
Attitudes and Self-Efficacy in Young Adults’ Computing Autobiographies

Abstract

Little is known about the formation of people’s first
perceptions about computers and computer code, yet it
is likely that these impressions have a lasting effect on
peoples’ use of technology in their lives and careers.
Brief autobiographical essays about these first
impressions were solicited from a diverse population of
young adults and these essays were analyzed for
factors that contributed to positive and negative
attitudes about technology, formation of self-efficacy,
and authors’ relationship with computing later in life.
The results suggest that first encounters with code must
be accessible, error-tolerant and socially engaging, that
mentorship can be a crucial factor in the acquisition of
programming skills, and that cultivating positive self-
efficacy in programming skills requires repeated
positive exposure across the lifespan. These results raise
several issues for novice programming languages and
tools and suggest a number of new approaches to
computing education.

1. Introduction

Society is increasingly reliant on the world’s
software infrastructure. From younger populations who
live their personal lives on social networking sites [16]
to growing elderly populations discovering e-mail as a
way to connect with family [8], people around the globe
are accepting technology into their lives as an essential
means of personal contact and commerce.

The people who improve and maintain this software
infrastructure, however, are a much smaller group.
These are the computer scientists, programmers, IT
administrators, web developers, and systems analysts,
among us, the technically trained individuals who at
some point in their lives, decided that computer
technology would not only be part of their personal
lives, but also the core of their professional careers.

Unfortunately, while these professionals are in rising
demand [7], technical professions such as these are still
viewed as the least popular subjects in some countries

[13], while computer science enrollment in the United
States is dropping or stagnant. Furthermore, people’s
first experience with computer code and programming
are often so negative, it is enough to turn them away
from technical professions [2]. As our dependence on
information technology increases, these perceptions and
first impressions about computing are perhaps the
greatest barrier to growing and maintaining a worldwide
workforce of computing professionals.

What then makes some first exposures to computing
successful and others not? Is it the design of the tools?
The parental support? The feedback of teachers? What
other factors might be involved? There has been
considerable research on teaching programming (e.g.,
11) and also work about academic enrollment in
computer science (e.g, [10]), but little work that
analyzes people’s encounters with computing across the
lifespan, and how these encounters interact with career
choices. This study begins to address this gap.

To explore people’s encounters with code, we
solicited autobiographical essays from 58 students
pursuing a degree in informatics. Their essays revealed
a number of common paths leading to and away from
computing careers, indicating several crucial factors in
the decisions to pursue technology related careers. One
of the findings was that respondents’ early encounters
with code were often simple, social and rewarding,
whereas their later encounters with code were painful,
disheartening and forced. Furthermore, many
respondents’ impressions of programming, despite
positive early experiences, were conflated with
impressions of academic computer science, which was
described as cold, rigid, proud, and divorced from any
relevance to people and society. These results give
researchers and educators a more nuanced idea of how
to address this present and future challenge of
encouraging the pursuit of technology careers.

In the rest of this paper we review prior work that
has investigated people’s perceptions of computing
careers and then discuss our methodology and results in
detail. We end with a discussion of the implications of
our results on education, software development tools
and academic and industrial recruitment.

2009 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

978-1-4244-4876-0/09/$25.00 ©2009 IEEE
67

Amy J. Ko
The Information School | DUB Group

University of Washington
ajko@u.washington.edu

2. Related Work

At the heart of any person’s career trajectory is one’s
perceived self-efficacy at a set of skills [1]. This notion
of self-efficacy refers to people’s beliefs about their
abilities to exercise influence over events that affect
their lives (at work or elsewhere). Research on
children’s career trajectories shows that perceived self-
efficacy influences aspirations, the strength of
commitments, the quality of strategic and analytical
thinking, motivation and perseverance, and even causal
attributions of success and failure [1]. In general,
evidence shows that children’s formation of self-
efficacy is crystallized at a young age.

We know a great deal about what influences self-
efficacy. Parental engagement is one factor, but gender
biases imposed by parents and society also play a role.
This is related to Erikson’s theory of psychosocial
development [9], which centers around the notion of
identity (the sense of self we develop through social
interaction). The later stages of identify formation
center around the formation of competence and belief
about skills. People who receive encouragement from
parents, teachers and peers develop confidence in their
ability to be successful at particular tasks. Those who do
not remain unsure about their abilities. This theory
would predict that individuals who learn about
programming with the help and support of mentors or
with the positive reinforcement of peers, would form an
identity around their newly developed skills.

Some prior work relates self-efficacy to computing
careers. For example, one of the most visible efforts in
past years has been efforts by computer science
educators to understand the gender gap in computer
science student populations. In a series of studies during
the 90’s, Fisher and Margolis investigated gender issues
in an undergraduate computer science program [10]
finding that women had significantly less coding
experience, that they came to computing later in life
than men, and that women were conflicted about
adopting “geek identity” so pervasive in the computer
science program. However, these studies involved
students who already had developed some perceived
self-efficacy in computing; they do not explore the
origins of this self-efficacy.

Other efforts have focused on the debate around the
notion of digital natives [4], who grow up with
technology and the expectation that one continually
learns and cultivates skills around new technologies.
The argument is that digital natives show few aversions
to learning technologies, because from an early age,
they were expected to learn new technologies. The
hypothesis is that this early engagement leads to
improved learning skills (hence, self-efficacy).
Detractors point out that not all children and young
adults have the same comfort with digital technology,
even when surrounded by it from an early age.

Other work focuses on designing new programming
tools to foster self-efficacy. The Alice 2 programming
environment [6] was designed to create interactive 3D
worlds, and later augmented to facilitate storytelling by
middle school girls. In studies of these efforts, the type
of content and ease with which people could create
personally relevant content were both crucial factors in
affecting motivation [14]. Hundreds of similar systems
have similar goals, with varying degrees of success
[14]. Beckwith et al. studied the influence of tool design
on self-efficacy in these types of programming
environment, revealing that the design of computing
tools can affect self-efficacy in subtle (and gender-
specific) ways [3]. Blackwell’s attention investment
model, which proposes concepts of risk and reward
perception, is also related to self-efficacy, in that both
operationalize peoples’ beliefs in their ability to acquire
new skills [5].

Perhaps the most relevant prior work was a study of
German university students, comparing computer
science majors to psychology majors [18]. They
described the psychology majors as having low
technical self-efficacy and viewing software one of
many tools, and described the CS majors as having high
technical self-efficacy and as seeing no boundaries
between software use and software design. The study
presented here is different in sample: the students in the
present study are from the United States, which may
reveal some cultural variations and were all majoring in
a technical, but non-CS degree. The essays we solicited
were of a longer and more consistent length.

3. Method

The goal of the study was to understand the technical
and social contexts of peoples’ encounters with code. To
gather this data, students in an informatics class about
user-centered design were asked to write 1000-1,500
word biographical essays on first encounters with
computing technology, first encounters with computer
code, the current role of technology in their lives, and
the relationship between these three topics in their lives.
As part of their essays, they were asked to provide their
age, gender and city of birth. They were also told that
the essays would be kept confidential, with the
exception of anonymized quotes. All students agreed to
write essays instead of completing an alternative course
assignment.

One reason for choosing this sample is that
informatics degree program from which students were
recruited has a reputation for attracting students that
either did not get accepted into a computer science
degree program, do not enjoy programming (though
many do), but do enjoy technology. Our analysis of the
respondents’ essays was an opportunity to explore a
potentially diverse set of motivations for choosing the
degree program that they did.

68

To encourage some degree of uniformity to the essay
topics, respondents were provided with a “lure text,” an
example essay by the author1 to direct participants to
interesting topics without explicit instruction to do so.
There are a number of ways in which this text could
have influenced responses, for example, by creating
expectations about a certain structure, tone, or type of
story. Given these limitations, the essay form gave
respondents time to reflect on and refine their
responses, which would not have been possible with
interviews or surveys.

Among the 58 respondents, there were 46 men and
12 women, with an mean age of 22 (±3), ranging from
21 to 41. As shown in Figure 1, respondents were raised
in a variety of countries, including the United States,
Korea, Russia, Philippines, Taiwan, Armenia, Myanmar,
Malaysia, Vietnam, England, and China. Most
respondents were from the United States (44), and of
these, most were from the state of Washington (25). Of
course, many of the respondents had moved multiple
times, whether within the US or to it. All students had
taken three introductory computer science courses,
including advanced data structures.

The essays were analyzed by first reading the essays
in detail, recording possible trends in the essay texts
related to factors that respondents described as
influencing their confidence in technical skills. A
second pass through the essays was performed to assess
the prevalence of each of the trends identified in the
collection of essays. Trends that appeared in roughly
more than a quarter of the essays were selected read in
more detail. The results presented in this paper, and the
quotes selected to illustrate them, represent the result of
this process.

4. Results

While there was considerable variation in the
respondents’ essays, there were also a number of trends
in respondents’ encounters with computers and code
and the role of mentorship in supporting self-efficacy.
For example, no single encounter with technology or
code was seen as fundamental to pursuing technology
careers. Instead, encounters were cumulative and a mix
of positive and negative. Respondents identified several

specific technologies as crucial in determining their
attitudes, including “The Oregon Trail,” an educational
software game of the mid-80’s, programmable Texas
Instruments graphing calculators (such as the “TI-82”)
in the 90’s, and the view source command of early web
browsers. Finally, positive encounters with code
involved friendship, mentorship and play; negative
encounters involved a distinct sense of failure. This
raises issues of social context, motivation, and self-
efficacy. We discuss each of these trends in turn, with
supporting quotes from the essays. When quotes are
used, they are intended to capture a larger pattern across
all of the essays.

4.1. Encounters with computers

Although the focus of this study was respondents’
encounters with code, the respondents’ encounters with
digital technology are important in making sense of the
their programming experiences. One way of
characterizing these experiences is to think about the
roles that technology played in respondents’ lives. One
respondent from Vietnam described these roles well, in
describing the first time he saw a computer:
It was a place where a lot people were sea.ng [sic], s.cking
their eyes to square boxes, some people were smiling, some
people were laughing, also some people looked serious but
they were doing same thing that their two hands always and
always on a thin rectangle box looked like type writer.

Across the essays, respondents used computers to
learn, play, socialize and work. Based on the data, the
primary role was play in the form of video games. They
played games on video game consoles, as well non-
educational games on personal computers. Many
expressed high positive affect for video games both in
their early youth and present life:
From a very early .me in my life technology, and par.cularly
video games, have had a large influen.al role in my life...This
shaped my free .me, ac.vi.es, the people I got along with,
and my class choices as I grew.

Others appropriated tools intended for work to play:
I remember opening the calculator, paint, and notepad
programs. The calculator was preCy niDy at the .me, but I was
not as thrilled by it as much as paint. I had a blast with that
program.

Not all respondents mentioned playing video games,
and if they did, not all mentioned enjoying them. Some
suggested that games merely passed the time.
I never really understood the minesweeper game mostly
because I kept hiEng the mines and losing right away. So I
mostly just played around with solitaire. ADer a while of just
playing games on it, I became a bit bored. That’s when I
decided to explore around and look into the other folders.

1 The lure text used is available at http://faculty.washington.edu/ajko/appendices/lure.html.

Figure 1. Countries in which respondents were raised.

69

Many respondents’ first encounters with computers
as entertainment occurred in learning contexts at school.
Most of the respondents were part of an era in North
America in which computers were just beginning to
play a role in formal education. Respondents mentioned
playing educational games, especially The Oregon Trail
and Math Blaster, and learning how to use word
processors and spreadsheets. While in many cases
respondents were required to participate, most enjoyed
them:
The more I struggle to remember that day, the easier it all
comes back; the sharp click of the 1‐buCon mouse, the
confusing array of leCers not arranged in any discernible order
on the keyboard, and of course the sheer exhilara.on that was
The Oregon Trail (and dying from dysentery)...From that day
forward, my mind married the two concepts of compu.ng and
fun.

Respondents also used technology to socialize,
sometimes in the form of collaborative online games, or
just to communicate:
I remember making my mom sign up for Prodigy, Compuserve,
and finally staying with AOL. Compuserve had a chat system
and I remember being so amazed at how cool it was to talk to
people all over the country and world in an instant. I made a
couple online friends.

Some respondents mentioned being required to use
computers as work tools (for example, as a word
processor or spreadsheet), most of the respondents’
earlier encounters were not particularly goal driven.

These four roles of computers were not always
independent. The Oregon Trail was entertaining, but it
was also intended to be educational. Some respondents
mentioned playing with Excel, by typing in numbers
and making graphs. Most of the games that respondents
played for fun were played with others.

4.2. Encounters with code

For most respondents, computer code played a later
role in their gravitation toward technology careers,
though some first encounters with code were also first
encounter with computers. The most common first
encounters with code were the view source command of
most browsers and the DOS command prompt.
Respondents indicated that these were the first times
that they had ever seen computer code:
[Dad] wasn’t the guru with the answers to my endless list of
ques.ons and I’m glad he wasn’t because that forced me to
find out the answers for myself. ...he gave me one last piece of
advice: I was pointed in the direc.on of View > Page Source
and found the holy grail, the motherload, the Fort Knox of
confusing gibberish.

Other common encounters included the BASIC
programming language included with many common
platforms in the 80’s and 90’s:
My inten.ons were to create a game whose .tle in this manual
had aCracted my aCen.on. It wasn’t un.l years later I realized

I had been copying BASIC code that would have programmed a
game for me.

Texas Instruments graphing calculators were also a
common for respondents first code encounters:
I spent quite a bit of .me with a third good friend (whom I also
live with) making games on the calculator. The culmina.on of
our efforts was in a text based role playing game we called
Arena. There were duels and experience points and items and
weapons and spells! What beau.ful days those were.

Less common encounters were through productivity
tools, for example, one student learned Excel formulas:
We needed to derive a set of data from a given set and then
present it in a graph. At first I thought it wasn’t too useful to
know spreadsheet codes because I can always do the
computa.on using my calculator. However, it became painful
and .me consuming when I dealt with more than one hundred
entries... I learned to appreciate the use of computer codes the
hard way.

Some respondents learned to code in video games:
StarcraD had a map editor, which essen.ally allowed you to
design a stage. The editor had op.ons to cause events or
certain things to trigger events. The coding was very simple...
It was difficult to learn at first, but it got easier when I looked at
other examples of stages to help me with the editor.

The crucial factor behind all of these encounters,
however, were the contexts and motives. One of the
most common reasons to learn the DOS command
syntax was to launch games with the help of a parent,
sibling, or friend. In other cases, parents had shown
their children the view source command or they had
stumbled upon the command when trying to learn how
to create their own web pages for social reasons,
including publicizing a group for a multiplayer online
game or creating web pages to share with friends (pre-
MySpace). In the case of the graphing calculators, the
impetus for programming was often to create and play
games during math class, or to create simple tools to
help automate computations for homework or exams.

Of course, many first exposures to code were more
structured, such as after school programs, high school
courses, or introductory college programming courses.
There were a number of distinctions between these
different types. First, the after school, summer camp
and high school courses were often described as
elective and voluntary (or by the suggestion of the
parent). Respondents attitudes towards these were
typically positive:
Once I reached high school, ... I took the class the first chance I
could, and immediately found myself excelling ahead of the
class due to my prior experience with web development
growing up. The teacher of the class also happened to be my
new cross country coach... Through these two ac.vi.es I
became very close with my teacher and coach, and con.nued
to take many programming classes.

In contrast, college programming courses provoked
strong negative feelings from most respondents:

70

This carried me through high school into college where my love
of programming has been brutally murdered by out of control
CS Monsters. I said earlier that my love of the subject maCer
was inspired through socializa.on. Well, many of the people I
have met in the CS major have grated on my nerves like a
cheese grater. They are possibly the most proud people I have
ever met.

ADer 143 [a data structures course], I felt drained and worn out
from programming. I started to think I wasn't meant to do any
coding because of all the stress I went through...

I realized that I not only wanted to gain the technical
background of how computers work and how to develop
applica.ons, but I also wanted to see how that affected people
who use computers. ... what good it was to build a super
computer that did anything imaginable, if there was no
demand for it.

...the next class got more into serious programming, and more
relevant to what professional programmers do for a living. I
absolutely loathed this class and its content. I found it boring
and stale, like a math class.

These and other opinions generally centered around
the formality of the course content and its and
irrelevance to humanity and society.

Not all respondents disliked the introductory
computer science courses.
Finally, everything fell in place and I felt like I just climbed
Everest. The thirst for this feeling of accomplishment is what
kept me going in between each coding project.

My scaCered understanding of code became more organized
when I took CSE 142, the introductory Java class. Again I was
fascinated by the intricacies and paCerns that emerged.

...made that quarter a programming hell. Yet, I persevered,
and actually really enjoyed the long hours I put into coding and
op.mizing algorithms.

One last kind of first encounter with code was as an
employee. Several respondents’ first encounter was in
testing code, or in creating web sites for a company. Of
course, the motivational subtext to these, as compared
to classes, is quite different: respondents talked about
their skills being used for something explicitly useful as
well as being paid for their work:
Six months working at Boeing and con.nue working while in
school as intern (part .me work) I have successfully made one
soDware engineer got mad on me because of 15 soDware bugs
I found on one of his soDware client (part of the whole
applica.on).

There were other unique circumstances, including
one respondent whose boyfriend taught her how to
program in order to help her pursue a new career.
Others learned on the job, using code as a means to
accomplish their work:
...my supervisor asked me if I could work on a Visual Basic
script that would automate weekly processing of billing
reports. He told me I could either take that project, or
con.nue do boring billing reports in Excel. I took the more
challenging route and ended up producing a very useful and
powerful script that saved the company many man‐hours and
dollars.

4.3. Mentorship

Mentorship was often a crucial component of
respondents’ encounters with code. In some cases,
parents were a guiding force in respondents’ technology
experiences:
When my step‐dad ran out of things to take away, he finally
decided to give me things to do. One day he purchased a big
book of Borland C++ and told me that once I finish every single
exercise in the book and pass all the tests, I could get all my
other freedoms back. I toiled over it for four long months but
came out of it a beCer man.

The first one was my dad teaching me basic DOS commands
because the computer games that we had at the .me were all
DOS based games.

I would be willing to say though that my first exposure to code
set me on the path to becoming a developer “just like my dad”

...my father never ceased to bring home the newest and
coolest thing that technology could offer.

Another fond memory of going to work with my father was the
dumpster diving... Before each move, there would be
dumpsters lined up in the aisles for people to discard unwanted
computers and components... I used these computers to build
my understanding of how to install and configure an opera.ng
system.

Clearly, some of these mentoring experiences were
quite heavy handed, while others were more subtle. This
was also true for mentoring friendships and for
respondents’ own mentoring experiences:
I met my best friend — through a hacking compe..on at
college. Remembered we were assigned at the same team...
We eventually won the contest and he was the first guy I ever
met really know about Linux, a world that I never know before.

...many of my close friends on my street had gone through
similar experiences and were intrigued with computers as well.
My first exposure to computer code came in 6th grade when
one of my older friends showed me the website he had wriCen
in HTML.

Underlying these experiences and others were
several forms of coercion, such as the expectations of
friends (to create a website to support a social group), or
the expectations of parents and teachers.

4.4. Programming and Self-efficacy

It was common for respondents to describe their
encounters with code as life-long, indirect, and
cumulative. There was no single event in each
respondents’ story that was the determining factor in
their (dis)interests in pursuing technology careers:
I don’t think any one of those experiences set my life on a path
of how and why I use computers or even why I want to be at
the forefront of computer technology development.

To respondents, none of these encounters explicitly
changed their attitudes toward code; rather, technology
played a slowly increasing role in their lives until it was
recognizably important. These experiences over each

71

respondents’ lifespan were often disjoint, and separated
by many years. However, respondents were definitive in
their descriptions of their career decisions. Most
focused on the negative perceptions of programming as
an activity:
So I believe my facul.es to work with a computer were more
than capable at this early age. Unfortunately none of the
programming I aCempted ever succeeded, I s.ll remember the
biCer taste of failure. And now that I men.on it, that might
have been my first conscience realiza.on of failure.

I know that programmers will make preCy good money, but I’d
rather work at a place that I enjoy.

Others focused more on perceptions of themselves
that made programming an unsuitable career choice:
I know I’ll never be good enough to make decent games and I
don’t think I want to do that as a career because of how .me
consuming it can be and not to men.on it’s a pain in the buC
to do as a job.

When college came I fought against this no.on of not liking
programming and eventually gave way to not being good
enough at programming...It wasn’t that I hated programming it
was that I didn’t have the pa.ence or the trust for it.

Those that enjoyed programming tended to also
focus on the characteristics of programming activity,
rather than characteristics of themselves.

5. Discussion

The intent of this study was to document peoples’
encounters with code across the lifespan, in order to
learn about how future generations can be enticed to
pursue technology careers. Like Schulte and
Knobelsdorf’s study [18], we found a continuum of
attitudes, with some respondents viewing software as a
tool to use, and others blurring the line between
software use and software design.

In addition to replicating these results, our data also
revealed several insights about how students arrived at
these various perspectives on technology:

• There were several specific technologies that
respondents remember influencing their interest in
code, including BASIC, Texas Instruments
graphing calculators, and the View Source
command of web browsers.

• Mentorship, from parents, friends and teachers
was a common but not universal way that
respondents engaged with computer code. From
the essays, it does not sound that mentorship is
either necessary or sufficient, but it can be
instrumental in influencing computing interests.

• For some people, even a lifetime of interest in
technology and computing is not enough to entice
them to pursue careers in programming, though
respondents’ perceptions about programming jobs

are inaccurate and seem heavily influenced by the
culture of college computer science courses.

These insights have several implications. We will
discuss these starting from the scope of programming
tools, moving outwards to the whole of society.

5.1. Implications for Programming Tools

Out of all of the technologies that could have
successfully introduced respondents to programming,
what made Texas Instruments graphing calculators,
BASIC, and browsers’ view source command so
successful? We can speculate about key traits that these
technologies have in common:

• Accessibility. The graphing calculators had a
dedicated “PRGM” button; view source showed
code in a single click; and in the days of DOS, the
BASIC IDE was six keystrokes away from ones’
first program.

• Error-tolerance. These three technologies were all
either forgiving of errors, or had such simple
syntax that errors were unlikely in simple
programs. This meant that respondents were likely
able to successfully create program output without
immediately facing the challenge of debugging.

• Socially-engaging output. Respondents shared the
results of the programs they created, whether
through the utility of a solver on a calculator, the
broadcasting of group identity on the web, or text
adventures or audible output in a simple BASIC
program. They created programs for the output
that the programs produced, not for the program
itself.

The motives behind most of these encounters with
code were about supporting social relationships or
reinforcing an interest in video games (for example, the
desire to create the things that one enjoys using).

There are problems with most of these technologies
today, first being that they are less accessible. “View
source” features of web browsers are less viable ways to
learn HTML because most web pages are too complex
to see a simple example (or worse yet, it is
automatically generated and no longer human readable).
The textual and numerical output of graphing
calculators may no longer be as enticing. Windows
Vista and Mac OS X no longer come with simple
programming tools like BASIC.

One of the central efforts to replace these
experiences with something more generationally
appropriate is Alice 2 [6], spearheaded by the late
Randy Pausch. The design philosophy behind Alice is to
create an accessible, error-preventing, and social
programming experience. Although access is still a
challenge (downloading over 100 MB and following an
installation procedure is not nearly as simple as the
examples from the 80’s), it has more than succeeded in

72

motivating learners and supporting their social goals
[14]. These same goals have been successfully
introduced into computer science courses [11].

A central problem for future efforts in programming
tools will be to solve these access problems, but also to
provide people with a variety of content with which to
be social. Are children still enticed by animation? What
about social applications, such as on Facebook? How
can programming environments be deployed on the
web, to simplify access and support the social aspects of
learning to program?

5.2. Implications for Early Education

As discussed early in the related work, self-efficacy
and identity are formed earlier in life, thus any efforts to
instill a curiosity about code must likely come early to
be sustained later in life. The results of this study
suggest that mentorship can and should play a central
role in ensuring future generations of technology
professionals. K-12 teachers, if given the opportunity,
could seek opportunities for children to learn and create
with code, allowing children to work together and help
each other. To do this, researchers may need to identify
and design technologies that support these endeavors.
Educators then need to recognize that this type of
learning benefits greatly from collaboration, and avoid
worrying about cheating and credit, in favor of more
marketplace-driven skill acquisition, as in some
research-inspired workshops [17].

Several of the respondents mentioned childhood
friends who essentially acted as a gateway to
programming skills, enticing them with what the friend
had created and then leading them through the process
of acquiring the skills. In much the same way, several
respondents mentioned parents playing the same role.
There are a number of things that parents can do to
increase the likelihood of these experiences. For
example, parents could create and run summer
workshops that introduce children to each other and to
code. Researchers could be involved in designing
curriculum, tasks and tools that increase the chances of
establishing mentoring relationships between children
and even other parents.

5.3. Implications for Higher Education

Almost universally, the respondents disliked the
introductory computer science courses. This may
simply be a sampling bias, since some of the students
reported not doing well in these courses. On the other
hand, respondents identified several specific critiques
that have been reported in other studies of computer
science education [10]:

• CS department culture and pride. Respondents felt
that other more successful peers were elitist,
exclusive and anti-social, rather than collaborative

and inclusive. They also tended to generalize these
perceptions to the software industry at large, rather
than just the computer science department.

• Mathematical instruction. Respondents felt that
computer science was too focused on the discrete
math foundation of programming and less on what
programmers create and enable with software.

These findings do not necessarily suggest changing
computer science departments themselves. Many
faculty in computer science departments may think of
the above characteristics as desirable parts of computer
science department identity. Whether or not this is an
effective perspective, it is clear that this perception
seems to force an artificial decision upon people with
interests in programming: to be a “programmer,” one
must also adopt “programming culture.” The
unfortunate thing about this choice is that so many of
the respondents in this study had lifelong positive
experiences with programming, only to abandon them
in college because of misperceptions about the
similarity between academic computer science culture
and the software industry. Most studies of software
development practice show that far from being elitist
and anti-social, it involves a great deal of social
interaction, inclusion and creativity [15]. Thus, at the
very least, computer science departments and other
technology related academic schools need to ensure that
their academic cultures more closely mimic the cultures
of practice for which they prepare students.

5.4. Implications for Society

Although the focus of this paper was in cultivating
technology professionals, there are countless other
professions that have similar goals. There are several
efforts to encourage more women to participate in
science (e.g., www.awis.org), for example. There are
countless efforts in middle schools and high schools to
expose children and young adults to a variety of careers
and professions, sometimes through invited speakers,
but also through job-shadowing. Where do efforts to
cultivate a generation of technology professionals fit
into this larger societal context?

Perhaps the most important finding here was that no
one positive experience with code was enough to keep a
person engaged with coding throughout their lifetime;
instead, it required persistent, cumulative positive
exposure (as is suggested by general research on self-
efficacy [1]). This suggests that not only will children
need positive first encounters with code at a young age,
but they will need additional, and different experiences
throughout middle school, high school, and college. A
single programming environment and tool will not be
enough, nor will an engaging workshop. Instead, we
need to design a collection of diverse experiences with
code to cultivate future generations of technology
professionals.

73

5.5. Limitations

As with any study, there are several limitations to the
conclusions we can draw from this data. First, while the
respondents’ varied in age and backgrounds, they were
all students at the same university and the majority were
from the northwest region of the United States, which is
one of a few regions with a predominance of
professional programmers (some respondents
mentioned that their parents were in fact professional
developers). Furthermore, the sample did not include
students avoiding technology related careers altogether.
Therefore, there is some degree of self-selecting bias
here, since most of the students in the course want
technology to be part of their lives and careers. There
may be other populations of people with similar
experiences with code across their lifespan, but who did
not pursue technology careers for a variety of reasons.
This makes it difficult to know if the factors identified
by respondents play a causal role in the pursuit of
technology careers. Furthermore, the sample only
included a few students also pursuing computer science
degrees; computer science students may have
substantially different experiences across their lifespan.
Lastly, this sample comes from a particular historical
era and earlier or later generations may differ greatly.

Besides sampling limitations, the insights discussed
in this paper are a narrative constructed by the
subjective and unavoidably biased views of the author.
Great effort was made to avoid taking quotes out of
context, but the generalizations and interpretations of
the essays are inherently limited to a single perspective.
There are several facts about the author that may help in
interpreting the validity of the results in this paper: he
shared many generational experiences with the
respondents, programming and video games were a
primary source of entertainment and social experiences
in his life, and like many of the respondents in the
sample, he was raised in the northwestern United States
(but not by parents who worked in the software
industry).

6. Conclusions

As society increases its reliance on software, it is
increasingly important to maintain a skilled workforce
of technology professionals. The results reported here
suggest that improving education is an important but
insufficient part of this effort. To truly cultivate a
population of skilled software developers, parents of
young children and K-12 educators should help children
find socially engaging and mentorship-driven ways of
playing with code across their lifespan. To enable this,
researchers should focus on accessible, error-tolerant,
and socially engaging programming languages to
facilitate these efforts.

7. References
1. Bandura A., Barbaranelli C., Vittorio Caprara G., Pastorelli

C. (2001). Self-efficacy beliefs as shapers of children's
aspirations and career trajectories. Child Development,
72(1), 187-206.

2. Beaubouef T. & Mason J. (2005). Why the high attrition
rate for computer science students: some thoughts and
observations. SIGCSE Bulletin 37(2), 103-106.

3. Beckwith L., Kissinger C., Burnett M., Widenbeck S.,
Lawrance J., Blackwell A., & Cook C. (2005). Tinkering
and gender in end-user programmers' debugging. ACM
Conf. on Human Factors in Computing Systems, 231-240.

4. Bennett S., Maton K. & Kervin L. (2008). The ‘digital
natives’ debate: A critical review of the evidence. British
Journal of Educational Technology, 39(5), 775-786.

5. Blackwell A.F. (2002). First steps in programming: A
rationale for Attention Investment models. IEEE Human-
Centric Computing Languages and Environments, 2-10.

6. Cooper S., Dann W., Pausch R. (2003). Teaching objects-
first in introductory computer science. SIGCSE, 191-195.

7. U.S. Department of Labor, Occupational Outlook
Handbook (OOH), 2008-09 Edition.

8. Day J., Janus A. & Davis J. (2005). Home computers and
internet use in the united states. U.S. census bureau,
Washington, DC. Retrieved Sept. 24th, 2008 from http://
www.census.gov/prod/2005pubs/p23-208.pdf.

9. Eagle M (1997), Contributions of Erik Erikson,
Psychoanalytic review 84 (3), 337–47.

10. Fisher A. & Margolis J. (2002). Unlocking the clubhouse:
the Carnegie Mellon experience. SIGCSE 34(2), 79-83.

11. Forte A. & Guzdial M. (2005) Motivation and non-majors
in CS1: Identifying discrete audiences for introductory
computer science. IEEE Trans. on Education, 48(2),
248-253.

12. Glaser, B. (1992). Basics of grounded theory analysis. Mill
Valley, CA: Sociology Press.

13. Hendley D., Stables A., Parkinson J., & Tanner H. (1996).
Pupil’s attitudes to technology in key stage 3 of the
national curriculum: A study of pupils in South Wales. Int’l
J. of Tech. and Design Education, 6, 15-29.

14. Kelleher C., R. Pausch, & S. Kiesler (2007). Storytelling
Alice motivates middle school girls to learn computer
programming. ACM Conf. on Human Factors in
Computing Systems, 1455-1464.

15. Ko A.J. DeLine R., & Venolia G. (2007). Information
needs in collocated software development teams. Intl.
Conference on Software Engineering, 344-353.

16. Lampe C.A., Ellison N., & Steinfield C. (2007). A familiar
face(book): profile elements as signals in an online social
network. ACM Conf. on Human Factors in Computing
Systems, 435-444.

17. Rosson M.B., Carroll J.M., Seals C., & Lewis T. (2002).
Community design of community simulations. ACM Conf.
on Designing Interactive Systems, 74-83.

18. Schulte C. and Knobelsdorf M. (2007). Attitudes towards
computer science-computing experiences as a starting
point and barrier to computer science. Intl. Computing
Education Research Workshop, 27-38.

74

