
The Role of Conceptual Knowledge in API Usability

The Information School | DUB Group

University of Washington
Seattle, WA, USA

ajko@uw.edu

Yann Riche
Microsoft Corporation
Redmond, WA, USA
yannr@microsoft.com

Abstract—While many studies have investigated the challenges
that developers face in finding and using API documentation, few
have considered the role of developers’ conceptual knowledge in
these tasks. We designed a study in which developers were asked
to explore the feasibility of two requirements concerning
networking protocols and application platforms that most
participants were unfamiliar with, observing the effect that a lack
of conceptual knowledge had on their use of documentation. Our
results show that without conceptual knowledge, developers
struggled to formulate effective queries and to evaluate the
relevance or meaning of content they found. Our results suggest
that API documentation should not only include detailed
examples of API use, but also thorough introductions to the
concepts, standards, and ideas manifested in an API’s data
structures and functionality.

Keywords —API usability, documentation, feasibility

I. INTRODUCTION
In today’s consumer software marketplace, software

designers have a wide range of platforms they may choose
from to develop new applications. For example, mobile
application developers can choose from iOS, Android,
Windows Mobile 6.5, Windows Phone, Symbian, HTML5,
among many other niche platforms, weighing the strengths and
weaknesses of each platform’s technical capabilities, market
potential, technical support community, user community,
among other factors.

While developers may choose a platform for a variety of
reasons, one important factor in this decision is assessing the
feasibility of implementing particular features on a platform.
For example, suppose a developer has an idea for a real-time
augmented reality game, but to make the game work, the
platform needs to be able to retrieve at least 2 frames from
camera sensor per second in good light at a resolution of 640 x
480. With the amount of content online concerning these
platforms, many feasibility assessments can be quite simple.
For example, a Google search for “iPhone 3G camera
resolution” reveals a MacRumors forum thread in which
someone answers this exact question and cites (a now outdated)
technical specification for the iPhone 3G.

Not all feasibility assessments are so simple, however. This
is particularly true when the behavior desired for an application
involves conceptual knowledge that may be new to a
developer. For example, in researching the sensor speed of the
iPhone 3G camera, one discovers that searching for and
understanding documentation about mobile image capturing

requires a great deal of knowledge of ISO speeds, exposure
time, and the role of lighting conditions, and, among other
things, the capabilities and limitations of Apple' iOS
UIImagePickerController class. To learn all of this, developers
must search, browse, read, and synthesize information from a
wide variety of sources, including API documentation,
tutorials, example code, and community-generated content.

While prior work has considered many aspects of API
usability and documentation [1,3,5,6,7], few have investigated
how developers’ conceptual knowledge about a requirement
influences the success of their interactions with API
documentation. To investigate this influence, we designed a
study in which software developers researched the feasibility of
two requirements concerning Bluetooth and wifi protocols, for
both Windows Mobile 6.5 and Android 2.1 platforms. By
analyzing developers’ utterances during these tasks, we
contribute evidence that not only was conceptual knowledge
essential in helping developers make sound judgments about
the feasibility of the requirements, but it was a basic part of
formulating effective queries and evaluating the relevance of
search results and API documentation. These findings have
several implications for the design of API documentation and
software development Q&A sites.

II. RELATED WORK
Prior studies have explored many activities related to

searches for unfamiliar content. For example, research on
information foraging theory has been applied to accurately
predict where users will navigate based on keywords on pages
they visited previously [2]; this work suggests that, at least for
informational searches within a single site, that the intent of
what people search for can be partially captured by what
phrases they choose to navigate. Other research in information
science has long studied the question negotiation process in
information seeking, distinguishing between actual but
unexpressed information needs, the conscious understanding of
the need, verbal statements of a need, and questions as stated to
an information retrieval system (whether a search engine,
index, librarian, or friend) [8]. In this process, the information
seeker often does not know what knowledge they lack and
therefore cannot formulate an effective query without first
learning about what information is available (for example,
through an index or catalog).

These basic observations about information seeking have
been explored in many software development contexts,
revealing several important factors in the design of online API

 Amy J. Ko

documentation. Studies have shown that the most desired and
effective way of conveying this knowledge is through
annotated code examples [1,3,5,6,7], that developers must
engage in a series of query reformulations to identify the
appropriate platform-specific terminology that indexes a
behavior [1,5,6], and that the legitimacy of sources [3] and
visual design of the web sites [3,5] can be important factors in
developers’ decisions to use an online API resource.

Only a few studies address the role of conceptual
knowledge in API usability. Some studies have reported that
developers find detailed introductions to a platform’s
architecture and design are critical [5,6,7]; these studies do not,
however, investigate why such overviews are important.
Another recent study highlighted the general importance of
developers’ background in understanding API resources [7].
This prior work makes it clear that conceptual knowledge is
important; our study seeks to understand why it is important.

III. METHOD
Our study asked software developers to assess the

feasibility of two requirements for two different mobile
platforms across four 20-minute sessions. Testing two
platforms allowed us to better isolate whether difficulties were
due to the online resources or a lack of conceptual knowledge.
The two requirements we presented were described in a
scenario involving a company that wanted to design a mobile
application that would collect data about the use of various
Bluetooth protocols in a city and securely transmit the
information over a wifi network. Participants were asked to
imagine that they were hired by the company to decide whether
to use the Windows Mobile or Android platform to implement
this application. We worded the requirements to avoid
revealing important names in the API for either platform, using
only industry-wide named standards. The two requirements
given to participants were:

Requirement: The application must be able to obtain a list of
discoverable Bluetooth-enabled devices in its proximity.

Requirement: The application must be able to determine whether
the wifi network the phone is connected to is using a WPA or
WEP secure connection.

The actual feasibility of these requirements was nuanced:
the first requirement was feasible, but could only be
accomplished over a period of time that was not under the
developer’s control; the second requirement was only feasible
on devices that provided detailed device information in a
configuration string exposed by the API.

We recruited 7 developers, including senior undergrads and
masters students who had returned from industry (5 male, 2
female). All reported working on large software systems. When
asked to indicate their experience with 41 languages and APIs,
the number ranged from 5 to 14, with a median of 10. The most
frequent responses were C, C++, C#, Java, JavaScript, and
PHP. All were students majoring in either CS, computer
engineering, or information science. Only two described having
significant experience with either Bluetooth or wifi protocols.
None had written applications for either mobile platform, but
most had visited Microsoft Developer Network (MSDN).

The study procedure was as follows. Participants were
brought into a lab and told they would be assessing the
feasibility of two software requirements for each platform.
After a 5-minute think aloud training session involving a non-
software development related search task, participants were
given 20 minutes to assess the feasibility of each
requirement/platform pair. The order of these pairings was
counterbalanced to minimize the impact of learning effects on
our analyses. Participants were allowed to use any resource on
the Internet that they could find or download.

To understand the relationship between conceptual
knowledge and participants’ research, we asked participants to
provide a verbal judgment of the feasibility and difficulty of the
requirement they were working on before, during, and after
each pair of requirements and platforms. Participants were
prompted regularly approximately every 5-10 minutes for their
current assessment. At the end of each session, participants
were asked to state their final assessment, identifying evidence
that they had found to support their assessment. We screen
captured and audio recorded each session.

IV. ANALYSIS
In designing our analysis, we considered grounded theory,

but felt there was enough research on API understanding that it
would have been inappropriate to start without a theory of what
the data contained. Our approach instead explicitly focused on
declarative judgments in participants’ utterances, which are the
basis of many theories of information seeking (e.g., [8]). We
therefore operationalized utterances as complete sentences that
were separated in both time and topic. After applying this
definition, our resulting data set had 2,633 utterances.

Next, we performed open coding on these judgments to
arrive at the judgment categories, applying selective coding on
these judgments on the original transcript data. We
operationalized these judgments as declarative sentences in
which the participant stated a claim about an information
resource (e.g., “Windows CE which is not what we want.”) or
themselves (e.g., “Actually, I don’t know how to start”). Non-
declarative utterances describing a participant’s actions (e.g.,
“I’m going to check this link,”) were not included in our
analysis. Our final 5 judgment categories were:

• Relevance judgments stating whether the participant
believed the information would inform the assessment task
(e.g., “Nothing is on the page”).

• Usability judgments concerning the predicted or actual
experience of navigating a resource (e.g., “[This JavaDoc]
documentation will be bad.”).

• Audience judgments concerning for whom the participant
believed the resource was designed (e.g., “I think this is for
people who already know Android development”).

• Proximity judgments about nature of the search space
being explored and the participant’s location in it (e.g.,
“Um... okay... it's getting colder and colder.”).

• Metacognitive judgments concerning a participant’s ability
to perform the task (e.g., “Maybe there is a problem with
my method of searching.”)

To measure the inter-rater reliability of our coding scheme,
the two authors redundantly coded one participant’s utterances
(accounting for 6% of utterances), reaching 86% agreement on
whether an utterance was a judgment and 82% agreement on
selecting one of the five kinds of judgments listed above. With
this level of agreement reached, the first author then coded the
remaining utterances. These categories were then used to focus
our qualitative analyses only on statements of particular kinds.

V. RESULTS
By far, the most salient characteristic of the participants’

work was the variation in the substance and depth of their
assessments. Some participants only managed to arrive at
vague conclusions, informed by assumptions and expectations
rather than evidence:

“There was a little bit of wifi code, but it was very scattered and then…
there's someone mentioning they were doing this sort of thing which
made me sort of, it implies that it's doable, but... the amount of
information I was able to dig up was... not helpful at all.

Other participants describe in detail the code they would
write to address a requirement, including its limitations:

“It was startDiscovery()… it can scan for 12 seconds and retrieve a list,
or start sending back essentially representations of the devices, it was
like: oh! That's handy… The only thing that I'm worried about at the end
is the admin privileges on the phone for bluetooth seem like when you're
running the application, unless you have those, you won't be able to do
anything.”

In analyzing the sources of this variation, many previously
reported factors were involved: all participants focused on
finding code examples [1,3,5,6,7], but struggled to find the
platform-specific terminology needed to retrieve them. To
identify concept terminology, participants reformulated their
queries, determining which words uniquely indexed the
information they were looking for [1,5,6]. When participants
found overviews of platform architectures, they reported
finding them helpful in knowing what to search for and
whether they were making progress [5,6,7]. Participants also
were hesitant to read sites that had cluttered or inconsistent
visual design, focusing primarily on sites that appeared to be
easy to read and browse at first glance [3,5]. The Windows
Mobile documentation posed several usability problems that
prevented participants’ progress; many participants struggled to
even find the MSDN API documentation, let alone browse it,
because much of the content concerning Windows Mobile was
not clearly versioned or explicitly intended for developers.

In addition to replicating the results above, however, we
also found participants’ conceptual knowledge of the Bluetooth
and wifi protocols greatly impacted their ability to find and
understand API documentation. Because of space limitations,
we will not discuss the trends in the first four kinds of
judgments, as they largely replicate the findings in previous
work [1,3,5,6,7]. We instead focus on the metacognitive
judgments, in which participants made statements about their
own ability to make progress on the feasibility assessments. In
particular, participants discussed, unprompted, the importance
of conceptual knowledge in two aspects of their search for
information about each platform and requirement.

A. Conceptual Knowledge Enables Effective Queries
One of the key differences between developers who arrived

at detailed assessments and those who did not was the
specificity of their initial queries. Developers who only arrived
at vague assessments began with terse, imprecise queries, in
some cases clearly extracted from the terminology used in the
requirements given to them such as “bluetooth android”,
“bluetooth android api”, and “windows mobile 6.5 wifi”. These
developers knew their searches were vague, but wanted to see
what kinds of information existed about the platform before
deciding what to search for. These queries did lead to content
intended for developers, but often only provided vague
overviews, rather than details. Developers struggled to find
what terminology by might uniquely index content related to
the requirement:

“…maybe just I cannot find the right keywords.”

“I kind of wish I had seen something more like, reference. API.
Something that could give me a set of keywords I could google.”

Developers who struggled to find the right keywords
eventually found effective queries:

“Okay, so at this point I feel like I know the keyword I need to know, such
as action discoverable, and, you know BluetoothAdapter.”

“I see the keyword I want multiple times, in logical progression, right?
To me its sounding like yes it can be done, it's not too hard. Yeah?”

Despite their success at finding relevant keywords,
participants expressed their desire for materials that explained
the conceptual knowledge they felt they lacked:

“I’d like a general overview of how Bluetooth connections work. I know
practically nothing about them so that would have helped a lot. And,
maybe an index into the page that would help to give me more abstract
terms for how to think about it.”

“For me, I would like to see the architecture, a simple architecture to
introduce Android bluetooth, how they work, pair. Then I will get a
sense to this whole environment, how they work, and I will see, see how
to enable this bluetooth in android, and then I would like to see sample
and demo finalized, and then finally I would like to see the code.”

In contrast to the participants who only arrived at vague and
inconclusive assessments, the participants who arrived at
detailed and conclusive assessments knew immediately what
terminology to use in their initial queries. One participant, for
example, began with the query “bluetooth android api
discoverable”; this led directly to an Android code snippet that
demonstrated how to obtain a list of the discoverable Bluetooth
devices in range.

B. Conceptual Knowledge Enables Relevance Judgments
In addition to being essential to forming effective queries,

conceptual knowledge about the Bluetooth and wifi protocols
were also essential to participants’ ability to judge the
relevance of the content they found online. For example,
developers often arrived at pages they thought might be
relevant, but struggled to know how to proceed:

“I'm not sure what I'm looking at exactly. It looks like a wifi page for
android. I guess I don't know what an insecure network would look like
in terms of its wifi configuration.”

“I think I just mostly feel hampered that I just don't know the network
protocols as much. I think that's the biggest thing.”

In many cases, the developers’ indecision stemmed from
their unfamiliarity with particular terminology:

“’put radio into discoverable mode‘. What is radio? I'm not quite sure
here what radio means.”

To resolve this conceptual confusion, 6 out of the 7
developers went to Wikipedia and other encyclopedic resources
in order to help them interpret the API documentation they
were trying to understand:

“I’m scanning over things and looking for things about networks and
connections on Wikipedia.”

Encyclopedic resources were rarely found helpful,
however, because the information was not described in the
context of the platform and how it manifested the protocols.

Ultimately, these developers felt they spent much of their
time not knowing they were on the right page:

“Since I don't have this kind of knowledge, it's kind of hard for me. I
would just try to put some keywords, it's pretty much what I know from
this mobile device, so when I put it, if I cannot direct to right page, then
I'll spend a lot of time on the wrong page, keep searching wrong
information, or maybe the right page but I didn't get it.”

In contrast to participants who lacked the conceptual
background in Bluetooth and wifi security, participants who
succeeded in making more substantial feasibility assessments
could not only recognize pages as relevant, but also extract
software architectural knowledge from them:

“Oh, I see, it's an asynchronous call, that's nice, so it will just start
discovering and you'll be notified immediately as each one is found. And
then at the end of that you could take the whole list and e-mail it back,
or whatever you were going to do.”

In situations like these, participants immediately recognized
terminology, standards, and acronyms that were fundamental
and unique to the network protocols. Even for these developers,
however, code examples were not enough: even after finding
them, they searched for walkthroughs about the design and
rationale for a snippet, so they could make predictions about
the feasibility of variations on the source code.

VI. DISCUSSION AND CONCLUSION
As with any empirical study, ours has several limitations.

By asking participants to reflect regularly on their feasibility
assessments, we may have altered the nature of their search
strategies or compelled them to reflect more than they would
search on their own. The search sessions also imposed an
artificial time limit on the assessments, which may not occur in
more ecologically valid settings. The participants were also all
students and had not worked as professional software
developers. Developers with such inexperience may not usually
be responsible for making feasibility assessments.

With these limitations in mind, our results suggest that a
fundamental prerequisite for finding and effectively using API
documentation is having the conceptual knowledge necessary
to (1) identify relevant, unique terminology for searching, and
(2) evaluate the relevance of content found online that uses the
terminology. This differs from prior work on the usability of
API documentation, in which developers often had a clear
conceptual understanding of the behavior they are trying to

implement, but simply could not remember the particular name
of a function or how to call it [1].

The implications of these results are many. First,
documentation should be designed not only for developers with
significant background in the concepts used in an API, but also
for developers who are unfamiliar with them. For example, in
the context of Bluetooth and wifi protocols, documentation
could include in-depth tutorials that not only provide overviews
of the protocols, but how the protocols are manifested as
classes, methods, functions, and data structures. It was
particularly important in our study that the materials are written
concretely, in terms of the platform’s implementation of the
standards and protocols and not in general terms.

Our results also suggest that one particularly useful
introduction to a platform and its concepts would include a list
of the major terminology used throughout the application and
what the terminology means. The developers in our study who
were unfamiliar with networking protocols were essentially
using Google as a glossary, extracting terminology from Q&A
forums for later use in queries. API documentation might be
greatly improved by providing proper glossaries, with linked
tutorials introducing each major concept and how it is used on
the platform to implement functionality.

ACKNOWLEDGMENTS
We thank Jeff Stylos, Jeanine Spence, and the rest of the

Microsoft developer division UX team who helped design the
study. This material is based in part upon work supported by
the National Science Foundation under Grant Number CCF-
0952733. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the
National Science Foundation.

REFERENCES
[1] Brandt, J., Guo, P.J., Lewenstein, J., Dontcheva, M., Klemmer, S.R.

(2009). Two Studies of Opportunistic Programming: Interleaving Web
Foraging, Learning, and Writing Code. ACM Conference on Human
Factors in Computing Systems.

[2] Chi, E.H., Pirolli, P., Chen, K., and Pitkow, J. (2001). Using information
scent to model user information needs and actions and the Web. ACM
Conference on Human Factors in Computing Systems, 490-497.

[3] Dorn, B. and Guzdial, M. (2010). Learning on the job: characterizing the
programming knowledge and learning strategies of web designers.
Conference on Human Factors in Computing Systems, 703-712.

[4] Ko, A.J., Myers, B.A., and Aung, H.H. (2004). Six Learning Barriers in
End-User Programming Systems. IEEE Symposium on Visual
Languages and Human-Centric Computing, 199–206.

[5] Myers, B.A., Jeong, S.Y., Xie, Y., Beaton, J., Stylos, J., Ehret, R.,
Karstens, J., Efeoglu, A., Busse, D.K. (2010). Studying the
Documentation of an API for Enterprise Service-Oriented Architecture.
The Journal of Org. and End User Computing, 22(1), Jan-Mar, 23-51.

[6] Nykaza, J., Messinger, R., Boehme, F., Norman, C.L., Mace, M., and
Gordon, M. (2002). What programmers really want: results of a needs
assessment for sdk documentation. International Conference on
Computer Documentation, 133–141.

[7] Robillard, M.P. and DeLine, R. (2010). A Field Study of API Learning
Obstacles. Empirical Software Engineering, 1382-3256.

[8] Taylor, R.S. Question-Negotiation and Information Seeking in Libraries.
College & Research Libraries, 29(3), 1968, 178-194.

