvalues = 0 in 1/100;

* Then we need to loop through outlier values from 1 to 10,;
* at intervals of 1. First, we update the first five observations ;
* of variable rand1. Then, we run an unpaired t-test between the ;
* two variables. Finally, we place the p-value in the pvalues ;
* variable, in the current row. ;
for num 10/1: replace rand1 = X in 1/5 \ ttest rand1 = rand2,
unpaired \ replace pvalues = r(p) in X;

* Generate a variable that contains 1 through 10 ;
generate valueofoutlier = _n in 1/100;

* Graph the results, pvalues versus valueofoutlier ;
graph valueofoutlier pvalues, title(p-values of a t-test as the magnitude
of outliers increase) connect(l);

Figure 2. The source code provided for problem
2. The bugs are highlighted in grey.

Figure 3. The intended output of the program (left) and the actual output with bugs (right).

Proceedings of the 11 th IEEE International Workshop on Program Comprehension (IWPC’03)
1092-8138/03 $17.00

understanding of the syntax in “1/100” which
refers to the integers 1 through 100. The two
commands were different in that the valueofoutlier
bug contained a comment that explicitly conflicted
with the code, whereas the pvalue bug did not.
The valueofoutlier command also used a system
variable that referred to current row being altered.

ü The last bug was (at the end of the file) graphed
the p-values against the numbers 1 to 10. The
command inverted the graph’s axes (the inverted
axes bug). Participants had to inspect the graph
output and understand the command’s semantics.

Participants were given 20 minutes to change the
program to produce the correct graph, which was shown
in their problem description.

3.5 Experiment Procedure

Participants worked individually in 2-hour sessions.
Following any questions the participant had about the
experiment, the experimenter administered the Vocab27,
problem solving, and statistics tests. After an optional
break, participants were given the background
questionnaire. The experimenter then began a 10-minute
tutorial on how to write Stata commands, create a data
set, create variables, list data in a data set, and search for
help in Stata. The intention of the tutorial was to allow
participants to get accustomed to the basic features the
environment and language provided, while avoiding
suggesting strategies for learning the environment and
language. Participants were allowed to ask questions
during the tutorial only about topics in the tutorial.

Next, the experimenter told the participant that they
would be working on two problems within Stata and that
there would be three rules regarding the problem solving
sessions: (1) they were not allowed to ask the
experimenter questions (except about the problem
description), (2) they were not allowed to use the Internet
to solve their problems, and (3) they were to work until
they solved the problem or time expired. Participants
were also asked to think aloud while working, but were
not prompted. During the problem solving sessions, the
only window visible to participants was the main Stata
window. Participants’ interactions were recorded with
screen capturing software and videotape over the shoulder.

4. Results

First we consider variations in participants’ debugging
performance, shown in Table 2. As seen in the top of
Table 2, the most frequently found bug was the
valueofoutlier range bug and the least was the inverted
axes bug. As a group, participants fixed almost every
combination four bugs. Most fixed no bugs or fixed some
combination of the valueofoutlier range, pvalues range.
Few participants fixed the inverted axes bug, but those
who did tended to fix the other bugs.

4.1 Individual Differences and Debugging

Table 3 shows individual differences by success at
each bug. Positive attitudes towards computers and
mathematics, as well as self-reported computer experience
were related to success on the valueofoutlier range bug.
Self-reported math abilities and statistics software and
computer experience were related to success on the
inverted axes bug. MANOVAs were performed on
individual differences by gender, major, and the bugs,
revealing some interaction effects. However, because of
the proportion of female computer science students, these
interactions effects were likely confounded by gender.

valueofoutlier
Range

pvalues
Range

For Loop
Range

Inverted
Axes

Overall Success on Each Bug

47 (62.7%) 28 (37.3%) 25 (33.3%) 16 (21.3%)

Frequency

Failure Failure Failure Failure 14 (18.7%)
Failure Failure Success Failure 7 (9.3%)

Failure Failure Failure Success 1 (1.3%)

Failure Failure Success Success 0 (0.0%)

Failure Success Failure Failure 4 (5.3%)

Failure Success Success Failure 1 (1.3%)

Failure Success Failure Success 1 (1.3%)

Failure Success Success Success 0 (0.0%)

Success Failure Failure Failure 10 (13.3%)

Success Failure Success Failure 7 (9.3%)

Success Failure Failure Success 5 (6.7%)

Success Failure Success Success 3 (4.0%)

Success Success Failure Failure 10 (13.3%)

Success Success Success Failure 6 (8.0%)

Success Success Failure Success 5 (6.7%)

Success Success Success Success 1 (1.3%)

Table 2. Success on each bug and the fixing
each combination of bugs.

Measure Fixed?
Valueof-
Range

pvalues
Range

For Loop
Range

Inverted
Axes

No .54 (0.15) .53 (0.15) .51 (0.13) .53 (0.16)
Vocab Test

Yes .52 (0.15) .53 (0.16) .56 (0.18) .53 (0.14)

No .59 (0.12) .59 (0.11) .59 (0.12) .59 (0.13)Problem-Solving
Test Yes .60 (0.12) .61 (0.13) .62 (0.13) .62 (0.10)

No .34 (0.15) .34 (0.16) .33 (0.16) .31 (0.15)
Statistics Test

Yes .32 (0.16) .31 (0.16) .32 (0.16) .40 (0.18)

No 3.91 (1.68) 4.63 (1.62) 4.42 (1.77) 4.41 (1.72)Self-reported
Math Abilities Yes 5.07 (1.54) 4.66 (1.81) 5.09 (1.42) 5.48 (1.23)

No 1.53 (1.10) 1.45 (1.19) 1.66 (1.20) 1.41 (1.22)Self-reported
Stats. Soft. Exp. Yes 1.48 (1.23) 1.58 (1.17) 1.19 (1.10) 1.83 (0.96)

No 1.76 (1.96) 2.12 (2.04) 1.69 (1.95) 1.85 (1.90)Self-reported
Programming Exp. Yes 2.19 (1.98) 1.87 (1.86) 2.71 (1.86) 2.69 (2.14)

No 5.64 (1.24) 5.83 (0.97) 5.79 (1.06) 5.73 (1.07)Self-reported
Computer Exp. Yes 5.90 (0.82) 5.77 (1.06) 5.84 (0.87) 6.09 (0.58)

No 4.75 (0.98) 4.95 (1.01) 4.86 (0.93) 4.83 (0.99)Attitudes towards
the experiment Yes 5.00 (0.97) 4.83 (0.92) 5.01 (1.06) 5.19 (0.87)

No 4.82 (1.54) 5.30 (1.21) 5.06 (1.39) 5.08 (1.37)Attitudes towards
computers Yes 5.49 (1.14) 5.15 (1.55) 5.62 (1.15) 5.83 (1.02)

No 2.95 (1.25) 3.22 (1.22) 3.43 (1.25) 3.23 (1.19)Attitudes towards
statistics Yes 3.56 (1.13) 3.53 (1.17) 3.15 (1.12) 3.79 (1.23)

No 4.02 (1.85) 4.57 (1.59) 4.55 (1.54) 4.43 (1.67)Attitudes towards
mathematics Yes 4.98 (1.37) 4.71 (1.71) 4.77 (1.81) 5.33 (1.28)

Table 3. Mean (and standard deviations) of
individual differences by success on each bug.
Highlighted rows are significant at a=.05.

Proceedings of the 11 th IEEE International Workshop on Program Comprehension (IWPC’03)
1092-8138/03 $17.00

4.2 Assessing Comprehension Behaviors

To assess participants’ comprehension strategies, we
followed the process in Figure 4 to convert participants’
actions in Stata to measures of comprehension behaviors
(for full details, see [9]). Video and screen recordings were

coded into transcripts of Stata actions, using a coding
scheme developed prior to the study. These included
actions such as typing commands, inserting and removing
code, and consulting online help. The two coders had
high levels of agreement on five test transcripts. The final
transcripts, including over 33,000 actions, were checked
for syntax and semantic errors.

A measure definition language and parser were created
so that measures of comprehension actions could be
automatically extracted from the transcripts. For example,
one measure definition shown in Figure 4, #(H|S)/ any
/.*generate.*/ none, counted the number of searches
for help on the generate command. The parser counted
the number of H and S entries in transcripts (which stood
for help and search Stata commands) that had the word
“generate” in them. Almost 200 measures of
comprehension actions were defined and extracted from
transcripts in similar ways. Since measures were on
different scales (frequencies and durations), the measures
were standardized to a normal distribution. Measures that
had low reliability or highly skewed distributions were
excluded, for two reasons. First, including them would
have added noise to the aggregate measures later in the
process; and second, many of the 200 measures measured
similar actions, and so throwing poor measures out would
not artificially limit the scope of the data.

The remaining 132 measures of comprehension actions
were then grouped according to similarity of what they
measured. For example, five of the 132 measures of
comprehension actions measured ways in which
participants read or modified comments. The means of the
22 groups of similar measures were calculated,
representing final measure of comprehension behaviors.
The resulting comprehension behavior measures are
shown in Table 4 with descriptions and reliabilities.

Figure 4. The process converting participants’
Stata actions to comprehension strategies.

Comprehension
Behavior

valueofoutlier
Range

pvalue
Range

For Loop
Range

Inverted
Axes

Measured Degree to which… a

1 For Loop > for command was inspected or modified .63
2 pvalues Command > >> pvalues command was inspected or modified .46
3 Graph Command < > graph command was inspected or modified .31
4 valueofoutlier Command > > valueofoutlier command was inspected or modified .59
5 Familiar Commands << >> << << familiar commands were inspected or changed .14
6 Changed Comments < >> command comments were changed .43
7 Changed Words > non-numerical text was changed .60
8 Change Range > ranges (such as 1/10) were changed in commands .75
9 Guess and Check > solutions were derived iteratively .67

10 Desire to Seek Info > online-help was consulted .71
11 Cyclic Behavior < > actions were repeated unnecessarily .43
12 State Comprehension > > state of variables, code and data was inspected .97
13 Graph >> > < >> graph was inspected or attended to .76
14 Attention to Feedback << < feedback from Stata was attended to or used .42
15 Use of Examples < >> < examples from tutorial or help were referenced or used .23
16 Use of Specification < specifications were referenced or used .55
17 Use of GUIs < > < GUIs were used to comprehend program .44
18 Use of Commands > commands were used in testing and debugging the do-file .90
19 Window Management information from multiple windows was compared .96
20 Frustration < confusion was expressed through words or behavior .30
21 Syntax Confusion > > > commands were improperly constructed .63
22 Verbalization > thoughts about problem and solutions were verbalized .55

Table 4. Names, descriptions, and reliabilities of comprehension behavior measures. The bug columns
relate participants successful on the bug to those unsuccessful: << and >> signify a difference of.40 or
more between standardized scores, and < and > a difference of .20 or more.

Proceedings of the 11 th IEEE International Workshop on Program Comprehension (IWPC’03)
1092-8138/03 $17.00

4.3 Comprehension Behaviors and
Debugging Performance

Participants’ comprehension behavior measures were
split by success at fixing each of the four bugs and
compared relative to each other. These comparisons are
shown in Table 4. The table is read as in this example:
participants successful at fixing the for loop range bug
tended to inspect or modify the for loop command (1

st

row) more than participants who did not fix the bug. Or,
participants who were successful at fixing the
valueofoutlier range bug tended to look at the graph
output (13

th
 row) more than participants who were not.

4.4 Distinct Comprehension Strategies

The assumption was that comprehension strategies are
distinct patterns of comprehension behaviors. Thus, a
hierarchical cluster analysis was performed on the
comprehension behavior measures shown in Table 4 in
order to derive distinct comprehension strategies (this is
the last process in Figure 4). Ward’s method [15] was
used, which minimizes the sum of squares between
clusters. Solution sizes of 2 to 7 clusters were generated.
Since further subdivision of the 3-cluster solution only
split the smallest cluster, the three-cluster solution was
chosen. The three clusters are portrayed in Figure 5 with
respect to the comprehension behaviors from Table 4 that
define them. Measures that do not have “(ns)” next to
their name were significantly different between clusters
using ANOVA with a=.01. As shown in the Figure 5,
there were many significant differences. For example,
participants in cluster 1 (in white) inspected the pvalues
and valueofoutlier commands less, exhibited less guess
and check behavior, and sought more information. Other
important differences will be discussed in the discussion.

4.5 Predictive Power of Strategies

Categorical characteristics of the participants in each
cluster are shown in Table 5, in terms of cluster size and
proportions of major, gender, and bug success. As seen in
Table 5, Chi-squared tests revealed that clusters were
related to major (p < .01) and success at the
valueofoutlier range bug (p < .01). Post-hoc analyses
revealed that cluster 1 was more successful at solving the
valueofoutlier range bug than cluster 2 (p < .01).

Clusters were also related to continuous measures of
individual difference with ANOVAs (see Table 6). There
was a main affect for programming experience (p < .01);

post-hoc analyses revealed cluster 3 had more
programming experience than clusters 1 and 2, cluster 1
had more experience than cluster 2. There was also a main
effect for attitudes towards the experiment (p < .01); post-
hoc analyses showed cluster 3 had more positive attitudes
towards the experiment than the other clusters. Finally,
there was a main effect for the average number of bugs
solved per participant (Table 6), with post-hoc analyses
revealing participants in cluster 2 and cluster 3 were more
successful than participants in cluster 1 (p < .05).

-0.75 -0.25 0.25 0.75 1.25

For Command

pvalues Command

graph Command (ns)

valueofoutlier Command

Familiar Commands (ns)

Change Comments (ns)

Change Words

Change Ranges

Guess and Check

Desire to Seek Info

Cyclic Behavior

State Comprehension

Graph

Attention to Feedback

Use of Examples (ns)

Use of Specifications

Use of GUIs

Use of Commands

Window Management (ns)

Frustration (ns)

Syntax Confusion

Verbalization

Cluster 1 Cluster 2 Cluster 3

Figure 5. Measures of comprehension behavior by
cluster. The figure is read, “Cluster 3 inspected
or modified the for command ~.75 standard
deviations above average.” Measures with
“(ns)” were not significant between clusters.

Cluster Size Major Gender Valueofoutlier Range pvalue Range For Loop Range Inverted Axes

Psych CS Other Female Male Success Success Success Success
1 20 3 (15.0%) 8 (40.0%) 9 (45.0%) 10 (50.0%) 10 (50.0%) 13 (65.0%) 5 (20.0%) 7 (35.0%) 2 (10.0%)
2 40 16 (40.0%) 8 (20.0%) 16 (40.0%) 19 (47.5%) 21 (52.5%) 12 (30.0%) 18 (45.0%) 11 (27.5%) 9 (22.5%)

3 15 1 (6.7%) 8 (53.3%) 6 (40.0%) 5 (33.3%) 10 (66.6%) 3 (20.0%) 6 (40.0%) 7 (46.7%) 5 (33.3%)

Total 75 20 (26.7%) 24 (32.0%) 31 (41.3%) 34 (45.3%) 41 (54.7%) 28 (37.3%) 29 (38.7%) 25 (33.3%) 16 (21.3%)

Table 5. Composition (size and percent) of each cluster by major, gender, and success at each bug.
Highlighted columns are significant at a=.01 using a Chi-Squared test.

Proceedings of the 11 th IEEE International Workshop on Program Comprehension (IWPC’03)
1092-8138/03 $17.00

5. Discussion

5.1 Comprehension Strategies

In this section, we address the first two questions
posed in the introduction:

ü What comprehension strategies do programmers
use in an unfamiliar programming system?

ü What individual differences predict these
comprehension strategies?

Among all 75 participants, there seemed to be three
distinct comprehension strategies. Individuals in cluster 1
tended to seek more of information and use the GUI
more, but spent less time attending to the problem
specification, the graph output, and each of the
problematic commands in the program. Cluster 1 tended
to be non-psychology majors with slightly below average
programming experience. Given the group’s high rate of
fixing the valueofoutlier range bug, these individuals
may have been more absorbed in understanding and fixing
the valueofoutlier command by learning about the
language and environment, rather than focusing on the
whole program. Thus, this cluster seemed to be using a
depth-first comprehension strategy.

Cluster 2 participants seemed to be very inactive: they
sought less information, exhibited less cyclic behavior
and comprehension of the environments state, typed fewer
commands and used the GUI less. However, cluster 2 did
inspect the problem specification graph output more than
the other groups. The group tended to be psychology and
other majors (but not computer scientists) and had the
least programming experience. In general, it seemed
cluster 2 seemed hesitant to learn and use the environment

and language and instead focused on the problem
description and graph output. Since the group had little
programming experience, this may have been due to
anxiety towards the task’s programming aspect.

Cluster 3 was largely different from clusters 1 and 2 in
that participants tended to inspect every command, attend
more often to errors from Stata, and inspect the graph
output more. Cluster 3 also seemed make many changes,
use more commands, and exhibited more cyclic and guess
and check behavior, while seeking an average amount of
information from the online help. Participants in cluster 3
tended to be mostly computer science and other majors
(not psychology majors), had much higher mathematics
and programming experience, and had significantly more
positive attitudes towards the experiment (and thus
possibly more motivation). Since participants in cluster 3
inspected every aspect of the program, it would seem they
used a more breadth-first comprehension strategy.

In general, the only individual differences that
predicted comprehension strategy were major and
programming experience. Thus, it seems reasonable that
comprehension strategy was largely a factor of past
experiences with programming and problem solving, as
reflected by participants’ major.

5.2 Factors Influencing Debugging Success

In this section, we address the last question posed in
the introduction:

ü How do these individual differences and
comprehension strategies affect debugging?

Cluster 2 and 3 participants tended to have the best
overall debugging performance. Thus, for this task, a
breadth-first strategy or a focus on the problem
specification seemed to be the most effective strategies.
Participants in cluster 1, which solved 1.00 bugs on
average and tended to use a depth-first strategy, typically
only found the valueofoutlier range bug. This was likely
because they were first drawn to the complexity of
valueofoutlier command, and spent the rest of the session
searching for information on the command’s semantics.

Considering each bug’s nature identifies suggests how
individual differences impacted debugging performance.
For example, the for loop range bug was embedded in
the longest command in the program yet did not affect the
program’s output. As seen in Table 4, participants who
fixed this bug spent much less time focusing on other
lines of code, made many more changes to only the for
loop command, and focused on example code from the
online help more. Since over a third of each cluster fixed
this bug, the complex nature of the command seemed to
influence debugging success more than the comprehension
strategy. This is likely because of the unfamiliarity with
the language: if participants had understood the
command’s semantics, the complexity of the command
may not have received as much attention.

Cluster

1 2 3Measure

Mean (Standard Deviation)

Percent Correct
Vocab27 .58 (0.14) .50 (0.14) .53 (0.18)

Problem Solving Test .63 (0.12) .58 (0.10) .61 (0.15)

Statistics Test .36 (0.14) .31 (0.17) .34 (0.15)

Self-reported experience (0=none, 1=least, 7=most)

Mathematics Experience 4.93 (1.19) 4.26 (1.83) 5.27 (1.64)

Statistics Software Experience 1.35 (1.05) 1.50 (1.29) 1.70 (1.07)

Programming Experience 2.52 (1.76) 1.20 (1.62) 3.59 (2.00)

Computer Experience 6.13 (0.90) 5.65 (1.10) 5.80 (0.75)

Attitudes Towards… (1=negative, 7 = positive)

Experiment 4.89 (0.84) 4.68 (0.98) 5.53 (0.90)

Computers 5.65 (1.05) 4.76 (1.39) 5.98 (1.05)

Statistics 3.34 (1.07) 3.39 (1.33) 3.18 (1.09)

Mathematics 4.83 (1.27) 4.40 (1.68) 4.95 (1.91)

Debugging Performance (0 = none, 4 = all)

Average # Bugs Fixed 1.00 (0.97) 1.65 (.98) 2.00 (1.07)

Table 6. Means (and standard deviations) of
measures of individual differences by cluster.
Highlighted rows are significant at a=.05.

Proceedings of the 11 th IEEE International Workshop on Program Comprehension (IWPC’03)
1092-8138/03 $17.00

The inverted axes bug had to be fixed by actually
inspecting the graph output, which seems like it would be
influenced by comprehension strategy. In fact, the more
programming experience a cluster had (which influenced
strategy), the higher the rate the bug was fixed. However,
this was not statistically significant. Was there anything
that had more influence on success on this bug?
Inspecting Table 4, participants successfully fixing this
bug spent much more time actually looking at the graph
output by the program and inspecting the g r a p h
command. Looking at Table 3, we can see that
participants successful on this bug had higher self-
reported experience with math, statistics software, and
computers. Combining these two observations suggests
that participants who were successful at this bug were
better able to read and understand the graph produced by
the program with their domain-knowledge in statistics.

The pvalue range and valueofoutlier range bugs
differed only in that the valueofoutiler command had a
comment above it that contradicted the command’s range,
and it used a system variable named “_n” to refer to the
current row being operated on (see Figure 2). Inspecting
Table 2, we see that nearly twice as many participants
found the valueofoutlier range bug and those that found
it were more likely to fix the pvalue range bug. Clearly,
the comment helped participants find the valueofoutlier
range bug, and thus reveal the similar problem with the
pvalue command. What other factors influenced success
on these bugs? As discussed in the previous section,
cluster 1 seemed to focus on and fix the valueofoutlier
command, and clusters 2 and 3 were far less successful. In
other words, strategy seemed to influence how much
attention these commands received. Also, participants
who fixed the valueofoutlier range bug tended to have
more math experience and more positive attitudes towards
math and computers. Possibly, participants with more
math experience were better enabled to understand the
mathematical nature of the system variable in the
valueofoutlier command.

In sum, it seems that although clusters 2 and 3 were
more successful than cluster 1 overall, no strategy was
particularly successful. Furthermore, success on specific
bugs may be more a factor of domain knowledge, rather
than programming experience or comprehension strategy.

5.3 Implications

The results presented here are largely consistent with
studies of program comprehension of expert programmers.
For example, Corritore and Wiedenbeck [2] showed that
procedural programmers used a more bottom-up, breadth-
first strategy. Stata provides a more procedural-like
language, and cluster 3, with the most programming
expertise, also used a breadth-first strategy. Thus, for
expert programmers, using an unfamiliar programming
system did not seem to affect their comprehension
strategy. However, this study provides further informs
these findings with observations of intermediate

programmers (primarily those participants in cluster 1),
who tended to use a depth-first strategy.

Models of expert debugging, such as Gilmore’s [6],
accurately predict the effects of programmers using an
unfamiliar environment. Unfamiliarity forced expert
programmers in cluster 3 to rely more on their domain-
knowledge to fix bugs rather than their knowledge of the
language and environment.

Findings on novice programmers also seem to
generalize to programmers using an unfamiliar
environment. The findings presented here are similar to
Perkins and Martin’s observations of “fragile knowledge
and neglected strategies” [13], in that cluster 2
participants seemed unable to apply their domain-
knowledge (characterized by their general inactivity).

However, with regard to findings on the influence of
comprehension strategy on debugging performance, the
results presented here are largely inconsistent with studies
on debugging in familiar programming systems [7, 12].
These studies suggest that experts’ comprehension
strategies resulted in more efficient and effective
debugging performance than novices. In this study, no
comprehension strategy was particularly successful (few
participants fixed more than 3 bugs); and, comparing the
success of strategies shows that cluster 2 and 3’s
strategies were comparable. Rather, bug-specific domain
knowledge was the best predictor of debugging success,
suggesting that programmers using unfamiliar
programming systems utilize their domain-knowledge to
aid the debugging process. It may be that as programmers
become accustomed to a language and environment,
comprehension strategy has a greater influence. This may
be similar to Corritore and Wiedenbeck’s [2] finding that
over time, the impact of programming paradigm on
comprehension strategies is much less significant.

The results of this study have many important
implications. If programming system designers offered
interactive tutorials of an environment and language, they
may improve programmers’ initial performance on
debugging tasks. Programming system designers also
should ensure high walk-up-and-use usability of their
systems, to limit the effect that unfamiliarity with
programming system may have on debugging.

These results also suggest that project leaders in
industry settings should be aware that programmers
unfamiliar with a program and programming system
would be more effective if assigned tasks that leveraged
their domain knowledge. For example, if a programmer
has a lot of mathematics experience, she is more likely to
succeed at debugging code that involves mathematics.

Future work will analyze the current data set for
patterns in sequences of participants’ comprehension
strategies, in order to further characterize the
comprehension strategies found in this study. The authors
believe that analysis at this granularity may reveal details
hidden by the higher-level data reported here.

Proceedings of the 11 th IEEE International Workshop on Program Comprehension (IWPC’03)
1092-8138/03 $17.00

5.5 Limitations

There are some obvious limitations to this study,
given its exploratory nature. Seventy-five participants is a
relatively small number to ensure the validity of the
hierarchical clustering. Furthermore, comparing clusters
by the measures that define them is dangerous, since the
measures are confounded by the size of the cluster. A
more formal investigation of program comprehension in
unfamiliar programming systems would give participants
the same task in a familiar and unfamiliar environment,
and compare their strategies and performance.

The findings presented here may not hold in other
domains and programming systems, particularly because
the strategies found were completely dependent on
measurements of participants’ interactions with the Stata.
For example, if a visual programming language had been
used instead, there would have been no measures of the
number of commands entered; a comparable visual
measure may have changed the clustering results. These
results may generalize to other programming systems
with similar support for programming and debugging.

6. Conclusion

This paper provides empirical data about the program
comprehension strategies of programmers of various
expertise using an unfamiliar programming environment
and language. The results of this study suggest that
comprehension strategies in unfamiliar programming
systems are largely determined by experience, but
debugging performance depends on bug-specific domain-
knowledge. We believe that this study has only begun to
examine this the comprehension strategies of
programmers using unfamiliar environments, and suggest
future work that may better inform these findings.

7. Acknowledgements

8. References

[1] L. M. Berlin, "Beyond Program Understanding: A Look at
Programming Expertise in Industry," at Empirical Studies of
Programmers, 5th Workshop, Palo Alto, CA, 1993.

[2] C. L. Corritore and S. Wiedenbeck, "An Exploratory Study
of Program Comprehension Strategies of Procedural and
Object-Oriented Programmers," Intl. J. of Human-Computer
Studies, pp. 1-23, 2001.

[3] S. P. Davies, "Models and Theories of Programming
Strategy," Intl. J. of Man-Machine Studies, pp. 236-267,
1993.

[4] S. P. Davies, "Display-Based Problem Solving Strategies
in Computer Programming," at Empirical Studies of
Programmers: Sixth Workshop, Washington, D.C., 1996.

[5] R. B. Ekstrom, J. W. French, H. H. Harman, and D. Dermen,
Kit of Factor-Referenced Cognitive Tests. Princeton, NJ:
Educational Testing Service, 1976.

[6] D. J. Gilmore, "Models of Debugging," Acta
Psychologica, pp. 151-173, 1992.

[7] L. Gugerty and G. M. Olson, "Comprehension Differences
in Debugging by Skilled and Novice Programmers," in
Empirical Studies of Programmers, E. Soloway and S.
Iyengar, Eds. Washington, DC: Ablex Publishing
Corporation, 1986, pp. 13-27.

[8] R. T. Jeffries, A. A. Turner, P. G. Polson, and M. E. Atwood,
"The Processes Involved in Designing Software," in
Cognitive Skills and Their Acquisition, J. R. Anderson, Ed.
Hillsdale, NJ: Erlbaum, 1981.

[9] A. J. Ko, "Individual Differences in Programming,
Testing, and Debugging Strategies in a Statistical End-User
Programming Environment," Undergraduate Thesis, Honors
College, Oregon State University, 2002

[10] J. Koenemann and S. P. Robertson, "Expert Problem
Solving Strategies for Program Comprehension," at
Conference on Human Factors and Computing Systems, New
Orleans, Louisiana, 1991.

[11] A. v. Mayrhauser and A. M. Vans, "Program
Understanding Behavior During Debugging of Large Scale
Software," at Empirical Studies of Programmers, 7th
Workshop, Alexandria, VA, 1997.

[12] M. Nanja and C. R. Cook, "An Analysis of the On-Line
Debugging Process," in Empirical Studies of Programmers:
Second Workshop, G. M. Olson, S. Shepard, and E. Soloway,
Eds. Norwood, NJ: Ablex, 1987, pp. 172-184.

[13] D. N. Perkins and F. Martin, "Fragile Knowledge and
Neglected Strategies in Novice Programmers," at Empirical
Studies of Programmers, 1st Workshop, Washington, DC,
1986.

[14] B. E. Teasley, "The Effects of Naming Style and Expertise
on Program Comprehension," Intl. J. of Human-Computer
Studies, pp. 757-770, 1994.

[15] J. H. Ward, "Hierarchical Grouping To Optimize An
Objective Function," Journal of the American Statistics
Association, vol. 58, pp. 236-244, 1963.

[16] S. Wiedenbeck, V. Fix, and J. Scholtz, "Characteristics of
the Mental Representations of Novice and Expert
Programmers: An Empirical Study," Intl. J. of Man-Machine
Studies, pp. 793-812, 1993.

 Amy thanks her undergraduate thesis advisors,
Margaret Burnett and Bob Uttl, for their guidance and
criticism. Amy also thanks his wife, who helped code
over forty hours of videotape in her last trimester of
pregnancy. Thanks also to Brad Myers for his help with
editing. This work was supported by an Oregon State
URISC grant. Software provided by Stata Corp.

Proceedings of the 11 th IEEE International Workshop on Program Comprehension (IWPC’03)
1092-8138/03 $17.00

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

