
The Role of Science in Supporting Software Development

5000 Forbes Avenue, Pittsburgh PA, 15213
Human-Computer Interaction Institute

Carnegie Mellon University
ajko@cs.cmu.edu

ABSTRACT
Discusses the importance of scientific explanations in tool design,
and various ways of forming such explanations.

Categories and Subject Descriptors
H.5.3 [Group and Organization Interfaces]: Computer-
supported cooperative work;

General Terms
Design, Human Factors, Experimentation.

Keywords
Empiricism, science, design, tools, evaluation, notation, theory,
measurement, prototyping, experts, ethnography, collaboration.

1. INTRODUCTION
The primary focus of this workshop is to reflect on how tools can
support the social side of software development. In service of this
goal, rather than using this space to espouse my own ideas about
how this might be done, I would instead like to reflect on the
methods by which we invent such tools.
It is difficult to invent useful tools without some understanding of
how people develop software. Even the most biased of tool
designers have some model in their minds of what is important to
software developers. Of course, these models are largely based on
personal experience. While experience can be a valuable form of
inspiration, what differentiates research from experience is
science—and scientists seek to explain.

Therefore, while descriptions of the social side of software
development have captured many of its modern practices,
descriptions are insufficient for design. We need to know why
software development is social. Is it because developers prefer to
be social or because they need to be? What do developers gain by
communicating with their peers? We know that some of this is to
maintain awareness [2] and some is to learn from experts [3]—but
awareness and knowledge of what? Are coworkers the only
source for such information, or just the preferred source?

These questions are more than scholarly: the explanations we
derive by investigating these questions are fodder for design. The
more we understand why developers are social, the better that
tools can match developers’ needs. The better we can explain why
developers seek awareness and expert knowledge, the better we
can evaluate tools and articulate their tradeoffs.

But how can we explain these phenomena? Empiricism and
observation are essential tools, but I would argue insufficient. One
of their limitations is that the forms of explanations that they
generate—models, theories, diagrams, etc.—rarely do justice to
reality. We need to proceed one step further and “create”
explanations by prototyping new tools and notations. Then, when
we describe our explanations of why developers maintain

awareness of each others’ work, we need not refer to a paragraph
or a picture; we instead point to an interactive tool or a new
language that explicitly represents our theory of what is important
to software development and what is not. Just as mathematics is
the language for theories in basic sciences, tools and notations can
embody our theoretical explanations of reality. Unlike other fields
of science, however, tools have the unique ability to change
reality—they are Turing’s mechanized thought [8] realized.

2. EXPLAINING THROUGH EMPIRICISM
I practice these ideas to the extent that I can. I began my doctoral
work by studying software development in a collaborative
context, with four groups of students prototyping interactive 3D
worlds in the Building Virtual Worlds course at CMU [4]. In this
context, the reason for communication was clear: each contributor
had a different skill. The programmer wrote code, the audio
engineer create sounds, the writer scripted scenes, and the artists
modeled characters. Communication in these groups occurred
along technical dependencies: the programmers needed character
models before they could write code to make characters behave;
this meant that they needed to track the modeler’s work.

When observing students trying to learn Visual Basic.NET to
prototype user interfaces [5], communication was less about
dependencies and more about expertise. When less experienced
students reached an impasse, they would immediately seek out
more experienced students for advice: where should I put my
breakpoint? How do you use a timer? What can store a date?

Even in a lab study of lone developers’ repairing bugs and adding
features [5], I observed a great reliance on other people, through
developers’ use of documentation and example code. Moreover,
the artificiality of the study emphasized the importance of
collaboration: each time a developer sought some information
about the code, rather than using information from other people,
they were forced to resort to their own mind. Had I simply
provided some documentation or some comments from the
program’s designer, their task would have been greatly simplified.

Most recently, I did a field study of 17 Microsoft product groups,
documenting the information that developers sought, where they
found it, and what prevented them from acquiring it. Coworkers
were a central source of knowledge and bug reports were a hub
for hints, discoveries, and decisions in the form of conversations.
Of course, the surprising thing was not that developers relied on
each other, but for what they relied on each other. One of the most
important and difficult to find types of information was design
knowledge. Why did you write this code this way? What is the
program supposed to do in this scenario? For what purpose is this
data structure intended? These questions refer not to technical
aspects of code, but to the rationale and decisions of the code’s
authors. Therefore, code was a social and cognitive construct,
only partially represented by the text in a source file.

 Amy J. Ko

3. EXPLAINING THROUGH DESIGN
Prototyping new technologies has played an equally important
role in my studies. As with any design, my inventions did not
follow directly from the understanding I have gained through
observation. Rather, they are a culmination of the understanding I
have gained about software development, both from my own
investigation and from the decades of research that came before.

Consider the Whyline [7], the first tool that I worked on in my
doctoral work. The idea behind this debugging tool was to help
developers ask questions about their program’s output and reveal
their implicit assumptions about what had occurred at runtime.
While I used my observation of the Building Virtual Worlds class
discussed earlier for inspiration, the idea ultimately originated
from several months of reflection and reasoning about the work
that I observed. and a careful study of other debugging tools
described in the literature The understanding and theories I had
gained from observations helped me to evaluate and test the
merits of my ideas, but not to form them.

Furthermore, because the theories behind the tool’s design were
incomplete, people used the Whyline in surprising ways. For
example, one of the participants in my evaluation study had used
the Whyline a few times and it had pointed out some of the
assumptions she had made about what happened while her
program was executing. The next time she began to ask the tool a
question, she hovered over the “Why” button, but said, “I don’t
even need to ask. I think I made the same assumption that I did
last time.” The tool was introducing participants to the very same
notion of assumptions that had inspired the Whyline’s design—in
this sense it embodied, validated and even elaborated the theories
that motivated it.

Another tool I was involved in designing, Jasper [1], followed a
similar trajectory. The original idea was inspired by a finding that
developers gathered many little pieces of a program for a
particular task, but had no way to gather them together in a single
place [5]. This led to navigational overhead, as they navigated
back and forth between code snippets that were distributed
amongst several files. While my colleague designed and
implemented the tool, I was busy at Microsoft, watching
developers do work. As I watched them consult each other for
knowledge about what code was relevant to a bug report or
feature, I realized that being able to gather together snippets was
not only helpful in reducing navigational overhead, but a
fundamentally important way to share the context of one’s task
with coworkers. This new understanding changed the purpose of
the tool in my mind: rather than just a navigational aid, it was a
medium for externalizing and sharing task context. Had I noted
invented the idea, this realization would not have been possible.

4. EXPLAINING THROUGH EVALUATION
Understanding and invention are vital ingredients in improving
software engineering, but they are little without a notion of
success to guide our research efforts. Is my tool helpful? Is it
effective? Does it improve productivity? Will people adopt it?
These are the criteria by which we separate successful and
unsuccessful design. Unfortunately, unlike success measures in
other engineering disciplines, these are difficult to measure and
not necessarily the same as those which users of our tools employ
to evaluate tools.
One view on this issue is that “good” and “productive” should be
defined by what a developer thinks is good and productive. Who

better to evaluate the utility and fit of a tool than the people most
familiar with a job’s complexities? The challenge of this approach
is that as researchers, we must often settle for creating prototypes
rather than fully functional and usable products. This makes it
difficult to know whether problems observed in evaluations are
due to the tool’s incompleteness or some underlying inadequacy.
Of course, a measure based on developers’ reactions also suffers
from bias, subjectivity, and considerable variation. There may be
absolute measures of success that avoid these problems. For
example, to what degree did a team create what it intended to
create? Did the rates of information acquisition and decision
making increase? Did the right quality attributes improve with the
intervention? Although such measures are extremely difficult to
compute, they may be necessary to pursue if we wish to clearly
articulate the merits of our ideas to ourselves and to the world.

Whatever the merits of our measurements or the results of our
evaluations, the key result of these studies is the elaboration of our
explanations. By completing this loop between design and
understanding, we inevitably improve the designs in our minds.

5. CONCLUSIONS
To support the social side of software development—or more
appropriately, to decide whether to do so and why—researchers
must explain why developers rely on each other in the ways that
they do. As we rise to this challenge, let us remember that the
diversity of our ideas, methods, skills and experiences are our
greatest strength.

6. ACKNOWLEDGEMENTS
This work was supported by the National Science Foundation
under NSF grant IIS-0329090 and as part of the EUSES
consortium under NSF grant ITR CCR-0324770. The first author
was supported by an NDSEG fellowship.

7. REFERENCES
[1] Coblenz, M., Ko, A. J., Myers, B. A. (2006). Carnegie

Mellon University, CMU-HCII-06-107.

[2] Gutwin, C., Penner, R. and Schneider, K. (2004). Group
Awareness in Distributed Software Development. CSCW,
Chicago, IL, 72-81.

[3] Hertzum, M. (2002). The Importance of Trust in Software
Engineers’ Assessment of Choice of Information Sources.
Information and Organization, 12(1), 1-18.

[4] Ko, A. J. (2003). A Contextual Inquiry of Expert
Programmers in an Event-Based Programming Environment.
CHI, Fort Lauderdale, FL, 1036-1037.

[5] Ko. A. J., Myers, B.A., Coblenz, M. and Aung, H. H. An
Exploratory Study of How Developers Seek, Relate, and
Collect Relevant Information during Software Maintenance
Tasks. Transactions on Software Engineering, to appear.

[6] Ko, A. J. Myers, B. A., and Aung, H. (2004). Six Learning
Barriers in End-User Programming Systems. VL/HCC,
Rome, Italy, 199-206.

[7] Ko, A. J. and Myers, B. A. (2004). Designing the Whyline: A
Debugging Interface for Asking Questions About Program
Failures. CHI, Vienna, Austria, 151-158.

[8] Sevenster, A. (1992). Collected Works of A.M. Turing:
Mechanical Intelligence, Volume 1. Elsevier, New York:NY

