
Cleanroom: Edit-Time Error Detection with the Uniqueness Heuristic

Andrew J. Ko and Jacob O. Wobbrock
The Information School | DUB Group

University of Washington
{ajko, wobbrock}@uw.edu

Abstract

Many dynamic programming language features,
such as implicit declaration, reflection, and code
generation, make it difficult to verify the existence of
identifiers through standard program analysis. We
present an alternative verification, which, rather than
analyzing the semantics of code, highlights any name or
pair of names that appear only once across a program’s
source files. This uniqueness heuristic is implemented
for HTML, CSS, and JavaScript, in an interactive editor
called Cleanroom, which highlights lone identifiers
after each keystroke. Through an online experiment, we
show that Cleanroom detects real errors, that it helps
developers find these errors more quickly than
developers can find them on their own, and that this
helps developers avoid costly debugging effort by
reducing how many times a program is executed with
potential errors. The simplicity and power of
Cleanroom’s heuristic may generalize well to other
dynamic languages with little support for edit-time
name verification.

1. Introduction

Dynamic languages such as JavaScript, Perl, PHP,
Python, and Ruby have quickly become the foundation
of the interactive web. And with good reason: their
support for implicit declaration, reflection, code
generation, and other dynamic features frees developers
to quickly express and iterate on code without worrying
about variable declarations or types. For example,
because JavaScript’s objects are essentially hash tables,
developers can customize objects with unique
properties and other metadata (as in object.checked =
true, where no such property checked has been
declared), construct property references at runtime (e.g.,
calendar[‘week’+week]), and dynamically modify
and generate functions on the fly. It also allows
developers to use reflection in more facile ways,
inspecting whether objects have certain properties (e.g.,
object.hasOwnProperty(‘checked’)).

Of course, this benefit also imposes a great cost:
because program entities need not be declared, there are
few opportunities for compilers or interpreters to warn
developers about identifiers that might not exist,
deferring the detection of many errors to runtime. For
example, if the developer who wrote the code in the
previous paragraph had typed cheked instead of
checked, there would not have been a warning that the
property was undeclared until the code executed; worse
yet, many identifier names appear in string literals,
making them impossible for traditional type checkers to
verify.

While the semantic name resolution in dynamic
languages is not possible, there has been little research
on alternative forms of verification. In this paper, we
present one such verification, which we call the
uniqueness heuristic: any name or pairs of names that
occurs only once in a program is likely unintended. We
explore the merits of this heuristic with Cleanroom
(Figure 1), a new web-based editor that implements the
uniqueness heuristic for HTML/CSS ids and class
names, Javascript variables, object properties, function
names, and string literals.

Figure 1. Cleanroom: a web-based, bug-finding
JavaScript/HTML/CSS editor.

Although the uniqueness heuristic is simple, we have
found it to be powerful: through an online experiment
that asked users to complete a JavaScript-based
calculator program, we show that Cleanroom identifies
a variety of legitimate errors, that Cleanroom users
identify these errors faster and that they find these errors
before executing their programs. These results
demonstrate that the uniqueness heuristic, and
Cleanroom’s implementation of it for popular client-
side web scripting languages, is an effective means of
detecting problems with identifiers, without requiring
developers to declare names.

In the rest of this paper, we discuss other forms of
bug detection and prevention for dynamic languages
and then describe Cleanroom’s design and
implementation. We then describe the details and results
of our experiment and discuss the implications of our
work on the future of editors and dynamic languages.

2. Related Work

Although the existence of a name can be difficult to
verify in dynamic language code, there are a variety of
approaches that can detect and prevent some forms of
errors. First and foremost, many errors in HTML and
CSS code occur not because of semantic errors, but
because of syntax errors. HTML and CSS validators can
find syntax violations and check for duplicate HTML
identifiers and reserved words. These validators do not
check semantics; for example, they do not verify
whether an HTML class name referenced in a CSS rule
appears anywhere among the HTML files of a web site.
Some systems attempt to statically validate dynamically
generated HTML, but require the use of specification
languages [2].

Beyond syntax errors, there are many tools that cat
detect potential errors by identifying error-prone use of
language constructs. One notable tool is JSLint (http://
jslint.com), which checks for a missing semicolons,
inappropriate line ending punctuators, risky
expressions, unreachable code, and also any variable
that is not declared with the var keyword. JSLint does
not check property names of objects, because properties
can be dynamically assigned and deleted, but it does
generate a list of all identifiers string literals, which
developers can look through for misspellings. Google’s
Closure compiler (http://code.google.com/closure/) also
catches common JavaScript errors, including redeclared
variables, function names that mask variables, redefined
namespaces, references to variables before declarations,
and potentially unused object properties. While both
tools detect many important errors, they also detect
many false positives, because the heuristics used are so
strict. Such high false positive rate can limit the utility
of warning messages [5].

Modern web development tools also provide error
prevention features through auto-completion. For

example, Dreamweaver’s code hinting keeps track of
JavaScript frameworks declared with object literal
notation, to support some auto-completion (e.g., typing
YAHOO.util. will show all known properties and
functions of the utility object in the Yahoo UI toolkit).
Visual Studio 2008 has similar features, also supporting
some type checking. For example, it is aware that the
standard document.getElementById() function returns
an HTMLElement type, and propagates this knowledge
through a function, so that auto-completion can display
an object’s functions and arguments. Both auto-
completion tools prevent errors by having developers
select identifiers rather than type them. Unfortunately,
neither system propagates knowledge through aliasing,
where one variable is assigned to another. Moreover,
these features only work when code is syntactically
correct, forcing developers to correct syntax errors
elsewhere in their code before getting feedback about
problems with the code they are writing.

In recent years, researchers have begun to focus on
more sophisticated ways of detecting errors in web
applications. For example, researchers have used user-
session data to generate tests [3,8]; these, however,
require an application to be deployed. Another approach
crawls the state space of AJAX applications [4],
detecting many real errors in the process, but requires
developers to configure the system for each program,
choosing application-specific invariants (which the
authors admit, can be quite difficult). Artzi et al.
describe a similar approach for PHP programs, using
symbolic execution and model checking to capture
logical constraints on inputs, which are then used to
check for crashes automatically [1]. These approaches
are heavyweight and require significant developer effort
to use and configure. In contrast, Cleanroom requires no
configuration, and developers can even ignore it until it
highlights potential problems.

3. Design & Implementation

In contrast to prior work, Cleanroom contributes a
simple, easy to implement form of error detection
feedback, which catches many of the same errors in
prior work, and many new kinds of errors, with less
developer effort. In this section, we describe the
rationale behind Cleanroom’s features and interaction
design and then describe its implementation in detail.

3.1. Interaction Design

Cleanroom’s design embodies two major ideas. First
is the uniqueness heuristic: names or pairs of names
that appear only once across a project are likely to be
wrong. For example, the name console in Figure 2 and
the pair animal.species in Figure 3 appear only once
in their respective programs, leading to a warning.

What makes this heuristic valuable is its simplicity
and effectiveness: it is both easy to implement, efficient
to evaluate, and easy for developers to understand,
while also catching a variety of undeclared, unused, or
accidental names, across a variety of program
constructs. For example, Table 1 lists the types of errors
that can be detected in HTML/CSS/JavaScript code
through the sole application of the uniqueness heuristic.
Moreover, because the heuristic only requires tokenized
identifiers and string literals to work, it can catch errors
in the presence of syntax errors. This enables feedback
to appear consistently throughout a developers’ editing,
uninterrupted by missing delimiters (as in Figure 2).

Cleanroom’s second major idea is in its immediate
feedback about potential errors, which appear after
every keystroke as simple underlines (reminiscent of the
squiggly red underlines for misspelled words in
Microsoft Word). Again, the power of this idea is in its
simplicity: by having the editor always provide
feedback about the presence of names, Cleanroom’s
feedback plays a validating role in editing tasks, as
described in Figure 4. For example, while a developer is
typing the name lastElement, Cleanroom displays a
green underline. This confirms what the developer
knows, that the identifier is not yet complete. When the
developer is done typing, one of two things will happen.
If lastElement appears elsewhere, the green underline
will go away; this confirms the developer’s
expectations, which is useful feedback. If lastElement

does not appear elsewhere, the green underline persists;
this violates the developer’s expectations, drawing their
attention to a potential problem. Cleanroom provides
the same type of feedback when warnings appear or
disappear in a different file after a keystroke. For
example, Figure 5 shows a scenario in which the clear()
function is called, causing the file warning count to drop
from 2 to 1 in index.html and 14 to 13 in code.js.

While this feedback simple, it is also quite powerful:
the experience of expecting the green underline to
disappear, but still seeing it, creates a substantial
surprise, which draws the developers attention to the
potential error. This is akin to the surprise-explain-
reward design strategy [11], in which some knowledge
gap draws a user’s attention to an explanation, which
enables them to take some action to gain some reward.
In the case of Cleanroom, the surprise is the discrepancy
between a developer’s expectations about whether the
Cleanroom warning will disappear and whether it
actually does. The explanation is the warning message
and the reward is the fixed bug.

In addition to playing the role of confirming and
conflicting feedback, Cleanroom’s warnings also play a
reminding role, when the warning is on a declaration.
For example, Figure 6 shows Cleanroom warnings on
object property and function names that do not appear
elsewhere. When these names are later referenced, the
developer receives confirmation that the function or
variable exists, as well as that the name they referenced
was the one they intended.

Undeclared HTML identifiers and class names
Undeclared JavaScript variables
Unused identifiers and functions
Accidental typos, such as identfier

Casing typos, such as endoffile vs. endOfFile

Invalid HTML tags and attribute names
Invalid CSS properties and values
Undeclared object properties, such as YAHOO.Dom.getStyle

Undeclared object functions
Missing source file includes
Potentially invalid string literals containing names
Identical names used in incompatible contexts

Table 1. Potential HTML/CSS/JavaScript issues that
Cleanroom detects with its uniqueness heuristic.

Figure 4. Cleanroomʼs timely, immediate feedback
about the existence of names, either confirming or

violating a developersʼ expectations.

developer receives
feedback that
unfinished name is
not declared

developer receives
conflicting feedback,
drawing attention to
potential error.

declared

undeclared

developer receives
validating feedback,
that the name intended
was successful typed.

Figure 5. File-level feedback also
confirms or violates developer

expectations.

Figure 3. Cleanroom detects
sequences of names that only appear
once in the code, identifying
potentially undeclared properties.

Figure 2. Errors can
still be detected in
the presence of
syntax errors.

Figure 6. Declaration
warnings highlight
unused code.

In addition to simply warning about errors,
Cleanroom also provides error messages with
recommendations of similar names, as in Figure 7.
When these recommendations come from a syntax or
API, as in the case of CSS property names, HTML tags,
or standard JavaScript browser globals such as
document, window, and console, they can play an
educational role, teaching the developer valid names.

3.2. Implementation

Cleanroom consists of several ANTLR tokenizers
(http://www.antlr.org/), the Bespin code editor (https://
bespin.mozillalabs.com/), JSLint (http://jslint.com), and
the Cleanroom code. The Bespin editor was customized
to invokve the Cleanroom analyses after each keystroke
and to draw underlines beneath tokens with warnings.

The Cleanroom algorithm involves a short sequence
of analyses, executed each time a file is loaded or
modified. First, each file that has not been processed or
was recently modified is incrementally tokenized,
adding and removing tokens for characters in response
to modifications. The tokenizer is also responsible for
assigning a Cleanroom token type to tokens that may
represent names (primarily identifiers and string literals)
and reporting these name tokens back to Cleanroom.

After tokenization, Cleanroom updates a table of
name tokens that appear across all files. The table is
divided first by the token types assigned by the
tokenizer. The types in our HTML/CSS/JavaScript
implementation include HTMLTag, HTMLAttributeName,
HTMLClass , HTMLID , CSSPropertyName , CSSValue ,
JSFunction, JSProperty, JSVariable, and JSLiteral.
Within each of these types is a hash table of name token
lists, separated by name. It is important to note that
token types span languages: for example both the
HTML and CSS tokenizer generated HTMLTag names,
because both languages refer and use HTMLTag names.
Moreover, HTML code can contain JavaScript and CSS
code, so the names of a particular token type can appear
across files written in different languages.

String literals are processed in a special way. If the
entire literal matches the JavaScript identifier format
(based on a simple regular expression) it is promoted to
a name token. If the string literal successfully parses as
a JavaScript statement, it is tokenized as JavaScript
code, and used to identify additional name tokens. All
other string literals are ignored.

Once the table of name tokens is constructed,
warnings are computed for all identifiers in the table, by

token type. For each type, names whose name token list
is often length 1 are selected for warnings. However,
each token type is also allowed to compare these unique
names against any number of other dictionaries. For
example, HTML tag names and CSS property names
are compared against a dictionary of valid names,
preventing warnings about <body> tags, for example,
which usually appear only once. JavaScript function
name tokens are also compared against standard global
JavaScript names, such as document, console, window,
and others.

Each Cleanroom token type can also declare other
token types to which names should be compared. For
example, JSFunction tokens are not only compared
with each other, but also with JSPropertys,
JSVariables, and JSLiterals. Similarly, JSLiterals
are compared against all other JavaScript names, since
they may refer to functions, variables, or properties.

For each name token that appears only once, and
does not appear in any of the additional dictionaries,
Cleanroom generates a warning. Each token type
declares its own message format. Then, to each custom
warning, we append a list of similar names (as in Figure
7). We compute these similar names by computing the
Levenshtein string distance [6] between the warned
name and all names in the token type’s dictionaries
(specifically, we use the Wagner-Fisher algorithm [10],
which treats transposition as an atomic operation).
Names whose distance is 1 are included.

To generate warnings about pairs of names,
Cleanroom’s tokenizers also maintain previous and next
links between name tokens, when names are separated
by one of an accepted list of delimiters. For JavaScript,
these delimiters were . (dot) and [(left square bracket)
both of which are valid ways of identifying properties
and functions of objects. These links are used to
generate a global hash table of concatenated name pairs,
which is used to identifier pairs that occur only once.
This analysis also utilizes any custom name pair
dictionaries to avoid false positives. For example, we
converted the standard browser APIs into a name pair
dictionary, which contains standard pairs such as
document.getElementById() and window.location.

In general, generating Cleanroom warnings for a
language involves customizing a tokenizer, defining a
set of token types, supplying dictionaries of valid names
for each, as well as indicating which token types should
be compared to one another. The rest of the Cleanroom
implementation is language-independent.

Figure 7. Cleanroom suggests other names a developer might have meant.

4. Evaluation

Our goals for Cleanroom were to help developers
notice legitimate errors before execution, so that they
may fix them more quickly than they would through
debugging. To do this, we designed an online
experiment, comparing a version of Cleanroom that
showed warnings (the Cleanroom condition), to a
version of Cleanroom that tracked warnings, but did not
show them (the control condition). This allowed us to
observe how developers’ behavior changed as a result of
Cleanroom’s highlighting. Both versions also showed
JSLint warnings, to give the baseline version some
novelty for recruiting purposes. JSLint also identifies
some of the same errors that Cleanroom can (namely
undeclared variables through implied global detection).

4.1. The Calculator Task

Developers were asked to complete
the graphical calculator in Figure 8. In
the reference implementation, the UI
was implemented in HTML and CSS
with HTML class names and ids. Event
handlers were attached to each button’s
onclick attribute, to call JavaScript
functions that operated the calculator.
A code.js file contained a calculator
object literal, with the properties
memory, display, operation, and isReset, and the
functions pressDigit, pressOperation, clear, add,
subtract, multiply, divide, and updateDisplay. The
calculator worked by appending digits to display with
the pressDigit() function, saving this string in memory.
The pressOperation function assigned the name of the
operation function to later call on the calculator to the
operation property. When the operation was the equals
button, the name of the function stored in operation
was retrieved using reflection and called. Each of the
operation functions used the string stored in memory and
display, parsed each of these numbers, assigned the
result to display, and then updated the HTML display
tag. Finally, isReset kept track of whether the
calculator had just finished a clear or equals operation,
indicating that the next digit pressed would overwrite
the value currently displayed.

The experiment version of the calculator omitted the
code summarized in Table 2, including all event
handlers and functions, except for updateDisplay.
Overall, developers were responsible for writing 43
lines of JavaScript code. To ensure developers wrote
similar code, we converted each line of the reference
implementation into natural language (without using
exact identifier names), providing developers with line-
by-line specifications in comments above each function.
This allowed developers to focus on implementing the
specifications, rather than conceiving of a solution.

To test whether developers had completed the tasks,
the editor injected several
automated tests upon each
preview, checking whether
pressing the calculator
buttons would provide
correct answers for 9+5,
9–5, 9x5, 9/5, as well as
properly display 0 after
pressing the clear button.
The results were shown
alongside the Cleanroom
editor, as in Figure 9.

4.2. Developer Recruiting

Developers were recruited from university mailing
lists known to have web developers. An email was sent
with the subject “try Cleanroom, a new bug-finding
JavaScript/HTML/CSS editor,” describing Cleanroom
and the study, with a link to the application. Developers
were offered a $10 at Amazon for completing the task.
According to Google analytics, 94 potential developers
visited the site from the direct link while the experiment
was open. Forty logged in, revealing the editor and task
description. Of these, 22 typed for more than 3 minutes;
of these, 8 Cleanroom and 8 control developers made
significant progress. Although success on task was not
an explicit factor in our study, it is worth noting that 3
of 8 Cleanroom developers succeeded (and 3 more were
missing only one function) and 5 of 8 control
developers succeeded; the rest of the developers made
significant progress on the task. Our final data consisted
of these 16 developers and their warnings.

Our goal was to involve developers who knew
JavaScript, HTML, and CSS syntax, and regularly used
these languages to develop web sites. Therefore, upon
arriving at the site and choosing a log in name,
developers were asked to complete the statement, “In
the past month, I've written JavaScript code ...” and
select from never, once, weekly, daily, or hourly.
Translating these responses to a 1-5 scale, with 5 being
hourly, Cleanroom developers averaged 2.0 and control
developers averaged 2.5. Analysis using ordinal logistic
regression showed no significant difference between the
two groups (χ2(1, N=16) = 0.73, n.s.).

reference code experiment differences
index.html 60 lines of HTML, with 18

inline event handler calls.
missing 18 inline event
handler calls, attached to
buttonsʼ onclick attributes.

code.js 101 lines of JavaScript
code in an object called
calculator.

76 lines of JavaScript, missing
function implementations.

style.css 44 lines of CSS, 4 rules. same

Table 2. The differences between the reference and
experiment versions of the calculator implementation.

Figure 9. The automated
test feedback, updated after
each preview.

Figure 8. The
calculator that
developers
implemented.

4.3. Data Collection, Extraction, and Cleaning

As developers worked, Cleanroom tracked every
keystroke applied to each file, every time the
application was previewed, and every time the
Cleanroom window focus was lost or gained, with each
even time stamped. Cleanroom also recorded each
warning it identified, the keystroke that created it, and
the keystroke that caused it to disappear. With each
warning, we recorded information about the token it
regarded, including the token’s text, its kind (one of the
types listed in section 3.2) and whether the token was a
declaration. Using the data recorded above, we
extracted the warning measurements summarized in
Table 3. We ignored warnings that were shown as
identifiers were typed, by focusing on those that still
appeared after 2 seconds of typing inactivity. Moreover,
out of the 845 warnings obtained in our experiment, 136
of them were discarded because they were generated as
a result of file loading delays. This left 709 data points
to be used in our analyses, 332 from Cleanroom
developers and 377 from the control group.

4.4. Results

Let us begin by discussing our analysis approach.
Our unit of analysis was a single warning, resulting in
unbalanced repeated measures on each developer based
on their number of warnings. Logistic regression was
used for dichotomous, categorical, and ordinal results.
For continuous measures, a mixed-effects model
analysis of variance was used with subject properly
nested within cleanroom and modeled as a random
effect to handle within-subject correlation.

Were warned names fixed? One of our primary
questions was whether the warnings that Cleanroom
identified (regardless of whether they were shown),
were actually addressed by developers in each
condition. If both conditions were actively working on

the task, we would expect both groups to successfully
remedy legitimate warnings at similar rates. This was
indeed the case. Cleanroom developers fixed 258/332
(78%) of warnings; control developers fixed 308/377
(82%). The difference was non-significant (χ2(1,
N=709) = 0.12, n.s.), confirming that Cleanroom
identified real errors, because warnings were addressed
even when they are not highlighted.

 Were warned names explicitly modified? In
addition to checking how often warnings were
addressed, we also checked whether warnings were
directly addressed through the explicit modification of
the identifier they highlighted (as opposed to changes to
other identifiers or large blocks of text deletion). Of all
addressed warnings, Cleanroom developers explicitly
modified 98/164 (60%), whereas control developers
explicitly modified only 69/203 (34%). This difference
was significant (χ2(1,N=367)=14.16,p<.001), showing
that Cleanroom developers were more likely to focus
their edits specifically to problematic names, and not on
segments of code indirectly related to the warning.

How long did warnings persist? Having confirmed
that the Cleanroom warnings identify legitimate errors,
and focus users’ attention on them, to what extent did
showing Cleanroom warnings help developers save
time? The median Cleanroom warning lasted 141
seconds (from 1 to 3,085), whereas the median control
warning lasted 223 seconds (from 1 to 15,558). This
difference was significant (F(1,16.8)=9.18, p<.01),
suggesting that Cleanroom significantly reduced how
long errors remained in code. (Note that because of
duration’s high skew, values were log-transformed; this
is a common practice for data with a power law
distribution). Of course, because the task had no time
limit, the duration of warnings that were not addressed
depended on how long developers worked. Excluding
periods of inactivity lasting longer than 1 minute,
Cleanroom developers worked an average of 29.3
minutes (sd=21.1), while control developers worked
51.5 (sd=26.8). Despite the lower time spent by
Cleanroom users, these differences were not significant
(F(1,14) = 3.40, n.s.). This suggests that part of the
differences in durations may have been due to the
control group’s extra time on task.

How often was the program executed while
warnings were active? Since Cleanroom’s warnings
were potential errors, it generally behooved
programmers to address warnings before executing their
programs, to avoid debugging effort. Cleanroom
developers’ warnings, on average, persisted through
about 1.7 executions (sd=4.6), whereas control
developers’ warnings, on average, persisted through
about 6.4 executions (sd=17.0). This difference in (log-
transformed) executions showed a trend in Cleanroom’s
favor, although it was not quite significant (F(1,14.3)
=4.49, p=.052). This finding suggests that Cleanroom
does not only reduce the duration of potential errors, but
also the debugging effort required to detect errors.

measurement operationalization
whether the warning
was active

Warnings were considered active if there was
no keystroke that caused them to disappear.

the time duration of
the warning

The time between warning creation and either
(1) the warning elimination or (2) the last
recorded keystroke, less all periods of time
inactivity greater than 1 minute.

The kind of token on
which the warning
appeared

One of HTMLTag, HTMLAttributeName,
HTMLClass, HTMLID, CSSPropertyName,
CSSValue, JSFunction, JSProperty,
JSVariable, and JSLiteral.

Whether the warning
was a declaration.

Whether the token appeared after the
function or var keyword.

explicit creation Whether the warning was appeared because
of an operation on the token itself.

explicit elimination Whether the warning disappeared because of
an operation on the token itself.

executions How many times the program was executed
while the warning was active.

Table 3. Data extracted from logs about warnings.

What kinds of errors did Cleanroom find? Having
demonstrated Cleanroom’s benefits quantitatively, we
now turn to a qualitative analysis of the types of errors
Cleanroom identified. By inspecting the names
highlighted in the Cleanroom condition, we saw that the
warnings covered the full range of error types described
in Table 1, including undeclared names, unused names,
and a variety of typos (including parseFLoat,
getElementByID, onlcick, alert_box, etc.).

However, Cleanroom identified more than just typos.
One user used the word dim to declare a variable,
apparently borrowing from Visual Basic syntax, but it
was warned by Cleanroom. There were several cases
where the developers called calculator functions as if
they were global, but upon receiving Cleanroom
feedback, added calculator before the call. Another
developer mistakenly used the word sum to refer to the
calculator’s add function, and fixed the mistake less
than a minute later. Another developer attempted to give
a variable the type int, but removed it after seeing the
highlight. All of these errors go beyond simple typos,
helping developers identify misunderstandings about
the JavaScript language and other semantic slips.

What non-errors did Cleanroom highlight?
Surprisingly, the only false positives were on the add,
subtract, multiply, and divide function declarations.
The implementation did not call these functions
explicitly, but instead were referred to in string literals;
it turned out that there was a bug in the tokenization of
string literals inside of string literals in HTML, which
prevented strings like “calculator.pressOperation
(‘add’)” from including the add in analyses. In other
words, for at least the calculator task, none of
Cleanroom’s warnings were false positives.

4.5. Study Limitations

A number of limitations may influence the validity
and generalizability of our study results. For example,
we recruited student developers, whose expertise may
have been limited compared to experienced web
developers, who may have less need for Cleanroom’s
error detection. Moreover, we only studied 16
developers; expertise varies enough that this number
may have been too small to capture the different ways
that developers might respond to Cleanroom’s feedback.

Another limitation was our study’s online
deployment. We do not know exactly how often
developers left the task and returned, or to what extent
they analyzed Cleanroom’s code instead of working on
the task. In fact, one of the developers wrote the first
author in the middle of the task pointing out a SQL
injection vulnerability in Cleanroom’s implementation.

There were also some issues with our measurements.
For example, the duration of a warning can be affected
by many things other than when a developer noticed the
problem: a developer might declare a variable, but then
not reference it for an arbitrary amount of time.

Moreover, each execution was likely unique in which
warned names it executed; it is difficult to tell from our
data how often a warned name was actually executed.

Finally, our experiment did not include a condition
without warnings, since both conditions included JSLint
warnings. A condition without warnings may have
revealed different strategies than those observed in our
experiment. For example, developers who were
reminded that their code might have errors might have
been more vigilant in avoiding them.

5. Discussion

Our experiment results suggest that Cleanroom’s
uniqueness heuristic, and its simple feedback about
uniqueness warnings, is effective at helping developers
find and fix errors before executing. However, the
heuristic does have several limitations and opportunities
for improvement. We now discuss these in detail.

5.1. Design Limitations

One of the heuristic’s major limitations is that it can
catch typos that occur once, but not typos that occur
multiple times. For example, in the development of
Cleanroom itself, the first author repeatedly typed
identifer, omitting the final i in the name.
Cleanroom would not have detected these errors,
because the misspelling was not unique. Such
misspellings might be detected by incorporating word
processor style spell checking to words in identifier
parts, although care would have to be taken to avoid
false positives on abbreviations and non-words.

One form of identifier error not accounted for is in
the construction of names. For example, imagine a web
page with several elements representing weeks, each
with an HTML id with the prefix week, followed by a
number (e.g., week1, week2). A simple way to operate
on these weeks as a set is to construct these ids in a loop
(e.g., “week” + number). Future versions of Cleanroom
could reason more intelligently about such dynamically
generated prefixed and postfixed names.

While there were no false positives in our
experiment, the uniqueness heuristic may not always be
right: some names that appears only once may be
correct; some literals that look like names may not be.
We found, however, that the simplicity of the heuristic
made false positives more tolerable and sometimes
helpful. For example, in our earlier “week” + number
example, Cleanroom would have warned about week;
this would have been a false positive, but it would have
also reminded the developer that the line has the
potential for error (because the number may not exist, or
the prefixes might change). This is consistent with prior
studies, which show that users’ willingness to tolerate
false positives has mostly to do with users’ ability to
understand a system’s reasoning [9].

5.2. Design Alternatives

In designing cleanroom, we considered several
alternative designs, drawn primarily from text entry
research. One was that of digraph likelihood, in which
an editor would flag unlikely pairs of characters. This
would catch a variety of typos. For example, consider
the code <script type="text/javscript">: the vs
character pair is not common in English writing,
suggesting an error. We considered computing digraph
frequencies from general English, a broad corpus of
JavaScript programs, or individual programs. However,
we found that digraph frequencies are highly
idiosyncratic: low-frequency digraphs in the NYTime’s
front page appear as high-frequency digraphs in the
Seattle Times front page. Moreover, the uniqueness
heuristic appears to subsume most errors that unlikely
digraphs would detect.

We also investigated the causes of typos, to look for
ideas about how to prevent or detect typos. For
example, typos tend not to occur in the first and last
character of a word. This comes from a finding that if
the first and last characters of a word are correct, people
can still read sentences [7]. Another observation is that
spelling errors come in many kinds, including character
duplication, mistaken spelling of vowel or consonant
sounds, and other mistakes. These facts could have been
used to decide whether or not to show a uniqueness
warning. However, after experimenting with some
examples, we found that the simplicity of the
uniqueness heuristic would have been diminished by
selectively omitting warnings. In other words, the
predictability of the heuristic was its strength.

5.3. Design Generalizability

How well would Cleanroom work for other dynamic
languages, such as Perl, PHP, Python, and Ruby? Like
Javascript, none of these languages require variables to
be declared, all of them are dynamically typed, and
most of them support reflection and anonymous
functions. Where they differ is in their variable scoping.
For example, in Perl, variables can be referenced as
$scalars, @arrays, %hashes and &functions, and
so the name space can be quite broad. In contrast, Ruby
variable’s scope is determined by lexical characteristics:
locals are lowercased, constants start with an uppercase
letter, globals are prefixed by $, and so on. This would
allow Cleanroom to be more confident in its detection
of unique names within these separate name spaces.
PHP is different in that by default, functions have no
access to the global namespace, except through the
global keyword; such declarations are their own
source of error. Therefore, Cleanroom’s uniqueness
heuristic applies well to all of these languages, but how
names are scoped might enhance or restrict the
heuristic’s applicability and false positive rate.

6. Conclusions

In this paper, we have presented Cleanroom, a web-
based HTML/CSS/JavaScript editor that warns
developers about names and sequences of names that
appear only once. We have shown that Cleanroom
detects real errors, that it helps developers find these
errors more quickly than developers can find them on
their own, saving costly debugging effort. Cleanroom is
just one point in a design space of error detection tools
that exploit human causes of software errors. In future
work, we hope to explore other ways of detecting errors
by exploiting similar patterns in developer behavior.

7. Acknowledgements

This material is based in part upon work supported by
the National Science Foundation under Grant Number
CCF-0952733.

8. References
1. Artzi S., Kiezun A., Dolby J., Tip F., Dig D., Paradkar A.,

Ernst M.D. 2010. Finding bugs in web applications using
dynamic test generation and explicit state model checking.
IEEE Transactions on Soft. Engineering, to appear.

2. Braband, C., Møller, A., and Schwartzbach, M. 2001.
Static validation of dynamically generated HTML.
Workshop on Program Analysis for Soft. Tools and
Engineering, 38-45.

3. Elbaum, S., Karre, S., and Rothermel, G. 2003. Improving
web application testing with user session data. Int’l Conf.
on Soft. Engineering, 49-59.

4. Mesbah, A. and van Deursen, A. 2009. Invariant-based
automatic testing of AJAX user interfaces. Int’l Conf. on
Soft. Engineering, 210-220.

5. Kim, S. and Ernst, M. D. 2007. Which warnings should I
fix first? ACM Foundations of Soft. Engineering, 45-54.

6. Levenshtein, V. I. 1965. Binary codes capable of
correcting deletions, insertions, and reversals. Doklady
Akademii Nauk SSSR 163(4), 845-848.

7. Rayner, K. (1998). Eye movements in reading and
information processing: 20 years of research.
Psychological Review, 124 (3), 372-422.

8. Sprenkle, S., Gibson, E., Sampath, S., and Pollock, L.
2005. Automated replay and failure detection for web
applications. Automated Soft. Engineering, 253-262.

9. Stumpf S., Rajaram V., Li L., Wong W-K., Burnett M.,
Dietterich T., Sullivan E., and Herlocker J. 2009.
Interacting meaningfully with machine learning systems:
Three experiments. Int’l J. of Human-Computer Studies
67, 639-66.

10. Wagner R.A. and Fisher M. 1974. The string-to-string
correction problem. J. of the ACM.

11. Wilson A., Burnett M.M., Beckwith L., Granatir O.,
Casburn L., Cook C., Durham M., and Rothermel G. 2003.
Harnessing curiosity to increase correctness in end-user
programming. ACM Conf. on Human Factors in
Computing Systems, 305-312.

