
CAREER: ENABLING AND EXPLOITING EVIDENCE-BASED BUG TRIAGE

Evolving software is no simple task: somehow, amongst innumerable bug reports, feature requests, and
project plans, software teams must decide which of these issues deserve the team’s limited time and
resources. To make these decisions, most teams engage in a process of bug triage, comparing estimates
of the frequency and severity of each issue, among other factors.

While estimating frequency and severity is more disciplined than using sheer instinct, the lack of large-
scale data about software issues means that most of these estimates are based on intuition. Worse yet,
the data that teams do have is limited: technical support feedback is difficult to analyze because of its
unstructured nature; automatic crash and hang reports are only a subset of the issues that users experience;
and reports written by users directly usually come from power users, biasing reports to expert use.
Because of these limitations, teams have no choice but to rely on their subjective impressions of
software use and user needs.

The proposed work will replace these impressions with large-scale data about software issues. To do this,
the PI will invent techniques that detect software issues through peoples’ use of automatic help tools.
These tools will allow users to get explanations about unexpected program behavior by choosing how and
why questions about program output. The use of these tools will capture a wide range of software issues
in a consistent, structured form. Unlike voluntary feedback, these tools will be part of users’ normal work,
increasing the representativeness of frequency and severity estimates, while also capturing new kinds of
underreported issues such as non-fatal errors and a wide range of usability and understanding problems.

To explore this approach, the PI will extend his prior work on automatic help tools to a collection of
widely-adopted web-based courseware applications developed at the University of Washington. The use
of these help tools will be captured in the field to detect software issues. The PI and his team will then
prototype several ways of exploiting this data, including 1) aggregation tools that group issues into
generalized, executable test cases, 2) triage tools that analyze issues across time, version, and customer
data, and 3) maintenance tools that automate fault localization, report assignment, and impact analysis.
To assess these prototypes, the PI will measure the representativeness of reported issues, the effectiveness
of the triage and maintenance tools, and the objectivity of triage decisions relative to current practices.

These research plans are closely aligned with the PI’s educational goal, which is to redefine software
quality assurance education. To achieve this, the PI plans 1) new projects for the PI’s User-Centered
Design course that directly involve students in the evaluation of the research, 2) a new course that teaches
theories and skills relevant to software engineering teamwork, and 3) a peer and professional mentoring
event that informs students about the day-to-day lives of software quality experts. The PI will evaluate
these initiatives by comparing the enrollment and job placement outcomes of students who do and do not
participate. All initiatives will involve participation by Seattle software companies, leading to technology
transfer and a stronger bond between the University of Washington and the software industry.

The intellectual merits of this work include: 1) moving bug triage from an art to a science, 2) techniques
for implementing automatic help tools in web applications, 3) new forms of automatic help, 4) knowledge
about privacy issues in reporting user feedback, 5) statistical approaches for separating reported issues
into meaningfully distinct groups, 6) new tools for supporting evidence-based bug triage and field data
analysis, 7) software maintenance tools that exploit user feedback to streamline bug fixing and support
decision-making, and 8) evidence of the feasibility, effectiveness, and utility of the above contributions.

The broader impacts of this work include: 1) software that better meets the needs of its users, increasing
user productivity and reducing frustration, 2) help tools that reduce users’ need for technical support to
resolve software issues, 3) empowering users to contribute to software evolution through their normal use
of software, 4) students who are more informed about careers in software quality, 5) students who are
more prepared for teamwork aspects of software development work, 6) usability improvements to
courseware, 7) undergraduate participation in research, and 8) broadened participation in computing.

CAREER 08-557 Project Summary B.1

1. PROJECT MOTIVATION AND APPROACH

Despite significant advances in software technology, most people find software unreliable and difficult to
use. For instance, a recent survey showed that 48% of adults needed to ask for help to use or configure
their software, and that of those, 38% had to contact technical support, 15% never fixed their problem,
only 2% found help online, and half felt “discouraged and confused by their efforts” [42]. Most software
companies are acutely aware of these issues, spending an average of 21% of corporate expenditures on
technical support and software maintenance [81]. The result of these efforts is usually a vast collection of
bug reports, feature requests, and other issues to address in the next software release [9, 48].

While software teams would ideally address all of these issues, this is rarely feasible: not only do teams
work with limited time and resources, but in many cases, ways of resolving issues may be in direct
conflict. Therefore, teams must decide which of these issues are most deserving of the team’s attention. To
make these decisions, most teams engage in frequent bug triage [48], prioritizing the team’s efforts by
comparing estimates of the frequency, severity, cost, and risk of each issue.

While this process is more disciplined than using sheer instinct, the lack of large-scale data about
software use means that most of these estimates are based on intuition. Worse yet, the data that teams
do have to support these estimates is limited:

■ Technical support feedback, while capturing a wide range of issues, is difficult to analyze and
aggregate because of the unstructured nature of text and speech. This feedback also lacks adequate
context to reproduce or understand an issue, making it difficult for teams to act upon.

■ Automatically reported crashes and hangs, while capturing stack traces and other data that enables
teams to isolate their causes automatically [33], only capture a subset of the issues that users
experience. Error reporting APIs, which enable custom error reports, require teams to anticipate
the issues that users might experience.

■ Direct reports from users often come from vocal minorities such as power users. This potentially
biases frequency and severity estimates towards expert software use. Most users do not report
issues because they blame themselves when software misbehaves [65].

Because of these limitations, teams have no choice but to form subjective impressions of which issues
are the most frequent and severe to users, speculating about how many users are experiencing issues and
whether users find these issues problematic [33, 71].

In my research, I plan to replace these impressions with evidence. To do this, I will invent new techniques
that detect and report software issues through peoples’ use of automatic help tools. These tools,
which are based on my prior work [62], allow users to choose questions about unexpected program output
and get explanations about its causes. For example, consider Figure 1, in which a user clicks on the word
‘Is’ and selects “Why was this word capitalized?” The tool responds by showing the checkbox that caused
the auto-capitalizing to occur. This approach can be used to answer questions about unexpected errors,
incorrect values, and a variety of other kinds of problematic program output.

CAREER 08-557 Enabling and Exploiting Evidence-Based Bug Triage D.1

Figure 1. The Crystal automatic help tool, answering a question about an unexpected capitalization.

Q A

My research will report the use of these help tools as indicators of software issues. Compared to other
forms of user feedback, these help questions have several distinct benefits:

■ They are more representative than voluntary reports because users already seek help as part of
their normal software use. The more users that provide feedback, the more faithfully a team’s
collection of reported issues will represent users’ experience with software.

■ They indicate underreported but critical issues, including feedback about both functional failures
such as incorrect output, and usability issues, such as confusing error messages, workflow
inefficiencies, and configuration problems (some of the most costly issues to support [81]).

■ They inherently indicate severity by allowing users to make an explicit, machine-observable
decision to troubleshoot an issue; simply counting the number of users who choose to troubleshoot
issues can enable a team to compare issue severity.

■ They capture lightweight execution histories as part of answering users’ questions, facilitating the
automatic aggregation of issues at a large scale. These histories can also be used to create a new
class of evidence-based bug triage and software maintenance tools.

Figure 2 illustrates my plans for enabling these help questions and exploiting the user feedback that they
capture. These plans include five major activities:

CAREER 08-557 Enabling and Exploiting Evidence-Based Bug Triage D.2

 Figure 2. The proposed research.

incremental
statistical grouping
of user questions

!"#$%&'&$())'!"#$%&''(%*!$+*+,-)')*+*,-%,.'/-*$-
0*1$'(2
((!.%/(-+'%,-'-34

((!.%/(-+'.5/-67(8/95:*"'4

((!.%/(-+'.5/-67($*95:*"'4

((;<3
((;='6'/*5'3>*$?'
((!"#$%&'%,-'7'5<3@A(2
((((.+-".,'-34
((B

(

!"#$%&'&$())'!"#$%&''(%*!$+*+,-)')*+*,-%,.'/-*$-
0*1$'(2
((!.%/(-+'%,-'-34

((!.%/(-+'.5/-67(8/95:*"'4

((!.%/(-+'.5/-67($*95:*"'4

((;<3
((;='6'/*5'3>*$?'
((!"#$%&'%,-'7'5<3@A(2
((((.+-".,'-34
((B

(

!"#$%&'&$())'!"#$%&''(%*!$+*+,-)')*+*,-%,.'/-*$-
0*1$'(2
((!.%/(-+'%,-'-34

((!.%/(-+'.5/-67(8/95:*"'4

((!.%/(-+'.5/-67($*95:*"'4

((;<3
((;='6'/*5'3>*$?'
((!"#$%&'%,-'7'5<3@A(2
((((.+-".,'-34
((B

(

!"#$%&'&$())'!"#$%&''(%*!$+*+,-)')*+*,-%,.'/-*$-
0*1$'(2
((!.%/(-+'%,-'-34

((!.%/(-+'.5/-67(8/95:*"'4

((!.%/(-+'.5/-67($*95:*"'4

((;<3
((;='6'/*5'3>*$?'
((!"#$%&'%,-'7'5<3@A(2
((((.+-".,'-34
((B

(

!"#$%&'&$())'!"#$%&''(%*!$+*+,-)')*+*,-%,.'/-*$-
0*1$'(2
((!.%/(-+'%,-'-34

((!.%/(-+'.5/-67(8/95:*"'4

((!.%/(-+'.5/-67($*95:*"'4

((;<3
((;='6'/*5'3>*$?'
((!"#$%&'%,-'7'5<3@A(2
((((.+-".,'-34
((B

(

!"#$%&'&$())'!"#$%&''(%*!$+*+,-)')*+*,-%,.'/-*$-
0*1$'(2
((!.%/(-+'%,-'-34

((!.%/(-+'.5/-67(8/95:*"'4

((!.%/(-+'.5/-67($*95:*"'4

((;<3
((;='6'/*5'3>*$?'
((!"#$%&'%,-'7'5<3@A(2
((((.+-".,'-34
((B

(

!

!

!

!
!

!

!

!
!

!

!

!

!
!

why did this
error appear?

error after user...

user could not...

wrong whitespace...

option 1
option 2
optino 3
option 4
option 5
option 6

how do I change
the thickness?

!
error!

!

once there
was a pauper
who need a
dime.

!

why is this
whitespace here?

!

error!

!

once there
was a
pauper
who need a
dime.

!

failure frequency

!

!

!

I will enable help questions in a set of web-based
courseware applications developed at the University of
Washington (in addition to in-house test applications).
To do this, I will generalize the prototype in Figure 1 to
interactive web applications, adding support for new
kinds of “why” and “how” questions to extend the range
of detectable issues.

I will gather users’ help questions at a large scale,
exploring different ways of requesting users' permission
to report information. I will also explore how privacy,
consent, and training influence the representativeness
of reported field data.

I will invent techniques for incrementally grouping
questions over time, aggregating large-scale feedback
into meaningfully distinct groups. These tools will
analyze the input and output contexts of users’ questions,
producing generalized, executable test cases.

I will invent analysis tools for helping software teams
explore field data over time, successive software
versions, and customer data. These tools will integrate
data from other forms of software testing, such as crash
reports and user tests. I will assess these tools’ ability to
help teams make more evidence-based judgements of
issue frequency and severity.

I will invent tools that exploit help questions to
streamline other maintenance activities. For example, the
execution contexts captured can be used to automatically
locate faults and features that contribute to issues, to
recommend which developers should work on issues,
and to perform automatic impact analysis.

This research plan is closely tied to my educational goal, which is to redefine software quality
assurance education. As part of achieving this goal, I propose three initiatives that integrate, enhance,
and exploit, my proposed research:

■ Engaging User-Centered Design students in the proposed research, by having students measure
the representativeness of the issues reported by the proposed help tools. More than 70 students
will gather data about the software issues that courseware users experience in practice, using the
usability methods taught in class. They will then compare these to the issues reported with the
automatic help tools, learning about the strengths and weaknesses of different evaluation methods.

■ Teaching software quality teamwork in a new studio-based project course. Topics in this new
course include small group communication, coordination in software teams, and aspects of version
control, issue trackers, and other tools that support these teamwork challenges. Students will learn
about software quality from industry experts and help evaluate the efficacy of research prototypes.

■ Organizing a peer and professional mentoring event on software quality, in which student interns
and industry professionals meet with pre-major college students to share experiences in software
quality assurance. The event will give prospective Computer Science and Informatics students a
more concrete understanding of careers in software quality, facilitate mentoring relationships
between academic and industry, and build social networks of peers with similar career goals.

The broader impacts of my plans will ultimately be software that better meets users’ needs. My
research and education plans achieve this in three ways: 1) by providing tools that help users troubleshoot
software issues, software will become easier to use and more helpful; 2) by enabling the capture of richer
and more representative data about how software is used, software teams will be able to design more
useful and helpful software; and 3) by improving education about software quality assurance, future
generations of software teams will be better prepared to gather and utilize user feedback. Throughout this
work, I will contribute scientific knowledge about software design and invent several new technologies.

This proposal is organized as follows. In the next section, I review prior work in detecting software
issues. I then discuss my preliminary and proposed research in Section 3. I discuss my education plans
and their ties to my research in Section 4. In the remaining sections, I detail my five-year plan, the
intellectual merit and broader impacts of the proposed work, and my qualifications.

2. PRIOR WORK ON DETECTING AND TRIAGING SOFTWARE ISSUES

Researchers have explored several ways of detecting problems with software. Perhaps the most promising
approach in the last decade has been gathering large-scale empirical data about software failures. For
example, automated crash and hang reports are a widely-deployed example of this approach, particularly
Microsoft’s Windows Error Reporting (WER) system [33]. WER not only streamlines the reporting of
crashes and hangs, but it allows application developers to generate custom reports for custom program
events. Researchers have explored similar methods of crowdsourcing1 the capture and repair of field
failures. For example, Liblit et al. recorded snapshots of execution history from programs running in the
field and combined these histories to support the diagnosis of crashes [55] and concurrency issues [83].
Others have focused on the reproduction of software issues, recording lightweight execution histories in
the field [19]. These can then be used with other techniques to index and aggregate multiple histories to
find incorrect outputs [57]. Tucek et al. describes a similar system that diagnoses failures in the field by
performing checkpointing and root cause analysis while a program runs [84]. Because users need only to
click a button to send feedback, these approaches give software teams large-scale, aggregated frequency
data that is more representative than intuition.

CAREER 08-557 Enabling and Exploiting Evidence-Based Bug Triage D.3

1 Crowdsourcing [23] is taking a task traditionally performed by a specific population and distributing it to
a larger community (in this case, the task is detecting software issues).

The limitation of the above approaches is that they only work for crashes, hangs, and custom-defined,
pre-anticipated events. They do not work for other critical issues such as incorrect (but non-fatal)
computations, usability problems, configuration issues or other unanticipated errors. One approach to
detecting these other issues is to gather large-scale usage data. For example, Microsoft Office users can
send “Software Quality Metrics” (SQM) data to Microsoft. Such data usually involves usage statistics,
which can inform Microsoft about which features are being used regularly, which features are not, and by
whom. Researchers have also investigated the instrumentation of open source software [82], gathering
more detailed information about users’ documents and their relationship to other data in a users’ work.
More sophisticated techniques identify usability problems by statistically modeling undo and erase events
in usage data, distinguishing between actual undos and help-seeking [1]; others have detected anomalies
in console logs using statistical methods [88]. Google takes an experimental view of usage data, deploying
different versions of web sites to perform experiments about low-level decisions, such as button
placement and labeling [73]. Google Analytics supports similar analyses of web traffic.

While the above techniques can help software teams know what users are doing, interpreting why users
are doing it can be highly subjective [41]. This interpretation requires one to distinguish between actions
that move users towards a goal (such as undoing a mistake) and actions that help a user think (comparing
two versions of sentence using undo) [45]. Moreover, teams have to imagine what patterns might exist in
feature usage data before testing for them [43]. The primary way to avoid these interpretation challenges
is to perform user tests of critical use cases. Usability testing [30, 35], which is a trade that has grown by
5000% in the past 15 years [86], involves devising representative tasks, recruiting representative users,
having users work on these tasks, and identifying breakdowns that occur in users’ work. These
breakdowns are then documented as software issues, alongside other bugs and feature requests.

Unfortunately, user testing rarely scales because of the cost of paying users to participate [64]. Moreover,
it is often difficult to find enough representative users [79] and to test a wide enough variety of tasks [56]
to gain confidence in the quality of a design. Some researchers have tried to address these limitations by
proposing remote usability testing tools that have users evaluate software online [22]. Remote users can
successfully report critical incidents [14], but they only find half as many problems as trained usability
testers in the lab [13], and they need to be trained and incentivized to acquire useful data [80]. Because of
these limitations, usability testing often faces skepticism: managers often view user tests as unnecessary
overhead [35, 76] and developers view the results of usability tests with skepticism because of their small
samples [36].

There are other sources of large-scale user feedback, such as the questions and often detailed usability
critiques that users post on technical support web sites and user forums [38]. Unfortunately, most of
this data is unstructured, lacks execution context, and is of inconsistent quality, making it difficult and
costly to analyze and aggregate systematically. Even when teams have the time to process this feedback, it
is cumbersome to aggregate and does not result in reliable estimates of frequency and severity.
Furthermore, this online feedback is volunteered by users, and thus often biased towards vocal minorities
such as power users or other software developers. This potential bias makes it difficult to know how
common the issues they report actually are [76].

Compared to the considerable research on detecting software issues, there is little technology to support
the triage of software issues. Some researchers have explored ways of automatically assigning bug
reports to developers [4], building machine learning classifiers on programmers’ implementation expertise
[5]. Others have explored the possibility of automatically detecting duplicate reports [87] and improving
bug report readability [27]. Beyond these techniques, software teams have little support for making-
evidence based estimates of the frequency and severity of software issues. Consequently, authority,
stereotypes about user behavior, and technical issues tend to dominate design decisions [50], even when
these decisions are inconsistent with teams’ project goals.

CAREER 08-557 Enabling and Exploiting Evidence-Based Bug Triage D.4

3. ENABLING AND EXPLOITING EVIDENCE-BASED BUG TRIAGE

The proposed research will investigate a new approach to detecting software issues by analyzing
people’s use of automatic help tools. This approach will produce more reliable estimates of frequency
and severity, enabling teams to perform more evidence-based bug triage. As illustrated earlier in Figure 2,
this research will involve several activities, including 1) the creation of new help tools to capture issues,
2) research on how privacy aspects affect the representativeness of the software issues reported, 3)
techniques for aggregating issues into generalized executable test cases, 4) several new bug triage
analysis tools, and 5) an array of software maintenance tools that exploit help question data. In this
section, I discuss the preliminary work that supports these plans, and then discuss these plans in detail.

3.1. PRELIMINARY WORK ON AUTOMATED HELP

My prior work on automatic help tools [62] is the conceptual
foundation for the proposed research. The prototype, called
Crystal, allows users to click on elements of a user’s

document, user interface
c o n t r o l s , a n d e v e n
whitespace, and select
“why” questions about the
the se l ec ted p rogram
output. For example, Figure
3 shows a user who has
clicked on a paragraph to
ask questions about its
properties. Figure 4 shows

a user who has clicked on
the whitespace to the left of a paragraph. Figure 1, shown earlier, shows
a user asking a question about text that was auto-corrected. In all of
these cases, after a user has chosen a question, Crystal analyzes the
history of user input, the program defaults, and the logic of the
program’s event handlers to determine the causes of output in question.
These causes are then shown by highlighting the user interface controls
that were used to change the behavior of the application, immediately
showing the user how they can rectify the problem. For example,
Figure 5 shows the answer to the question in Figure 4, highlighting the
“Left Indentation” control that determined the paragraph’s whitespace.

Conceptually, Crystal derives answers to users’ help questions by
computing the user-modifiable subset of a precise dynamic slice [8] on the selected output. For
example, the whitespace in Figure 4 has a large number of internal dependencies that determined its size,
but only a small number that the user has control over. These user-modifiable dependencies are the ones
shown in the answer (and in the answer in Figure 5, there was only one such dependency).

To avoid having to record a complete execution history to perform dynamic slicing, Crystal exploits the
editor’s undo history. Most modern undo support store a list of changes in an application as some form of
command objects [63]. For example, if a user deleted an event in a calendar application, the undo history
stores an object that contains the deleted data and the context necessary to restore it (such as the calendar
to which it was attached). To answer questions, Crystal adds two kinds of data to undo history. The first is
the history of values for all user-modifiable program state and the input event that caused each. For
example, when a user disables the “auto-correct” feature, the system stores the new value for the auto-
correction enabled state and remembers that the user performed this change by clicking on a particular
checkbox. This data allows Crystal to highlight the input or system event that caused the unexpected
output in its answer. The second kind of data that Crystal adds to undo history is the control and data

CAREER 08-557 Enabling and Exploiting Evidence-Based Bug Triage D.5

Figure 4. A question about a
paragraph’s whitespace.

Figure 3. Questions about the
properties of a paragraph.

Figure 5. An explanation of a
paragraph’s whitespace,
showing the field that caused it.

dependencies used to decide whether to make a change. For example, before auto-capitalizing a word,
the system needed to check whether the auto-capitalizing feature was enabled. Crystal records this data
dependency and uses it to determine the causes of the output a user has questioned.

These additions to undo history required little developer effort beyond the effort necessary to support
undo. For example, the paragraph questions in Figure 3 are automatically generated from the current state
of the paragraph and user interface string constants; these answers are computed with no additional code.
The questions and answers that did require custom code involved converting hard-coded data and
behaviors into first class data and events. For example, Figure 4 shows a question about a paragraph’s
margin whitespace; this required the layout algorithm to remember the location of white space and the
user interface a way to inquire about it. Similarly, answering questions about auto-corrected words (as in
the question about ‘teh’ in Figure 3) required the developer to convert the hard-coded auto-correct
behavior into a first-class undoable system action.

Of course, these help tools cannot answer all questions, nor can it answer all questions with complete
precision. For example, users can ask about visible program output, such as document state, user interface
controls, and values computed by the program, but users cannot ask about output that does not appear in a
general way. Some answers may also involve some irreducible complexity that is difficult to explain. For
example, while most questions produce a single cause, such as “the word is capitalized because auto-
capitalize is on.” or a single chain of causes, such as “the paragraph is indented because it has the
“Body” style, and the “Body” style inherits from the “Normal” style, which is indented.” some questions
have multiple chains of causes. This might occur for output that results from complex computations, such
as explanations for why an e-mail was marked as spam: such output often depends a large set of user tags,
and a complex latent semantic analysis algorithm. (Explaining these is with precision is not the goal of
this proposal, though as I discuss later, there may be benefit in providing simplified explanations).

Even with these limitations, Crystal proved quite successful in helping users with common problems. In
one study of nine problematic use cases, Crystal users resolved 30% more problems, 50% faster than
those using documentation and online help [62]. After using the automated help only once, users relied on
it exclusively for help, preferring it over documentation and the Internet [62]. Users said this was because
the help was particular to their document and use of the software.

3.2. EXTENDING AUTOMATIC HELP TO INTERACTIVE WEB APPLICATIONS

In the proposed research, I will first generalize the Crystal concept to interactive web applications. This
research will demonstrate the feasibility of the automatic help tools in client-server based applications,
while also supporting a rapidly growing platform for software applications.

Much of the work necessary to adapt Crystal to web applications is straightforward. Instrumenting client-
side applications to capture program events is feasible, well-supported by tools and web servers, and can
be done without modifying the client [44]. Furthermore, many of the challenges with implementing undo
in web applications has been resolved by industry (though these undo techniques are not widely adopted).
I will adapt this work to support automatic help in web applications, building several test applications to
demonstrate the feasibility of the tools.

In addition to these in-house applications, I will collaborate with the Catalyst Tools team at the
University of Washington to help deploy the ideas to an existing population of application users
(documented in an attached letter). Catalyst develops several web-applications, including a grade book, a
course web site design tool, survey and portfolio authoring tools, web-based e-mail, and several other
applications. These are widely adopted by the over 40,000 students, staff, and faculty at University of
Washington campuses. All of these tools include undo support, which is the basic requirement for
implementing the automatic help tools. Incorporating these help tools into a diverse set of deployed
software will help assess how well these tools scale, what kinds of software issues can be feasibility
reported, and what kinds of help the tools can feasibly provide. Furthermore, because the Catalyst Tools
have an existing user base, my team can focus on research, rather than deployment.

CAREER 08-557 Enabling and Exploiting Evidence-Based Bug Triage D.6

Beyond these implementation issues, there are several research challenges in generalizing Crystal to web
applications. In particular, there are challenges in tracking modifications to data that are triggered in the
client, processed by the web server and then changed in a database. Tracking this data flow and then using
it to answer users’ questions will require new methods of capturing lightweight execution histories
between multiple languages and machines. I will explore techniques that unify the capture of these
execution history that are low-overhead and efficient to transmit between the client and server. This will
result in new frameworks for capturing lightweight execution histories in web applications.

3.3. EXTENDING THE RANGE OF USER FEEDBACK WITH NEW HOW AND WHY QUESTIONS

In addition to adapting Crystal’s features to the web, I propose three new kinds of help questions to
extend the range of user feedback that can be captured through help tools. These include new support for
how questions, why questions about performance, and why questions about complex behaviors.

“Why” questions allow users to ask about existing features in a program; to compliment these, I will
explore support for “how” questions that capture large-scale, aggregated feature request data. These
questions will allow users to ask about features and options that they expect to find but cannot. For
example, suppose a student is searching Amazon.com for the shortest book on a topic, but the search
results do not list page length. Support for “how” questions would allow the user to click on the “Results”
header at the top of the results and type “how do I search on page length?” The system’s response would
either find a feature that supports the desired behavior (building upon work on keyword programming
[61]) or it would tell the user, “We don’t yet support this feature, but thousands of others have asked for a
similar feature. Stay tuned.” As part of this work, I will explore ways of applying natural language
processing techniques aggregate user feedback and to detect and filter spam.

The “why” questions in the Crystal prototype focused on functional requirements, but not other software
qualities. Therefore, I will support new why questions about performance issues. For example, users
will be able to ask “why is this progress bar slow?” and get answers such as “the system is waiting for
data from the Internet” or “the system is halfway through a large data set.” In the absence of a specific
progress display, users will be able to click on the area that they expect to have a result and ask, “why
isn’t this updating?” The goal of these questions would not be to offer precise diagnostics to users, but to
provide more detailed, context-specific feedback on demand. While these answers will not make the
algorithms faster, they will help users decide if they want to cancel an operation or find some other way
of completing their task. These questions will also enable teams to learn about user-critical performance
issues at a large scale.

The third kind of question that I will explore are “why” questions about complex behaviors, to provide
explanations of output computed by algorithms and processes that have some irreducible complexity. For
example, a user may want to know why an e-mail message was marked as spam or why a link was
recommended from a recommendation system. To answer these questions, I will explore ways of
simplifying the complex dependencies behind these calculations and providing general descriptions of
how these features work. For example, rather than trying to explain the precise reason to a user, these
questions will provide simplified explanations, as is done in recommendation systems (“this movie was
recommended because of your interest in...”). These answers will perform program analyses on these
computations to generate context-specific examples from the user’s own data to explain system behavior.

To assess the effectiveness of these “why” and “how” questions in answering users’ questions, I will
perform both lab and field studies that compare their utility to other forms of help such as Q&A sites
[38], technical support [42], and friends. I will perform these evaluations as part of a course assignment in
my User-Centered Design course, having over 70 students apply a variety of usability evaluations on the
research prototypes. For example, they will apply the heuristic evaluation technique [64] to identify
potential design problems in advance and perform lab-based user studies of specific troubleshooting use-
cases. Specifically, students will measure how quickly users are able to rectify problems compared to
traditional forms of help and to what extent users rely on the help tools to troubleshoot their problems.

CAREER 08-557 Enabling and Exploiting Evidence-Based Bug Triage D.7

3.4. REPORTING REPRESENTATIVE, ANONYMOUS HELP-SEEKING FEEDBACK

With the help tools in the previous sections in place, a central research challenge will be reporting uses
of the help tools as indicators of software issues. This problem has similarities to desktop crash and
hang reporting services, such as Windows Error Reporting [33]; these systems generally pose two major
challenges: 1) deciding what data needs to be sent and 2) getting users’ permission to send it. Because the
proposed research will capture new kinds of user-defined issues, I will also explore to what extent the
issues captured are representative of the issues that users actually experience.

The data that needs to be sent will likely be the same data necessary for answering users’ questions.
This includes user interface state, the data dependencies and control flow decisions [8] involved in
handling user input events, and the user’s undo history. For example, when a user asks why a spreadsheet
cell background is red, to explain that there was an error in the cell’s formula, the system would need to
report the source code that decided to highlight the cell red and the data that was used to make this
decision, such as the formula itself and error reporting settings in the system preferences. I will explore to
what extent this data, when aggregated at a large scale, is sufficient to reproduce an issue (compared to
other forms of execution history, such as “whole” execution traces [89], and lightweight field failure
traces [19]). This same data will be used to aggregate issues and to enable new kinds of bug triage and
software maintenance tools (both discussed later).

Another challenge with reporting issues from the field is obtaining users’ permission to send their data. In
the case of crash reporting, users are asked to “opt-in” each time the system wants to send information.
This consent process would be different for web-based applications, because much of the data is already
stored on the web server as part these applications’ normal data flow (this is because of the widespread
use of AJAX, a collection of techniques for implementing interactive web applications that do not require
a page reload). In this case, users have already consented to having some of their application use
monitored by a web server. I will assess to what extent the additional data may require new forms of
permission and informed consent.

I will use the above studies to design anonymization and redaction techniques that remove identifying
information, while preserving the problematic aspects of reported issues. These techniques will
particularly focus on redacting textual information, since it is the most likely to contain personally
identifying information. This research will focus on program analyses that identify when textual data
plays a direct role in a reported problem and finding automatic ways of preserving the characteristics of
the data that caused the issue. For example, users of the Catalyst Tools grading application will have a
wide variety of privacy-sensitive data including student names and grades; users may use the help tools to
indicate problems with spreadsheet formula calculations. The proposed research will detect that such a
dependency exists and report the dependencies, but remove the specific text from the data reported.

Even if the help questions are helpful, the data capture is low-overhead, and the privacy issues are
overcome, it is highly unlikely that all users would report issues using the automatic help tools.
Therefore, a critical part of the proposed research is evaluating the representativeness of the data
reported from help tools, characterizing the biases imposed by the help technology. To measure
representativeness, I will have the undergraduates in my annual course on User-Centered Design perform
field observations of the target applications to evaluate 1) how many users are using the help tools and 2)
what kinds of help users are able to get from the help tools, and 3) what kinds of issues users are
resolving through other channels. Students will apply a variety of evaluation methodologies, including
lab-based user studies, field observations, and experience sampling approaches [18], which ask users to
document issues they experience periodically. These studies will establish a baseline for the issues that
users experience in practice, allowing us to measure how many of these issues were reported by the
automatic help tools. We will then use this feedback to extend and refine the kinds of help that the tools
support. (I discuss the educational aspects of these plans in Section 4.4).

CAREER 08-557 Enabling and Exploiting Evidence-Based Bug Triage D.8

3.5. GROUPING HELP QUESTIONS INTO GENERALIZED, EXECUTABLE TEST CASES

With these reporting mechanisms in place, a central part of the proposed research is to automatically and
incrementally producing meaningful groupings of the data as it arrives. For example, imagine that a
team receives 10,000 questions about an error dialog that says some data cannot be exported. Underlying
these questions are one or more reasons why the dialog was shown, corresponding to different conditions
that were checked before displaying the error. The challenge is to group these different cases by the
different error conditions from which they emerged, while generalizing away details such as the particular
data that users were trying to export. Prior work performed grouping on whole execution traces [69]; I will
aggregate field data by exploiting properties of the lightweight traces, across the phases in Figure 6.

The first phase will group issues by the subject of questions asked by users and
the dependencies involved in the answer. For example, imagine an application
with 70 unique error dialogs: the system would split the issues by these error
dialogs, and then further subdivide those groups by the particular conditions that
produced the error. This grouping could be performed incrementally as data arrives
from the field, since the subjects of questions and the answers depend largely only
on the application source code and not on each particular reported case. As part of
this grouping, issues would also be segregated by program versions.

Because the number of issues within each of the above groups may still be large,
the second phase will generalize the specific input values that caused the
program to produce the unexpected output. To detect which values contributed
to the errors, I will apply unsupervised machine learning techniques to separate the
input that contributed to failure into distinct groups. Because teams will likely
depend on these groupings to be stable (for example, by writing bug reports against
the groups), I will explore incremental adaptions of these learning techniques that
handle the continual arrival of data from the field.

In the final phase, I will develop techniques that generate a representative,
executable test case from the classes of the previous phase. Because the field data
reported will not be complete execution histories, they cannot be used to directly
reproduce issues. Instead, I will exploit the large scale of user data and extend the
execution history captured on the web server to create a single complete execution
trace for a representative example of an issue. These execution traces will enable
the reproduction of failures, addressing a major challenge in software maintenance
[9, 48].

In addition to this multi-level grouping, I will also explore techniques for filtering
reports that may not represent real issues. For example, the reported data is
likely to contain some learning activity, since the help tools can be used to
understand how a program’s features work (as opposed to overcome an issue). I
will explore statistical methods of tracking individual users’ reports to distinguish
between novice and experienced use. Finally, some users may attempt to “game”
the reporting mechanism, repeatedly sending feedback about a problem in order to
try to influence its frequency. I will explore filtering approaches that detect
statistical outliers or limit reports about specific issues to a certain number per day.

To evaluate the above work, I will measure the extent to which the generalized test cases reveal
meaningful and useful distinctions between reported issues. For example, I will perform studies that
assess whether the groupings of issues faithfully represent the concerns expressed by users, whether
software teams perceive the issues in the same way that users do, and whether software developers find
technically meaningful distinctions in the groupings. I will use the results of these studies to iterate and
refine the techniques described above.

Figure 6. Field data
is aggregated
across phases.

field data is grouped
by the answers

provided to users

clusters are
generalized into

executable test cases

groups are clustered
by input patterns

???? ????

???? ????

???? ????

???? ????

???? ????

???? ????

???? ????

???? ????

???? ????

???? ????

???? ????

???? ????

???? ????

???? ????

CAREER 08-557 Enabling and Exploiting Evidence-Based Bug Triage D.9

3.6. ANALYZING FIELD DATA WITH NEW BUG TRIAGE TOOLS

While the techniques proposed in the previous section will help group and reproduce issues, a list of
issues is not in itself useful. Therefore, a significant part of the proposed work will be to design evidence-
based bug triage tools that help teams analyze and prioritize issues more objectively. These tools will:

■ Visualize field data as “hot spots” in user interfaces. One way of supporting the exploration of
the data is to let teams view issues as users experienced them. For example, if a field in a form
was particularly error-prone based on the field failure data, the proposed system would apply
highlighting to the field using estimates of the issue’s frequency. This user interface would also
allow teams to view and compare issues, issue frequency, and the kinds of input that caused them.

■ Track issues over time and software versions. Because field data would arrive continuously, I
will explore ways of applying unsupervised machine learning techniques to attributes of field data
to highlight new issues or new situations in which issues are occurring. This could be particularly
helpful after deploying software updates or revisions to a web site, providing automated feedback
about whether software changes successfully resolved an issue.

■ Enable discussion about how to respond to user feedback. Because bug triage is a team
activity, and many teams are separated by distance, the proposed tools will provide online,
asynchronous discussion tools to help teams evaluate and respond to user feedback.

■ Integrate other forms of user feedback. Because the field data captured by the proposed work
would be complimentary to both large scale crash report data and small-scale from software and
usability testing, I will explore ways of integrating these various sources of user feedback. These
features will link to data from other sources and provide a repository for storing it and will involve
program analyses that automatically relate issues from different sources.

In addition to the above features, the triage tools will also support a scripting API that enables teams to
analyze, filter and compare data in custom ways to better support triage. This API will allow teams to:

■ Compute custom frequency data. While showing the absolute frequency of a particular type of
issue could be helpful, there are more subtle kinds of frequency that may be more helpful in
making business decisions about the issue’s priority. For example, a team may want to know how
many times an issue occurs in a day or how many times individual users experience the issue.

■ Estimate severity from context. While the primary goal of the proposed work is to obtain more
representative frequency data, the data captured in the execution histories from the field could also
be used to estimate the severity of issues from a user perspective. For example, by providing teams
with ways to compute features of the field data, these histories could be used to estimate how
much data was lost as a result of non-fatal error messages or how often users abandoned the
application after experiencing an issue. While these severity estimates would be crude, they would
be an improvement over the speculation that developers currently rely upon [50].

■ Identify and compare user groups. Even when a majority of users are experiencing an issue,
they may not be the the most important user population to a team. For example, there may be a
feature that a majority of users do not understand but that a small group of lucrative corporate
users need to work in an important but obscure way. I will investigate ways of comparing field
data across different user groups by providing teams with support for defining user groups based
on customer data. I will also invent tools that allow teams to identify user groups with
unsupervised machine learning on attributes of the field data.

To evaluate the above contributions, I will assess the above tool features in a series of controlled
experiments, each comparing groups of users with the experimental feature to a control group without
the tools. These assessments will provide evidence of the efficacy of the individual features.

CAREER 08-557 Enabling and Exploiting Evidence-Based Bug Triage D.10

3.7. EXPLOITING FIELD DATA TO STREAMLINE SOFTWARE MAINTENANCE

In addition to using the field data to support more evidence-based bug triage, I also plan to exploit the
field data to streamline software maintenance and debugging in other ways. These tools include:

Automatic fault and feature localization. One part of
making bug triage decisions is estimating the amount of
work necessary for implementing a change by identifying
the code responsible for a particular program behavior [48].
I will exploit the large scale of the help question data to
extend my prior work on the the Whyline [49] (shown in
Figure 7) to support more precise and automatic fault and
feature location. This will provide teams with a measure of
how much of a program contributes to an issue across the
range of reported cases, facilitating evidence-based
estimates of the cost and risk of making the change.

Predicting the user consequences of design changes.
Every time a code change is made, a critical challenge is
predicting the consequences of a change to users’
experience with software. I will explore ways of comparing
the execution patterns that led to issues in the field data to
the execution patterns of designs that teams have
prototyped but not yet deployed. For example, imagine a
developer has created a new web form with error validation
that relies heavily on validation code that, in the past, led to
a high predominance of questions. These new analyses
could provide automatic warnings to developers, allowing
them to learn from the feedback from prior deployments.
Evaluations of this work will focus on assessing the rate of

false positives reported by these techniques.

Automatically assigning issues to developers. A significant part of bug triage is deciding which
developers to assign issues. Prior work has explored using text classification to automatically assign bug
reports to developers [4], but this approach does not take advantage of information about the components
involved in the failure. The execution histories captured by the proposed work could be used to make
stronger associations between the components involved in a software issue in the field and the developers
who have experience maintaining these components.

Detecting issues from feature usage data. Although the proposed research will attempt to increase the
representativeness of field data by increasing the number of users who provide feedback, not all users will
use these mechanisms, nor will users rely on them universally. However, there are opportunities to still
learn from these users and situations by combining usage data with the questions that other users have
asked. I will explore ways of statistically modeling the input contexts that lead to questions and then
using these models to try to detect the prevalence of similar issues from feature usage data. These
analyses increase the representativeness of frequency estimates.

Identifying usage patterns to support design decisions. Though most software teams already have
some idea about who their users are, the field data captured by the proposed research can provide
evidence about how different users understand and use software features. For example, the help question
data could reveal that users who have difficulties authoring mail filtering rules also have difficulty
configuring spam filters. I will explore machine learning techniques that help teams identify these
associations between feature usage, identifying opportunities to improve how software features are
partitioned and presented in user interfaces. It may also reveal opportunities to design new features that
overcome the features that users struggle to use.

CAREER 08-557 Enabling and Exploiting Evidence-Based Bug Triage D.11

Figure 7. The Whyline, which allows
developers to ask “why” questions about
program output, will be extended to support
more precise feature and fault localization.

4. REDEFINING SOFTWARE QUALITY ASSURANCE EDUCATION

My research on evidence-based bug triage is tied closely to my educational goal, which is to redefine
software quality assurance education. This vision is directly aligned with my teaching duties, which are
primarily to teach undergraduate Informatics and Computer Science students who pursue jobs as software
testers, software developers, usability experts, and managers of software teams. In this section, I describe
my teaching approach and philosophy and then detail three educational initiatives that contribute to this
educational vision, while enhancing, exploiting, and integrating my proposed research.

4.1. ACCOMPLISHMENTS IN EDUCATING WITH DIRECT EXPERIENCE

My educational approach is to give students direct experience with team-based software design. For
example, my courses mix lectures with engaging classroom activities and lab sections that help students
apply their knowledge to real design projects. All of my courses revolve around team projects that help
students learn to work in interdisciplinary teams. For example, last fall I taught two courses in which
students applied user-centered design methods to design and evaluate technologies to support the 2008
U.S. elections. Students observed campaign center visitors and interviewed blind and elderly users and
prototyped and evaluated technologies to support these user groups as interdisciplinary teams.

As a new teacher, I have quickly demonstrated my commitment to teaching. For instance, I have a
4.85/5.0 average student evaluation score across two courses required courses. Several students wrote
unsolicited feedback to my dean, saying, for example, “We were constantly shown real world examples
and given real context to support the theories being presented. Andy didn’t simply stand on a pedestal and
preach philosophies that we must take on faith.” I hope to sustain this teaching success partly by learning
from experienced teachers. For example, I have weekly meetings with senior computer science
lecturers to discuss teaching approaches. I also gather data about the experiences of my Computer
Science and Informatics undergraduates, publishing this work to educational communities [51].

4.2. ENGAGING USER-CENTERED DESIGN STUDENTS IN THE PROPOSED RESEARCH

One way that I will integrate research and education is by involving undergraduates in evaluations of
the proposed research. For instance, one aspect of my proposed research will involve comparing the set of
issues reported by help-seeking tools to the full set of issues that users actually experience. To perform
this comparison, I will enlist the help of the 70 students I teach annually in my User-Centered Design
course. During the course, students perform user studies, field observations, interviews, and surveys, all
revealing a set of problems with a particular user interface. Once the automatic help tools are
implemented, I will have students in this class explicitly compare the set of issues that users experience in
practice to the subset of issues identified by the help tools. In the process, students will learn about the
strengths and weaknesses of different usability testing methods, but they will also learn about the goals of
the research project and be part of assessing the representativeness of the issues reported.

I expect this integration to lead to several outcomes. For example, students may more express interest in
participating in research or pursuing graduate school. Students may also be more engaged in the course
material because it involves a goal that extends beyond the classroom. I will assess these outcomes by
comparing students in different offerings of the course, tracking whether they pursue graduate school,
what kinds of jobs they pursue after graduating, and whether they find the course useful in their careers.

4.3. TEACHING TEAMWORK IN A STUDIO-BASED PROJECT COURSE

Another way that I will integrate research and education is by offering a new course in which to
disseminate the results of my research. This course, to be offered in 2011, will explicitly teach teamwork
aspects of software engineering to Computer Science and Informatics students. Knowing how to work in
a team is particularly important for software testers and usability practitioners, since people in these roles
collaborate closely with developers, managers, and customers to ensure software quality [50].

CAREER 08-557 Enabling and Exploiting Evidence-Based Bug Triage D.12

The course will have two main components: (1) instruction about the fundamentals of team coordination
and small group communication, and (2) a team software development project, in which students will
apply this instruction to specific roles in their software team. While part of the course will focus on issue
tracking, revision control, and code review skills, I will explain the importance of these skills by
describing more theoretical observations about human aspects of software teams. For example, I will
demonstrate that modularity and object-orientation, two of software engineering’s most successful ideas,
are essentially ways to reduce coordination requirements in teams [12, 21, 15, 66]. I will also teach the
consequences of coordination challenges, explaining that most knowledge about bugs and software
architecture is tacit, in that it rests in the minds of the team, but is not documented [6, 54]. This instruction
will involve a great deal of industry participation, particularly from software quality professionals at
Microsoft (see attached letter).

To assess the course, I will compare peer evaluations, grades, and job placement outcomes of students
who take the course and students who do not. I will also maintain contact with students after they take
jobs, gathering feedback about the impact of the course on their professional experiences. The results of
these assessments and the course materials, will be made publicly available for other instructors.

4.4. ORGANIZING A PEER AND PROFESSIONAL MENTORING EVENT ON SOFTWARE QUALITY

A third way that I will integrate research and education is to bring together students and professionals in
an annual peer and professional mentoring event on software quality. This event will involve a day of
small group discussions and presentations meant to inform students about the day-to-day life of software
testers and usability experts. Participants will include pre-major college and high school students
interested in careers in the software industry. Mentors will include other students who have completed
internships and industry professionals from local companies, including Microsoft, Amazon, and Boeing.

This event will serve many purposes. It will address a common student misperception that software
development is anti-social and isolating; students will learn that, to the contrary, software and usability
testing jobs involve a great deal of communication, persuasion, and discussion. As this may increase
enrollment in Computer Science and Informatics, I will compare enrollment outcomes of students who
do and do not attend the event. I also will use the event as an opportunity to systematically interview
industry participants, learning about their team’s approach to bug triage and how my proposed research
might integrate into their processes. This will further ground my research in practice and foster new
research ideas and opportunities for technology transfer.

5. FIVE-YEAR PROJECT TIMELINE

Figure 8 shows the timeline for my research and education plans. The activities are grouped into three
parallel activities: prototypes (in which my team implements systems that test the feasibility of tools),
deployments (in which we collaborate with Catalyst teams to deploy and gather user feedback), and
education (in which I plan and execute my teaching and outreach efforts).

The education aspects of the work will be ongoing efforts across all five years. For example, the peer and
professional mentoring event and the new course on teamwork will begin in 2010 and can be planned
independently of the other proposed work. I teach User-Centered Design annually. The collaborations
with the Catalyst Tools team will also occur in parallel, but offset from the main research activities by
about one year. This will allow my research team to prototype help into web applications to help Catalyst
assess the feasibility of making the changes in their applications.

The main research efforts will exhibit more of a sequence. In Year 1, we will design automatic help-
seeking tools for web applications. This work will focus largely on architectural and assessment aspects
enabling and answering “why” questions. In Year 2, we will focus on reporting, privacy and consent
issues, testing approaches with small-scale deployments of simple test applications; collaborations with
the Catalyst Tools will begin. In Year 3, we will work on aggregation and grouping techniques. Students

CAREER 08-557 Enabling and Exploiting Evidence-Based Bug Triage D.13

in User-Centered Design will compare field data to data from traditional usability methods. In Year 4, we
will prototype new bug triage tools and evaluate their effectiveness. In Year 5, we will prototype new
software maintenance tools and evaluate their effectiveness. The predominance of field data in these later
years and the increased size of my research team will enable a variety of projects to occur in parallel.

The budget for this proposal includes support for one graduate research assistant, but the project team will
also include Ph.D. students with other forms of support, undergraduates and masters students working on
senior capstone projects, and students in my classes. All students will be from both the Information
School and Computer Science, but all will have software development backgrounds. In general, the
Information School recruits several students with computer science and software development
backgrounds who want to apply their knowledge in a human-centered way.

6. INTELLECTUAL MERIT AND BROADER IMPACTS

The intellectual merits of the proposed work include contributions to both scientific understanding of
software development teamwork and technical designs of software technologies. Contribution to
knowledge include new findings about current bug triage practices and their limitations, discoveries
about the strengths and weaknesses of different software quality assessment methodologies, and
assessments of the efficacy of a wide range of new technologies. Contributions to design and technology
include a new class of automatic help tools that enable software to explain its behavior to users, methods
of reporting and aggregating uses of these help tools as indicators of software issues, ways of filtering,
processing, and analyzing help question data, and new forms of software maintenance tools that exploit
the help question data. This research will also lead to several new research opportunities in more
advanced help technologies and other kinds of feedback mechanisms to support software evolution.

The broader impacts of the proposed work will affect several populations. For software users, these
impacts include enabling users to troubleshoot software, empowering users to influence software design
through direct feedback, and increasing overall software quality and usability. These impacts will
ultimately increase users’ productivity and reduce frustration with technology. For software companies,
impacts include several free and open source software maintenance tools, an ability to work objectively
with data from the field, and thus improved success for their organizations. For students, impacts include
a new course on teamwork in software design, increased relevance of education to students entering the
software industry, increased student participation in research, usability improvements to courseware
developed at the University of Washington, and opportunities to directly participate in research. Graduate
students will be essential members of the project team, learning skills in field research, user interface
design, usability evaluation, empirical studies, software engineering, and research prototyping.

CAREER 08-557 Enabling and Exploiting Evidence-Based Bug Triage D.14

 Figure 8. The timeline for the proposed research and educational plans.
2010 2011 2012 2013 2014

build help tools into Catalyst tools

prototype web-based
why & how questions

reporting & consent

field data from test apps

2015

field data from Catalyst apps

prototype & evaluate
bug triage tools

prototype & evaluate
maintenance tools

aggregation &
grouping tools

d
e
p
lo
y
m
e
n
ts
p
ro
to
ty
p
e
s

e
d
u
c
a
ti
o
n

user-centered design evaluations

peer & professional mentoring event

course on teamwork

7. CAREER OBJECTIVES AND ACCOMPLISHMENTS

My overall career goal is to support human aspects of software engineering; enabling
and exploiting evidence-based bug triage is just one part of this larger goal. For example,
my dissertation work sought to understand and support the “why” questions that software
developers ask when they are debugging. Over the course of six years, I performed several
studies about program understanding and debugging, spanning observational studies in
educational settings [46], lab studies with expert developers [31, 47], and field studies of
nearly twenty software development teams at Microsoft [16, 50]. The major finding of
these studies was that debugging is difficult because of the guesswork that it involves:
because developers cannot trace back directly from the visible symptoms of failures, they
have to guess what is causing the failure. Their initial guesses are usually incorrect,
costing considerable time.

To avoid this guesswork, I invented a tool called the Whyline [46, 49], which allows
developers to click directly on the visible symptoms of failures and choose “why”
questions about the properties of these symptoms. The tool then uses a both static and
dynamic program analyses to isolate the causes of the failure, helping developers quickly
navigate control and data dependencies. My prototypes dramatically reduced debugging
time compared to regular breakpoint debugging tools [49, 52]. This work has received
international press, four best paper awards at top conferences, and resulted in over 30
peer-reviewed articles in 7 venues across Human-Computer Interaction and Software
Engineering venues.

In addition to this work, I have extensive experience in developing other kinds of software
development tools. For example, Figure 9 contains snippets of my work on other
debugging tools, novel code editors, new programming languages. I also have
considerable background in designing performing empirical studies in the classroom, in
the lab, and at software development companies. I also have over ten years of experience
in Computer Science, Psychology, and Design disciplines, giving me a unique
interdisciplinary perspective on Software Engineering research. With my adjunct status in
Computer Science & Engineering, I also plan to advise several Computer Science
Ph.D. students, in addition to more technically skilled Information School Ph.D. students.

The diversity of my expertise and my deep understanding of the nature of software
development practice has also led to several strong ties to industry. In just one year in
Seattle, I have established connections with over 30 local companies; I have worked
closely with Visual Studio teams to support future versions of debugging and code
navigation tools; I also work with the Firefox and Bugzilla open source community to
understand their bug triage and global communication challenges. I intend to act as a key
mediator between academia and the software industry throughout my career.

8. RESULTS FROM PRIOR NSF SUPPORT

I have no prior research funding from NSF. I have received one service grant to support
student travel for a 2009 graduate student consortium, bringing together 12 Ph.D. students from around
the world to discuss their research on broadening participation in computing.

My Ph.D. work was supported by an NSF Graduate Research Fellowship and a National Defense Science
and Engineering Graduate Fellowship. I was also supported by NSF grant IIS-0329090 entitled Lowering
the Barriers to Successful Programming, awarded to my Ph.D. advisor Dr. Brad A. Myers of Carnegie
Mellon University; I wrote significant portions of this grant and was the main executor of the work itself.

CAREER 08-557 Enabling and Exploiting Evidence-Based Bug Triage D.15

Figure 9.
Software
development
tools I have
invented.

REFERENCES

1. Akers, D., Simpson, M., Jeffries, R., and Winograd, T. 2009. Undo and erase events as indicators of
usability problems. ACM Conference on Human Factors in Computing Systems, Boston, MA, April,
659-668.

2. Ambriola, V. Bendix, L. and Ciancarini, P. (1990). The evolution of configuration management and
version control. Software Engineering Journal , 5(6), November, 303-310.

3. Andreasen, M. S., Nielsen, H. V., Schrøder, S. O., and Stage, J. (2007). What happened to remote
usability testing? An empirical study of three methods. ACM Conference on Human Factors in
Computing Systems, San Jose, CA, April, 1405-1414.

4. Anvik, J., Hiew, L., and Murphy, G.C. (2006). Who should fix this bug? International Conference on
Software Engineering, Shanghai, China, May, 361-370.

5. Anvik, J. and Murphy, G.C. (2007). Determining implementation expertise from bug reports.
International Workshop on Mining Software Repositories, May, 2.

6. Aranda, J. and Venolia, G. (2009). The secret life of bugs: Going past the errors and omissions in
software repositories. International Conference on Software Engineering, May, Vancouver, B.C.,
Canada, 298-308.

7. Baker, R.S., Corbett, A.T., and Koedinger, K.R. (2004). Detecting student misuse of intelligent
tutoring systems. Lecture Notes in Computer Science, 3220, 531-540.

8. Baowen, X., Ju, Q., Xiaofang, Z., Zhongqiang, W., and Lin, C. (2005). A brief survey of program
slicing. SIGSOFT Software Engineering Notes, 30(2) 1-36.

9. Bettenburg, N., Just, S., Schröter, A., Weiss, C., Premraj, R., and Zimmermann, T. (2008). What
makes a good bug report? ACM SIGSOFT International Symposium on Foundations of Software
Engineering Atlanta, GA, November, 308-318.

10. Beyer, H. and Holtzblatt, K. (1998). Contextual design: defining customer-centered systems. San
Francisco, Morgan Kaufmann.

11. Brabham, D.C. (2008). Crowdsourcing as a model for problem solving: An introduction and cases.
Convergence: International Journal of Research into New Media Technologies 14(1), 75–90.

12. Brooks, F.P. Jr. (1975). The mythical man-month: Essays on software engineering. Addison Wesley,
Reading, MA.

13. Bruun, A., Gull, P., Hofmeister, L., and Stage, J. (2009). Let your users do the testing: a comparison
of three remote asynchronous usability testing methods. ACM Conference on Human Factors in
Computing Systems, Boston, MA, April, 1619-1628.

14. Castillo, J.C. (1997). The user-reported critical incident method for remote usability evaluation.
Master thesis, Virginia Polytechnic Institute and State University.

15. Cataldo, M., Wagstrom, P. A., Herbsleb, J. D., and Carley, K. M. 2006. Identification of coordination
requirements: implications for the design of collaboration and awareness tools. ACM Conference on
Computer Supported Cooperative Work, Banff, Alberta, Canada, November, 353-362.

16. Cherubini, M., Venolia, G., DeLine, R. and Ko. A. J. (2007). Let's go to the whiteboard: how and why
software developers draw code. ACM Conference on Human Factors in Computing Systems, San
Jose, CA, USA, April, 557-566.

17. Christensen, C.M. (2003). The innovator's dilemma. Harper Collins.

CAREER 08-557 Enabling and Exploiting Evidence-Based Bug Triage E.1

18. Christensen C.T., Feldman Barrett, L., Bliss-Moreau, E., Lebo, K. and Kaschub, C. (2003). A
practical guide to experience-sampling procedures, Journal of Happiness Studies, 4, 53-78.

19. Clause, J. and Orso, A. (2007). A technique for enabling and supporting debugging of field failures.
International Conference on Software Engineering, May, 261-270.

20. Cleve, H. and Zeller, A. (2005). Locating causes of program failures. International Conference on
Software Engineering, St. Louis, MO, USA, May, 342-351.

21. Conway, M.E. (1968). How do committees invent? Datamation 14(5), 28-31.

22. Cuddihy, E., Wei, C., Bartell, A.L., Barrick, J., Maust, B., Leopold, S.S., and Spyridakis J.H. (2007).
Conducting an automated experiment over the Internet to assess navigation design for a medical web
site containing multipage articles. In G. Hayhoe and H. Grady (Eds.), Connecting people with
technology: issues in professional communication. Farmingdale, NY: Baywood Publishers, 31-41.

23. Brabham D.C. (2008). Crowdsourcing as a model for problem solving: an introduction and cases.
Convergence: The International Journal of Research into New Media Technologies, 14(1), 75-90.

24. de Souza, C. R., Redmiles, D., and Dourish, P. (2003). "Breaking the code": moving between private
and public work in collaborative software development. ACM SIGGROUP Conference on Supporting
Group Work, Sanibel Island, FL, USA, November, 105-114.

25. de Souza, C. R., Redmiles, D., Mark, G., Penix, J., and Sierhuis, M. (2003). Management of
interdependencies in collaborative software development. IEEE International Symposium on
Empirical Software Engineering, September, 294.

26. de Souza, C. R., Redmiles, D., Cheng, L., Millen, D., and Patterson, J. (2004). Sometimes you need
to see through walls: a field study of application programming interfaces. ACM Conference on
Computer Supported Cooperative Work, Chicago, IL, USA, November, 63-71.

27. Dit, B. and Marcus, A. (2008). Improving the readability of defect reports. International Workshop on
Recommendation Systems for Software Engineering, November, Atlanta, Georgia.

28. Eisenstadt, M. (1997). “My hairiest bug” war stories. Communications of the ACM, 40(4), 30–-37.

29. Farnham, S., Chesley, H. R., McGhee, D. E., Kawal, R., and Landau, J. (2000). Structured online
interactions: improving the decision-making of small discussion groups. ACM Conference on
Computer Supported Cooperative Work, Philadelphia, PA, USA, 299-308.

30. Flanagan, J. (1954) The critical incident technique. Psychological bulletin, 51(4), 327-358.

31. Fogarty, J., Ko, A.J., Aung, H.H., Golden, E., Tang, K.P. and Hudson, S.E. (2005). Examining task
engagement in sensor-based statistical models of human interruptibility. ACM Conference on Human
Factors in Computing Systems, Portland OR, April, 331-340.

32. Frøkjær, E. and Hornbæk, K. 2005. Cooperative usability testing: complementing usability tests with
user-supported interpretation sessions. Extended Abstracts on the ACM Conference Human Factors in
Computing Systems, Portland, OR, USA, April, 1383-1386.

33. Glerum K., Kinshumann K. Greenberg S., Aul G., Orgovan V., Nichols G., Grant D., Loihle G., and
Hunt G. (2009). Debugging in the (very) large: ten years of implementation and experience. ACM
Symposium on Operating Systems Principles, Big Sky, MT, to appear.

34. Mark, G., Gonzalez, V. M., and Harris, J. (2005). No task left behind? Examining the nature of
fragmented work. ACM SIGCHI Conference on Human Factors in Computing Systems, Portland, OR,
USA, April, 321-330.

CAREER 08-557 Enabling and Exploiting Evidence-Based Bug Triage E.2

35. Gould, J. and Lewis, C. (1985) Designing for usability: key principles and what designers think.
Communications of the ACM, 28 (3), 300-311.

36. Gulliksen, J., Boivie, I. and Göransson, B. (2006) Usability professionals—current practices and
future development. Interacting with Computers, 18(4), 568-600.

37. Gutwin, C., Penner, R., and Schneider, K. (2004). Group awareness in distributed software
development. ACM Conference on Computer Supported Cooperative Work, Chicago, IL, USA,
November, 72-81.

38. Harper, F.M., Moy, D., and Konstan, J.A. (2009). Facts or friends? Distinguishing informational and
conversational questions in social Q&A sites. ACM Conference on Human Factors in Computing
Systems, Boston, MA, USA, April, 759-768.

39. Harrold, M.J. and Soffa, M.L. (1988). An incremental approach to unit testing during maintenance.
International Conference on Software Maintenance, October, 362-367.

40. Hertzum, M. (2002). The importance of trust in software engineers' assessment of choice of
information sources. Information and Organization, 12(1), 1-18.

41. Hilbert, D. M. and Redmiles, D. F. (2000). Extracting usability information from user interface
events. ACM Computer Surveys, 32(4), December, 384-421.

42. Horrigan, J. (2008). When technology fails. Pew Internet and American Life Project. http://
www.pewinternet.org/pdfs/PIP_Tech_Failure.pdf, retrieved June 1st, 2009.

43. Howarth, J., Andre, T. S., and Hartson, R. (2007). A structured process for transforming usability data
into usability Information. Journal of Usability Studies, 3(1), 7-23.

44. Kiciman, E. and Livshits, B. (2007). AjaxScope: A platform for remotely monitoring the client-side
behavior of web 2.0 applications. ACM Symposium on Operating Systems Principles, October.

45. Kirsch, D. and Maglio, P. (1994). On distinguishing epistemic from pragmatic action. Cognitive
Science 18, 513-549.

46. Ko, A. J., Myers, B. A., and Aung, H. (2004). Six learning barriers in end-user programming systems.
IEEE Symposium on Visual Languages and Human-Centric Computing, Rome, Italy, September,
199-206.

47. Ko. A. J., Myers, B.A., Coblenz, M. and Aung, H.H. (2006). An exploratory study of how developers
seek, relate, and collect relevant information during software maintenance tasks. IEEE Transactions
on Software Engineering, 32(12), 971-987.

48. Ko, A. J. DeLine, R., and Venolia, G. (2007). Information needs in collocated software development
teams. International Conference on Software Engineering, St. Louis, MO, USA, May, 344-353.

49. Ko, A.J. and Myers, B.A. (2008) Debugging reinvented: asking and answering why and why not
questions about program behavior. International Conference on Software Engineering, Leipzig,
Germany, May, 301-310.

50. Ko A.J. and Chilana P. (2009). The anatomy of design discussions in contentious open source bug
reports. In review.

51. Ko A.J. and Myers B.A. (2009). Attitudes and self-efficacy in young adults' computing
autobiographies. IEEE Symposium on Visual Languages and Human-Centric Computing, Corvallis,
OR, to appear.

52. Ko A.J. and Myers B.A. (2009). Finding causes of program output with the Java Whyline. ACM
Conference on Human Factors in Computing Systems, Boston, MA, USA, April, 1569-1578.

CAREER 08-557 Enabling and Exploiting Evidence-Based Bug Triage E.3

53. Koschke, R. and Quante, J. (2005). On dynamic feature location. IEEE/ACM international
Conference on Automated Software Engineering, Long Beach, CA, USA, November, 86-95.

54. LaToza, T. D., Venolia, G., and DeLine, R. (2006). Maintaining mental models: a study of developer
work habits. International Conference on Software Engineering, Shanghai, China, May, 492-501.

55. Liblit, B. (2007) Cooperative bug isolation. Lecture Notes in Computer Science, Springer-Verlag: NY.

56. Lindgaard, G. and Chattratichart, J. (2007). Usability testing: what have we overlooked? ACM
Conference on Human Factors in Computing Systems, San Jose, CA, USA, April, 1415-1424.

57. Liu C., Zhang X., Han, J., Zhang, Y., and Bhargava, B.K. (2007). Indexing noncrashing failures: a
dynamic program slicing-based approach. International Conference on Software Maintenance,
October, 455-464.

58. McConnell, S. (1994). Code Complete. 2nd Edition. Redmond, Wa.: Microsoft Press.

59. McDonald, D. W. and Ackerman, M. S. (1998). Just talk to me: a field study of expertise location.
ACM Conference on Computer Supported Cooperative Work, Seattle, WA, USA, November, 315-324.

60. Millen, D. R. (1999). Remote usability evaluation: user participation in the design of a Web-based
email service. SIGGROUP Bulletin, 20(1), April, 40-45.

61. Miller, R. C., Chou, V. H., Bernstein, M., Little, G., Van Kleek, M., Karger, D., and Schraefel, M.
(2008). Inky: a sloppy command line for the web with rich visual feedback. ACM Symposium on User
interface Software and Technology, Monterey, CA, USA, October, 131-140.

62. Myers, B. A., Weitzman, D., Ko, A. J., Chau, D. H. (2006). Answering why and why not questions in
user interfaces. ACM Conference on Human Factors in Computing Systems, Montreal, Canada, April,
397-406.

63. Myers, B.A. and Kosbie, D.S. (1996). Reusable hierarchical command objects. ACM Conference on
Human Factors in Computing Systems, Vancouver, BC, Canada, April 13-18, 260-267.

64. Nielsen, J. (1994) Using discount usability engineering to penetrate the intimidation barrier. In Bias,
R. and Mayhew, D. (eds.) Cost-justifying Usability. Boston: Academic Press.

65. Norman, D. (2002). The design of everyday things. Basic Books.

66. Parnas, D.L. (1972). On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15(12), 1053-1058.

67. Perlow, L. A. (1999). The time famine: toward a sociology of work time. Administrative Science
Quarterly, 44(1), 57-81.

68. Perry, D. E., Staudenmayer, N. A., and Votta, L. G. (1994). People, organizations and process
improvement. IEEE Software, July, 36–45.

69. Podgurski, A., Leon, D., Francis, P., Masri, W., Minch, M., Sun, J., and Wang, B. (2003). Automated
support for classifying software failure reports. International Conference on Software Engineering,
Portland, OR, USA, May, 465-475.

70. Reeves, B. and Shipman, F. (1992). Supporting communication between designers with artifact-
centered evolving information spaces. ACM Conference on Computer-Supported Cooperative Work,
394-401.

71. Reis, C.R. and de Mattos Fortes, R.P. (2002). An overview of the software engineering process and
tools in the Mozilla project. Open Source Software Development Workshop, 155–175.

CAREER 08-557 Enabling and Exploiting Evidence-Based Bug Triage E.4

72. Rodham, K., Olsen, D.R. (1997) Nanites: An approach to structure-based monitoring. ACM
Transactions on Computer-Human Interaction, 4(2).

73. Russel D., Kamvar S., Millen D., Butler K. (2009). Large data changes the way we think about HCI.
Human-Computer Interaction Consortium, Winter Park, CO, USA.

74. Sandusky, R. J. and Gasser, L. (2005). Negotiation and the coordination of information and activity in
distributed software problem management. ACM SIGGROUP Conference on Supporting Group Work,
Sanibel Island, FL, USA, November, 187-196.

75. Sarma, A., Noroozi, Z., and van der Hoek, A. (2003). Palantír: raising awareness among configuration
management workspaces. Int’l Conference on Software Engineering, Portland, OR, May, 444-454.

76. Scott, K.M. (2009). Is usability obsolete? Interactions, 16 (3), 6-11.

77. Seaman, C. B., V.R. and Basili, V. R. (1998). Communication and organization: an empirical study of
discussion in inspection meetings. IEEE Transactions on Software Engineering. 24(7), 559–572.

78. Sillito, J., Murphy, G. C., and De Volder, K. (2006). Questions programmers ask during software
evolution tasks. ACM SIGSOFT International Symposium on Foundations of Software Engineering
Portland, OR, USA, November, 23-34.

79. Spool, J. and Schroeder, W. (2001). Testing web sites: five users is nowhere near enough. Extended
Abstracts of the ACM Conference on Human-Factors in Computer Systems, 285-286.

80. Steves, M. P., Morse, E., Gutwin, C., and Greenberg, S. (2001). A comparison of usage evaluation and
inspection methods for assessing groupware usability. ACM SIGGROUP Conference on Supporting
Group Work, Boulder, CO, USA, September, 125-134.

81. Tarter, J. (2008). Maintenance and services ratios. Association of Support Professionals. http://
www.asponline.com.

82. Terry, M., Kay, M., Van Vugt, B., Slack, B., and Park, T. (2008). Ingimp: introducing instrumentation
to an end-user open source application. ACM Conference on Human Factors in Computing Systems
Florence, Italy, April, 607-616.

83. Thakur, A., Sen, R. Lu, S. and Liblit B. (2009). Cooperative crug isolation. International Workshop
on Dynamic Analysis, Chicago, IL, USA, July, 35-41.

84. Tucek, J., Lu, S., Huang, C., Xanthos, S., and Zhou, Y. (2007). Triage: diagnosing production run
failures at the user's site. ACM Symposium on Operating Systems Principles, Stevenson, WA, Oct.,
131-144.

85. Virvou, M. and Kabassi, K. (2000). An intelligent learning environment for novice users of a GUI.
International Conference on intelligent Tutoring Systems, June, 484-493.

86. Vredenburg, K., Mao, J., Smith, P. W., and Carey, T. (2002). A survey of user-centered design
practice. ACM Conference on Human Factors in Computing Systems, Minneapolis, MN, USA, April,
471-478.

87. Wang X., Zhang, L. , Xie, T. , Anvik, J., and Sun, J. (2008). An approach to detecting duplicate bug
reports using natural language and execution information, International Conference on Software
engineering, May, Leipzig, Germany.

88. Xu, W., Huang, L, Fox, A., Patternson, D., and Jordan, M. (2009). Mining console logs for large-scale
system problem detection. ACM Symposium on Operating Systems Principles, Big Sky, MT, to
appear.

CAREER 08-557 Enabling and Exploiting Evidence-Based Bug Triage E.5

89. Zhang, X. and Gupta, R. (2005). Whole execution traces and their applications. ACM Transactions on
Architecture and Code Optimization. 2(3), September, 301-334.

90. Zeller A. and R. Hildebrandt (2002). Simplifying and isolating failure-inducing input. IEEE
Transactions on Software Engineering, 28(2), February, 183–200.

91. Zeller, A. 2002. Isolating cause-effect chains from computer programs. ACM SIGSOFT Symposium
on Foundations of Software Engineering, Charleston, SC, USA, November, 1-10.

CAREER 08-557 Enabling and Exploiting Evidence-Based Bug Triage E.6

BIOGRAPHICAL SKETCH
ANDREW J. KO, PH.D.

A. PROFESSIONAL PREPARATION

Oregon State University Computer Science B.S. 2002
Oregon State University Psychology B.S. 2002
Carnegie Mellon University Human-Computer Interaction Ph.D. 2008

B. APPOINTMENTS

Assistant Professor The Information School, University of Washington, 2008 – present
Adjunct Assistant Professor Computer Science & Eng, University of Washington, 2008 – present
Research Intern Microsoft Research, Redmond, Summer 2006
Research Assistant HCI Institute, Carnegie Mellon University, 2002 – 2008
Research Assistant Computer Science Department, Oregon State University, 2000 – 2002

C. PUBLICATIONS RELATED TO THIS PROPOSAL

FIVE PUBLICATIONS RELATED TO THIS PROPOSAL

Ko A.J. and Myers B.A. (2009). Extracting and answering why and why not questions about Java
program output. ACM Transactions on Software Engineering and Methodology, to appear.

Ko A.J. and Myers B.A. (2009). Finding causes of program output with the Java Whyline. ACM
Conference on Human Factors in Computing Systems (CHI '09), Boston, MA, 1569-1578.

Ko, A. J., DeLine, R., and Venolia, G. (2007). Information needs in collocated software development
teams. International Conference on Software Engineering, Minneapolis, MN, May 20–26, 344-353.

Myers, B. A., Weitzman, D., Ko, A. J., and Chau, D. H. (2006) Answering why and why not questions in
user interfaces. ACM Conference on Human Factors in Computing Systems, Montreal, April, 397-406.

Ko, A. J. and Myers, B. A. (2004). Designing the whyline: a debugging interface for asking questions
about program failures. ACM Conference on Human Factors in Computing Systems, Vienna, Austria,
April, 151-158.

FIVE OTHER PUBLICATIONS

Ko, A. J. Myers, B. A., and Aung, H. (2004). Six learning barriers in end-user programming systems.
IEEE Symposium on Visual Languages and Human-Centric Computing, Rome, Italy, Sept., 199-206.

Ko, A. J., and Myers, B. A. (2006) Barista: An implementation framework for enabling new tools,
interaction techniques and views for code editors. ACM Conference on Human Factors in Computing
Systems, Montreal, Canada, April, 387-396.

Fogarty, J., Ko, A.J., Aung, H.H., Golden, E., Tang, K.P. and Hudson, S.E. (2005). Examining task
engagement in sensor-based statistical models of human interruptibility. ACM Conference on Human
Factors in Computing Systems, Portland, OR, 331-340.

Ko, A. J., Myers B. A., Coblenz, M. J., and Aung, H. H. (2006). An exploratory study of how developers
seek, relate, and collect relevant information during software maintenance tasks. IEEE Transactions
on Software Engineering, 33(12), 971-987.

Ko, A. J. and Myers, B. A. (2005). A framework and methodology for studying the causes of software
errors in programming systems. Journal of Visual Languages and Computing, 16(1-2), 41-84.

CAREER 08-557 Enabling and Exploiting Evidence-Based Bug Triage F.1

Amy J. Ko
MY

Amy J. Ko
A

D. SYNERGISTIC ACTIVITIES

Development of course on teamwork on software engineering with software industry
Guest editor of IEEE Software special issue on End-User Software Engineering
Chair of doctoral consortium, IEEE VL/HCC 2009
Frequent reviewer for ACM CHI, ACM UIST, IEEE VL/HCC
Program committee member for ACM IUI, IEEE ICPC, IEEE VL/HCC

E. COLLABORATORS AND OTHER AFFILIATIONS

COLLABORATORS AND CO-EDITORS

Htet Htet Aung, unaffiliated, Alan F Blackwell, Cambridge University, Margaret M Burnett, Oregon State
University, Duen Horng Chau, Carnegie Mellon University, Mauro Cherubini, Telefonica I+D, Michael J
Coblenz, Apple, Robert DeLine, Microsoft Research, James Fogarty, University of Washington, Scott
Hudson, Carnegie Mellon University, Thomas LaToza, Carnegie Mellon University, Brad Myers,
Carnegie Mellon University, Mary Beth Rosson, Penn State University, Gregg Rothermel, University of
Nebraska Lincoln, Christopher Scaffidi, Carnegie Mellon University, Gina Venolia, Microsoft Research,
Susan Wiedenbeck, Drexel University, Jacob Wobbrock, University of Washington.

GRADUATE AND POSTDOCTORAL ADVISORS

Ph.D. advisor at Carnegie Mellon University: Dr. Brad A Myers
B.S. advisors at Oregon State University: Dr. Margaret Burnett (CS) and Dr. Bob Uttl (Psych)

PH.D. STUDENTS

Parmit Chilana, Information School, University of Washington
Michael Lee, Information School, University of Washington (starting Fall 2009)
Lydia Chilton, Computer Science & Engineering, University of Washington (starting Fall 2009)

B.S. THESIS SUPERVISION

Michael Coblenz, Carnegie Mellon University (now at Apple)
Ray Barnhart, University of Washington
Benjamin Berlin, University of Washington
Philip Phung, University of Washington
Don Bushell, University of Washington
Charles Ko, University of Washington

M.S. THESIS SUPERVISION

Michael Coblenz, Carnegie Mellon University (now at Apple)
Yoko Nakano, Carnegie Mellon University
Gregory Mueller, Carnegie Mellon University

STAFF SUPERVISION

David Weitzman, Carnegie Mellon University
Duen Horn Chau, Carnegie Mellon University
Sun Young Park, Carnegie Mellon University

CAREER 08-557 Enabling and Exploiting Evidence-Based Bug Triage F.2

http://portal.acm.org/author_page.cfm?id=81100022210&CFID=13616949&CFTOKEN=54564423
http://portal.acm.org/author_page.cfm?id=81100022210&CFID=13616949&CFTOKEN=54564423
http://portal.acm.org/author_page.cfm?id=81100337865&CFID=13616949&CFTOKEN=54564423
http://portal.acm.org/author_page.cfm?id=81100337865&CFID=13616949&CFTOKEN=54564423
http://portal.acm.org/author_page.cfm?id=81311482767&CFID=13616949&CFTOKEN=54564423
http://portal.acm.org/author_page.cfm?id=81311482767&CFID=13616949&CFTOKEN=54564423

