
A Case Study of Post-Deployment User Feedback Triage
Amy J. Ko, Michael J. Lee, Valentina Ferrari, Steven Ip, and Charlie Tran 

The Information School | DUB Group | University of Washington
{ajko, mjslee, ferrariv, iperton, ctran7}@uw.edu

ABSTRACT
Many software requirements are identified only after a product is 
deployed, once users have had a chance to try the software and 
provide feedback. Unfortunately, addressing such feedback is  not 
always straightforward, even when a team is fully invested in user-
centered design. To investigate what constrains a teams evolution 
decisions, we performed a 6-month field study of a team employing 
iterative user-centered design methods to the design, deployment 
and evolution of a web application for a university  community. 
Across interviews with the team, analyses of their bug reports, and 
further interviews with both users and  non-adopters of the 
application, we found most of the constraints on addressing user 
feedback emerged from conflicts between users heterogeneous use 
of information and inflexible assumptions in the team’s software 
architecture derived from earlier user research. These findings 
highlight the need for new approaches  to expressing and validating 
assumptions from user research as software evolves.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement – Corrections, enhancements, extensibility.

General Terms
Human Factors, Design, Management.

Keywords
User feedback, bug reports, bug triage, software evolution.

1. INTRODUCTION
Designers rarely know everything about user needs before a product 
ships. Stakeholders are overlooked [16], use cases are missed [20] 
and above all else, the world changes, requiring software teams to 
evolve applications to suit new needs. It is therefore inevitable that 
much of the work to  serve user needs through design happens after 
software is deployed, in continuously changing contexts of use [24].
But as most practitioners in the software industry know, changing 
software is not so simple. For example, software engineering 
researchers have long studied notions of coupling and cohesion 
[25], modularity, and cross-cutting concerns [9], analyzing the role 
of technical dependencies  in both constraining and facilitating 
change. Moreover, there are several economic [2] and lifecycle [19] 
factors that can limit software change, not  to  mention a variety of 
cognitive [8] and social [18] challenges in simply understanding 
complex software systems in order to change them.
One aspect of software evolution that has received little attention, 
however, is the role of post-deployment user feedback such as 

support requests and bug reports. With the rise of web-based 
technical support and the ease with  which users can contact small 
software teams via e-mail and the web, what constrains  a software 
team’s  ability to  address user feedback with software changes, even 
when a team is committed to user-centered, iterative design?
To investigate this question, we performed a 6-month field study of 
a software team employing Agile methods and staffing several user 
researchers and designers working directly with  developers, testers, 
and managers. We report on the history of one of the team’s 
products, a grade book application for a university community. We 
discuss the team’s user research, prototyping and post-deployment 
iteration, analyzing the constraints they faced in addressing post-
deployment user feedback. We also analyzed over 1,200 bug reports 
the team did  and did not  address and the reasons  why; we also 
interviewed a sample of both users and non-adopters of the team’s 
application, revealing needs the system did not serve and what 
constraints prevented the team from serving them.
Our findings make several contributions to knowledge about user-
centered design and software evolution. In particular, we found that 
most of the constraints in addressing user feedback emerged from 
conflicts between (1) heterogeneous  perspectives on how grades 
should be represented and (2) global assumptions in the team’s 
software architecture and user interface design. When the team 
attempted to address these conflicting user needs, the resulting 
solutions were considered inadequate by both the team and the user 
community, limiting  changes to incremental modifications that 
supported existing users. These findings highlight the need for new 
approaches to expressing and validating assumptions from user 
research as a team receives and triages user feedback.
In the rest of this paper, we discuss prior work on software 
evolution and then detail  the methods used to study the team. We 
then discuss our observations and their implications on user 
research, user-centered design and software evolution.

2. RELATED WORK
We know of know prior work that has explicitly investigated the 
constraints  that software teams face in addressing software change 
requests. There is, however, considerable prior work on the factors 
that can constrain software evolution in general, ranging from the 
inflexibility of computer code, the time required to invest in change, 
and the skills available to implement change, to more systemic 
factors such as  policy, market forces, and politics. In this section, 
we discuss prior work on these various factors.
One major constraint on software change is complexity. For 
example, Buxton argues that as systems grow in complexity, the 
architecture, technologies and paradigms “create a straightjacket 
that severely  affects the cost of change.” [6]. Lehman provided one 
of the first  reports on this phenomenon [19], deriving several laws 
of software evolution from a study of several long-lived 
applications. Lehman argued that because of the ease with which 
code can be reused, there is an incentive to implement changes  with 
existing code, rather than aggregate changes into new code.
These forms of reuse are captured in several concepts  of code 
complexity, such as  coupling (the degree to which program 
modules are mutually interdependent) [25] and cross-cutting 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, to 
republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee.
ICSE '11, May 21-28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0576-1/11/05... $10.00.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHASE’11, May 21, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0576-1/11/05 ...$10.00

1 Most up-to-date version: 06/25/2021



concerns [9] (the degree to which a software feature spans 
modules). Measures of these concepts across  successive versions of 
software show that all tend to increase, causing each change to span 
a larger subset  of a program’s modules [21][7]. One way that  teams 
mitigate increases in complexity is through change impact analysis 
[1], determining which parts  of a program will be affected if a 
proposed change is made.  Recent studies have shown that when 
developers cannot find enough information to assess  the impact of a 
change, the risk of the change introducing new defects, breaking an 
existing use, or otherwise changing user experience, is assumed to 
be prohibitively high [18].
Another constraint on software change can be the user community 
itself. For example, Buxton argues that because users have made an 
investment in learning the product; any significant  changes to the 
UI or workflow may threaten the loss of existing users and may not 
lead to new adopters. After all, learning is a significant investment 
[14] and some users may see no value in the new benefits offered
by a system relative to the new cost  of learning the system [2].
Moreover, people often adopt new technologies not on the actual
cost, risks, and rewards, but perceived ones [5]. People are also
adept  at  appropriating software in unexpected and idiosyncratic
ways [15], leading them to depend on code in ways a team may not
have intended. Once these use dependencies are established,
modifying such code may mean breaking unplanned but widespread
uses, even if the code was viewed as provisional.
Teams also face infrastructural constraints. For example, Edwards 
et al. [10] explain how infrastructure can preclude certain user 
experiences, expose technical abstractions to users in undesirable 
ways, and force users to interact directly with infrastructure to 
accomplish their goals. Such infrastructural constraints can also be 
a significant constraint for software teams’  ability to change 
software, forcing them to select undesirable designs  because they 
are not free to change the infrastructure.
There may also be social and cognitive factors within a team that 
constrain change. For example, teams may experience loss 
aversion, strongly  preferring avoiding losses to acquiring gains 
[17];  with respect to software evolution, this  may mean avoiding 
losing a small  number of existing users over gaining a large number 
of new users, or avoiding an  architectural change even though it 
may enable significant improvement in user experience. Similarly, 
teams may engage in irrational escalation [4], justifying increased 
investment in a decision because of cumulative prior investment, 
despite new evidence that  the decision may be ineffective. Teams 
may also experience confirmation bias  [4], seeking or interpreting 
information in a way that confirms preconceptions  about how 
software is used or what value users derive from it.

3. METHOD
The focus of our study was on understanding the role of user 
feedback in addressing software change requests. In this  section, we 
describe the team we observed and how we analyzed their efforts.
In selecting a software team for study, we sought one that had an 
explicit focus on user-centered design. We chose to study an in-
house software team at a university known as LST, consisting of 20 
full  time and 40 part time staff. While the team was local, making it 
easy for us to observe the team, the primarily reason we selected the 
team was their mission statement:

“We	
   follow	
   an	
   itera.ve,	
   user-­‐centered	
   design	
   and	
   development	
   process	
   that	
  
focuses	
   on	
   understanding	
   the	
   needs	
   and	
   experiences	
   of	
   our	
   users.	
  Whether	
  we	
  
are	
  crea.ng	
  a	
   new	
  tool	
   or	
  upda.ng	
  an	
   older	
  one,	
  our	
  design	
   decisions	
   are	
   based	
  
on	
  direct	
  feedback,	
  user	
  research,	
  and	
  findings	
  from	
  usability	
  studies.”

This dedication was reflected in their many awards, with  the most 
recent presented by the Center for Digital Government and 
Education, and the ACM Special Interest Group on University and 

College Computing Services. This was also reflected in their actual 
work throughout our observations.
The focus of our study was on LST’s most recent tool, a cloud-
based web application called GradeBook, used by university 
instructional staff to store, organize, and publish student grades. The 
main screen of this application appears in Figure 1. The major 
features of the application include a spreadsheet-like interface for 
storing scores on  assignments, categories for representing groups of 
assignments, automatic final grade calculation, and online grade 
submission. The application also imports and exports Excel files. 
We discuss the rationale behind several of GradeBook’s features 
later in our discussion of the team’s initial user research.
The GradeBook design team included six individuals  across two 
teams:  one focused on the grade book application itself and another 
focused on online grade submission. Of these 6 individuals, 2 were 
developers (and participated on both teams), 3 were designers (one 
of which participated on both  teams), and  1 was the program 
manager for both teams. One of the designers focused on client-side 
user interface design, writing HTML, CSS, and JavaScript for the 
front  end. The two developers  were responsible for the majority of 
the engineering work behind all versions of the application.
To learn about  the project history, we performed two semi-
structured interviews with the 4 of the 6 team members. We 
interviewed them in pairs to help reveal conflicting and confirming 
memories about the project history, also asking the same questions 
in different ways to cross-validate responses. Our questions focused 
on several  aspects of GradeBook’s history: we asked about the 
rationale for the project’s  inception, what user research was 
performed to  inform the design, and about the results of the user 
research. We asked about the rationale for the major features of the 
GradeBook application and their relation to the user research. We 
also asked what aspects of GradeBook had evolved in response to 
user feedback, and which aspects the team wanted to evolve, but 
could not and why. Interviews were recorded and transcribed. 
In addition to interviewing the team, we also analyzed the team’s 
technical support and bug report repositories. The team used 
Bugzilla to track issues  and classified resolved bugs into FIXED, 
WONTFIX, LATER, DUPLICATE, NOTREPRODUCIBLE, MOVED, or REMIND. 
Our analyses focused on the 1,046 FIXED and 144 WONTFIX closed 
reports. In reading them, we focused on understanding what aspect 
of GradeBook was identified and why the team decided to fix or not 
fix the issue. It was  common for reports to  both indicate the 
rationale for closing a report, a link to the code change in the 
version repository (if there was one), and a link to support tickets 
that prompted the project, if any.
To understand the user community’s use (and non-adoption) of 
GradeBook, we also interviewed several instructional staff in 
charge of teaching the large undergraduate population, particularly 
those teaching introductory lower-division courses. We focused on 

Figure 1. The GradeBook application designed by LST, as 
originally released. Data in the spreadsheet is fictional.

2



departments  with  more than 100 students and on courses being 
taught  during the quarters of our observations. We contacted each of 
the instructors and teaching assistants of these classes through 
email, explaining our study and asking for participation. Of the 82 
instructors  and teaching assistants we contacted, 22  replied. Of 
these replies, we successfully arranged interviews with staff of the 
12 courses in Table 1. Of the 12 staff interviewed, 5 were the 
official  instructors of record, 6 were teaching assistants, and 1 was a 
course coordinator, responsible for managing teaching assistants in 
collaboration with the instructor. Of the 12, all used Excel to track 
some form of student grades, 6 used GradeBook to store grades, 
and 2  used other grade management software mandated by their 
departments. All used GradeBook to submit grades online.
Our semi-structured interviews with these 12 instructional staff 
involved a walkthrough of the syllabus and rationale, the kinds of 
deliverables students submitted, how deliverables were submitted, 
how they were graded, where grades were stored, how feedback 
and scores were provided to students, the tools used for all of these 
processes and the staffs’  views on these tools’ inadequacies for 
grading. Each interview was audio-recorded and transcribed.

4. SOFTWARE DESIGN PROCESS
In this section, we describe the team’s user research and prototyping 
for GradeBook, and the basic elements of the design they initially 
deployed. We use [dev], [pm], and [des] to  refer to quotes from 
developers, the program manager, and designers, respectively.
Prior to working on GradeBook, the team had a 7 year history of 
creating other web-based applications This influenced the design 
philosophy behind GradeBook:

[pm]	
   ...	
   we	
   started	
   out	
   in	
   1998	
   with	
   WebQ	
   [a	
   quiz	
   applica.on]	
  as	
   the	
   first	
   tool.	
  
And	
   so	
   we	
   kind	
   of	
  grew	
   the	
  toolset	
  over	
  .me	
  by	
  building	
  new	
   things....	
   And	
   yet	
  
we	
   knew	
   all	
   along	
   that	
   the	
   Catalyst	
   tools	
   are	
   valuable	
   and	
   useful	
   in	
   a	
   way	
  that	
  
courseware	
   like	
   Blackboard	
   isn't,	
   precisely	
   because	
   they	
   are	
   modular	
   and	
   a	
  
faculty	
  member	
   can	
   ...	
   use	
  them	
   in	
   contexts	
   and	
   ways	
   that	
  aren't	
  course-­‐centric	
  
and	
  locked	
  down.	
  So	
  it	
  has	
  been	
  organic,	
  but	
  also	
  strategic.

In early 2007, the team began hearing from the community the need 
to move beyond paper grade submission:

[dev]	
   ...	
   when	
   I	
   was	
   first	
   here	
   in	
   2005	
   we	
   said	
   we	
  weren't	
   going	
   to	
   because	
   it	
  
would	
   be	
   course-­‐centric,	
   then	
   we	
   kind	
   of	
   moved	
   into	
   this	
   space	
   where	
   lots	
   of	
  
people	
   were	
   saying,	
   “why	
  do	
   I	
   have	
   to	
   fill	
   in	
   this	
   bubble	
   sheet?,”	
   and	
   it	
   just	
   felt	
  
like,	
   to	
   us,	
   that,	
   our	
   group	
   had	
   the	
   right	
   skill	
   set	
   to	
   make	
   a	
   course	
   tool	
   like	
  
GradeBook	
  ...	
   there	
  wasn't	
   anything	
   out	
   there	
   that	
  was	
   easily	
   integratable	
   with	
  
campus	
  infrastructure...

In November 2007, the team began user research. While no user 
research is entirely comprehensive, we found the team’s efforts 
substantial, triangulating research from interviews, surveys, and 
artifacts and collaboration with domain experts. In particular, a 
major part of the research was working with others in the university 
community who had experience developing custom grade 
management software for particular departments, particularly the 
computer science department: 

[dev]	
   ...we	
   interviewed	
   some	
   of	
   those	
   CSE	
   folks,	
   and	
   we	
   worked	
   with	
  
the	
   developer,	
   [name	
   omiIed],	
   ‘cause	
   he	
   had	
   a	
   lot	
   of	
   knowledge	
   on	
  
what	
  the	
  requirements	
  were	
  for	
  [the	
  CS	
  grade	
  repository].

The team’s primary research efforts were 2 to  3 months of 
interviews and surveys with instructional staff and students.

[dev]	
  we	
  did	
   a	
   survey	
  of	
  faculty,	
   TAs,	
   people	
  who	
   did	
   on	
   the	
   administra.ve	
   side,	
  
grading	
  sort	
  of	
  stuff...	
   I	
   think	
  we	
  maybe	
  interviewed	
   7	
  or	
  8	
   sort	
  of	
   faculty,	
  people	
  
who	
   were	
   ac.vely	
   teaching	
   and	
   recording	
   grades.	
   And	
   then	
   of	
   course	
   other	
  
people	
  who	
   were	
  developers	
   and	
  administra.ve	
  types.	
   That's	
   where	
  most	
  of	
  our	
  
requirements	
  came	
  from.	
  

To recruit these individuals, the team used snowball sampling, 
starting with existing contacts who taught online courses, as well as 
members of the community who had previously volunteered for 
surveys, interviews, focus groups, and usability tests.

In interviews, the team found that most faculty  used Excel, 
coordinating with  TAs with e-mail  attachments, so they  gathered a 
large collection of Excel spreadsheets from faculty, creating a 
repository that was used to examine the range of ways that faculty 
stored, organized, weighed, and ultimately computed final 4.0 grade 
points. The team found that most teachers organized deliverables 
into categories of assignments (for example, a course might  consist 
of multiple exams, quizzes, assignments, etc.). The team also found 
it was common for each of these different  categories to have 
different  grading  scales; some would be pass/fail, others would be 
based on percentages, and others still  might be based on points. 
While this did not account for all  of the uses they observed  in 
spreadsheets, it covered most.
The team also surveyed the instructional staff in the community, 
finding that the most important desired features were being able to 
weigh assignments, coordinate grading work  with TAs online, 
adjust  grades, and provide feedback about grades to students. The 
team deployed a similar survey to the student body, who indicated 
that the most important features were tracking their progress on 
grades and understanding how their grade was calculated.
After several months  of data collection and analysis, the team 
completed the research in winter 2008 and began a six month phase 
of design and implementation. They began by prototyping a simple 
mockup in order to solicit feedback from instructional staff:

[dev]	
   I	
  think	
  we	
  spent	
  a	
  lot	
  more	
   .me	
   than	
  we	
  normally	
  do	
   in	
  our	
   ini.al	
   designs.	
  
So	
   aXer	
  we	
   were	
  done	
  with	
  all	
   of	
   our	
   ini.al	
   research,	
   I	
   think	
  we	
   had	
   some	
  ini.al	
  
screenshots,	
  we	
  did	
   a	
  rapid	
  prototyping	
  thing,	
   it	
  was	
   one	
  of	
  the	
  first	
  .mes	
   I	
   think	
  
we'd	
   really	
  done	
   that…	
  Just	
   to	
  get	
   something	
   really	
  quick	
  and	
   dirty	
  for	
  people	
   to	
  
play	
  with.

After recruiting staff to  use the prototype in a range of usability and 
feasibility  tests, the team ultimately arrived at an idea for a cloud-
based spreadsheet, mimicking Google Spreadsheets, creating a 
single data store for course grades that faculty and TAs could all 
access from web browsers. They focused on designing a flexible 
platform for addressing post-deployment user feedback:

[dev]	
   ...	
   for	
  the	
   ini.al	
  release	
  we	
  just	
  needed	
   it	
  to	
   be	
   very	
  generic,	
   so	
  we	
  could	
  do	
  
lots	
   of	
   neat	
   detailed	
   stuff...	
   The	
   first	
  goal	
  was	
   just	
   to	
   get	
   it	
   so	
   that	
  people	
  could	
  
create	
  assignments,	
  add	
  grades,	
  publish	
  those	
  grades	
  to	
  their	
  students...

As seen in Figure 1, the core feature was a grid of students and 
assignments. Each row stored a student, notes about the student, 
and a collection of assignment categories. Four assignment scoring 
scales  were supported, including a point, percentage, text  and 
custom  scale (which allowed instructors  to define a mapping from 
ordinal text values  to percentages). Assignment scores could also be 
published to students  online. Total  grades could also be calculated 
automatically, based on a weighted sum of each category’s 
assignments  (with the option to drop 1 or more assignments from a 

course #	
  contacted #	
  replied who	
  was	
  interviewed

Japanese	
  (JAPAN) 2 2 1	
  instructor
Spanish	
  (SPAN) 7 2 1	
  teaching	
  assistant
Chemistry	
  (CHEM) 3 2 1	
  teaching	
  assistant
Biology	
  (BIO) 2 2 1	
  course	
  coordinator
Mathema.cs	
  (MATH) 7 2 1	
  instructor
Computer	
  Science	
  (CSE) 1 1 1	
  instructor
Electrical	
  Engr.	
  (EE) 1 1 1	
  instructor
Mechanical	
  Engr.	
  (ME) 1 1 1	
  instructor
Music	
  (MUSIC) 2 2 1	
  teaching	
  assistant
Economics	
  (ECON) 16 2 1	
  teaching	
  assistant
Accoun.ng	
  (ACCNT) 4 2 1	
  teaching	
  assistant
Communica.ons	
  (COM) 6 1 1	
  teaching	
  assistant

Table 1. The 12 courses for which interviews were conducted. 
Columns indicate how many staff were contacted, how many 

replied, and the role of the individual interviewed.

3



category). The GradeBook UI provided several ways of filtering the 
spreadsheet  view to specific assignments. It also provided a preview 
mode for instructors to view students’ view of published grades.

5. FOUR TYPES OF SOFTWARE CHANGE
Our interactions  with  the team began approximately 1  year after the 
team’s  initial  launch in  September 2008 and continued for six 
months. Our focus in analyzing the data was understanding what 
factors best  explained which change requests the team did and did 
not address. We analyzed these changes by considering the team’s 
rationale statements from the interviews and bug reports, 
identifying each rationale statement  and inductively arriving at a set 
of constraining factors  to which the team appealed in justifying 
their triage decisions on software change requests.
While the team encountered many of the constraints discussed in 
our prior work (competition with other grade book software, 
campus  politics, modularity challenges), there were two factors that 
the team appealed to throughout both the interviews and bug 
reports. One of these factors was how much code would have to  be 
changed to modify an assumption (Figure 2’s y-axis). Some 
changes were local: for example, the team received requests to 
validate assignment  scores in ways that were explicitly 
incompatible with the existing validation. Other assumptions were 
more global: for example, most of GradeBook’s code assumed that 
assignments  have a single score and changing this  assumption 
would have required a major rewrite.
The other constraining factor affecting the team’s decisions was the 
extent  to which the user expectation motivating a proposed change 
was believed to be shared  by the larger user population (the x-axis 
in Figure 2). The team rarely had enough data from user research to 
estimate the extent  to which such expectations were shared, often 
resorting to using their instincts for such estimates or excluding 
particular uses  from scope to  avoid needing to support it. Moreover, 
many of the user expectations were ill-defined not  only in the 
team’s  mind, but in  the mind’s of the users’ they spoke to, meaning 
that prototyping new features to support  these expectations  caused 
expectations to shift, once users were able to work with  a 
computational version of what they had in their minds.
All but the Type 1 changes in  Figure 2  were difficult for the team to 
address. When the team pursued them anyway, they required 
significant  effort  either in  re-implementing features or fielding new 
user feedback; moreover, these changes  generally led to results that 
were unsatisfactory to both the team and the user community. In the 
rest of this  section, we describe several  examples  of these changes, 
illustrating  how the two factors in Figure 2  interacted to constrain 
how the team could respond to post-deployment user feedback.
In quoting from bug reports, we use [wontfix] and [fixed] to represent 
reports. Underlined text is from the bug report  description; other 
text represents text from bug report comments. For interviews with 
instructors, we use the disciplinary abbreviations that appear in 
Table 1 (e.g., [CSE] represents a quote from the CSE instructor).

5.1. Majority Expectations, Local Assumptions
Type 1 changes concerned expectations  that the team believed were 
largely shared by  the population and  were highly localized in 
GradeBook’s implementation. These issues are best characterized as 
bugs:  once reported, they were both straightforward to address and 
desired by both users and the team. To analyze these, we focused on 
the 1,046 FIXED bug reports that the team had filed between 
GradeBook’s launch and the end of our observations, analyzing the 
changes that modified a one or two files  and had little to no 
discussion in reports about how the change should be implemented.
We found that most of these changes were straightforward because 
they changed the parameters  of behaviors that were already 
explicitly or easily  parameterized. For example, most of these 
changes modified labels, images, colors, links, and layout in the 
user interface. These also included changes to  interactive behaviors, 
such as whether a dialog was modal.  Existing behaviors were also 
made conditional, for example, accounting for overlooked error 
cases, excluding data that was already computed, or validating data 
before accepting it. Although the team did not have explicit 
evidence that  these changes were desired by users, most  changes 
concerned violations of consistency and convention, and so the 
team rarely discussed whether to make them.

5.2. Majority Expectations, Global Assumptions
Unlike the Type 1 changes in the previous section, the Type 2 
changes emerging  from post-deployment user feedback conflicted 
directly with assumptions made in GradeBook’s implementation. In 
this section, we present two such changes.
Equating Groups  and Class Lists. A major source of feedback 
early after GradeBook’s initial release regarded the confusing 
workflow for giving privileges to other staff to view a GradeBook:

[dev]	
   From	
  the	
   users	
   perspec.ve,	
  before	
  you	
   had	
  to	
  go	
  in	
  and	
   say	
  "I	
   have	
  a	
   class	
  
list	
   created	
   for	
   it,	
   but	
  I	
   don't	
   have	
  a	
   group.	
  So	
   I	
   need	
   to	
   create	
   a	
  new	
  group	
   and	
  
from	
  within	
  the	
  group	
   I	
   need	
   to	
  aiach	
  the	
  class	
  list	
  to	
   the	
   group	
  and	
  then	
  go	
   back	
  
to	
  the	
  tool	
  and	
  then	
  aiach	
  the	
  group	
  that	
  has	
  the	
  class	
  list."

The team’s research showed that most users viewed groups  and 
class lists  as equivalent; this shared expectation, however, was in 
conflict  with the global assumption in  all of team’s other 
applications that  a group was a different thing from a class list. The 
team carefully considered whether the change was really necessary, 
initially deciding to hide the group complexity behind the UI:

[dev]	
   ...	
   we	
   didn’t	
  want	
   to	
   change	
   all	
   of	
  our	
   backend...	
   it	
   was	
   going	
  to	
   take	
   too	
  
much	
  .me	
  and	
  it	
  was	
  too	
  hard...	
  we're	
  just	
  going	
  to	
  do	
  this	
  half	
  way...	
  

As this global assumption became more problematic in other 
applications, the team eventually decided that  groups and class lists 
needed to be equated. The data migration efforts were substantial:

[dev]	
   ...	
  what	
  we	
   had	
  to	
   do	
   was	
   instead	
  of	
  just	
  saying	
  okay	
  here's	
   a	
  new	
  group	
  ID,	
  
we	
   had	
   to	
   remove	
   the	
   old	
   one,	
   and	
   since	
   group	
   A	
  might	
   have	
   contained	
   two	
  
course	
  groups	
   as	
   well	
   as	
   some	
  people,	
   it	
   then	
   became	
   three	
  groups,	
   so	
   then	
  we	
  
had	
   to	
   say,	
   okay	
   GradeBook,	
   you're	
   actually	
   now	
   going	
   to	
   use	
   three	
   groups,	
  
instead	
   of	
   just	
   one.	
   That	
  was	
  a	
  huge	
  data	
  migra.on	
  process	
   and	
  it	
  caused	
  a	
   lot	
  of	
  
pain,	
  and	
  that	
  was	
  probably	
  like	
  3,	
  4	
  months	
  of	
  .me.

Moreover, once the migration was  complete, the team needed to 
undo the hacks that make GradeBook’s assumptions consistent  with 
the newly obsolete data model:

[dev]	
  We	
  ended	
   up	
   paying	
   for	
   it	
   later	
  on	
  when	
   we	
  had	
   to	
   undo	
  that	
  work...	
   when	
  
we	
   made	
   this	
   group	
   change,	
   in	
   addi.on	
   to	
   the	
   migra.on,	
   we	
   had	
   to	
   go	
   in	
   in	
  
GradeBook	
  and	
  change	
   all	
  the	
   code	
  that	
  was	
  making	
   that	
  assump.on	
   for	
  us,	
   and	
  
remove	
   the	
   ad	
   hoc	
   group	
   from	
   ever	
   being	
   created,	
   because	
   we	
   didn't	
   need	
   it	
  
anymore,	
  because	
  you	
  could	
  just	
  add	
  the	
  groups	
  directly.

More than a year later, the developer was still discovering places in 
the implementation that made the old assumptions:

[dev]	
  Well,	
   in	
   this	
   case,	
   I	
   mean	
   I	
   think	
  I	
   fixed	
   a	
  bug	
   around	
  this	
   redo,	
   two	
   weeks	
  
ago	
  s.ll?	
   So,	
   it's	
  one	
  of	
  those	
   things	
   that	
  tend	
   to	
   keep	
   cropping	
  up,	
   because	
  you	
  
have	
   all	
   this	
   code	
  that	
  depends	
   on	
   these	
   few	
  assump.ons	
   that	
   you'd	
   made	
   and	
  
then	
  you	
   change	
   it	
   in	
   90%	
  of	
  the	
  places,	
   and	
   if	
   you	
   miss	
   any	
  of	
  them,	
   no	
  maier	
  
how	
  hard	
  you	
  look	
  (I	
  find	
  that	
  I	
  always	
  miss	
  some),	
  it	
  always	
  comes	
  back.

the extent to which a user expectation 
was believed to be shared 

how much code would 
have to be changed to 
modify an assumption

majority minority

global assumption

local assumption

Type 3

Type 4

Type 2

Type 1

Figure 2. Two constraining factors that explained many of the 
team’s software evolution decisions.

4



WebQ and CollectIt Integration. While the previous example 
involved a change within GradeBook, the team also pursued 
changes between applications. For example, the team often received 
requests to integrate with other Catalyst  tools, particularly  WebQ 
(which allowed faculty to create scored quizzes for classes) and 
CollectIt (which allowed instructors to  create digital drop boxes for 
assignment submissions).
The team’s first integration was with WebQ; as with the change in 
the previous section, the challenges stemmed from incompatibilities 
in the GradeBook and WebQ data models:

[dev]	
   ...	
   because	
   some	
   of	
  the	
  flexibility	
   that	
  WebQ	
   gives	
   you	
   in	
  grading	
   the	
  quiz,	
  
you	
   can	
   allow	
  students	
   to	
   take	
   it	
   twice,	
   so	
   you	
  might	
  have	
   two	
   different	
  grades.	
  
GradeBook	
  doesn't	
   really	
   account	
   for	
   that,	
   it	
   wasn't	
   really	
   made	
   for	
   that...	
   And	
  
you	
   can	
  also	
   have	
  branching;	
   ...	
   its	
  possible	
   for	
   some	
  students	
   to	
   have	
  a	
  quiz	
   out	
  
of	
  40	
  points	
   and	
   another	
   student	
  might	
   have,	
   which	
   is	
   the	
   same	
   quiz,	
   out	
   of	
   20	
  
points,	
  you	
  know.	
  GradeBook's	
  not	
  set	
  up	
  for	
  that.

[pm]	
   Import	
  was	
   really	
   hard.	
   ...	
   They	
   each	
   have	
   their	
   own	
   data	
   stores	
   and	
   their	
  
own	
   interface	
   ...	
   there	
  are	
   just	
  all	
   these	
   liile	
  things	
   that	
  have	
   to	
   be	
   checked	
   and	
  
user	
  confirmed,	
  so	
  it's	
  preiy	
  awkward.

Therefore, while the team ultimately succeeded at implementing a 
solution, the conflicts in the data models were necessarily exposed 
in the GradeBook user interface. Any further changes the team 
desired, particularly that of importing multiple values for a single 
quiz, were constrained by decisions made in the initial  version of 
the import process. For example, the team considered supporting 
multiple values for GradeBook assignments:

[dev]	
   ...	
   basically	
  we'd	
   have	
   to	
   do	
   a	
   data	
   port,	
   because	
   you	
   have	
   all	
   these	
   data	
  
entries	
  with	
  one	
   single	
  value,	
   you'd	
  have	
   to	
  do	
   something	
   like	
  enter,	
  you	
  know,	
   a	
  
linker	
  table	
   that's	
   poin.ng	
   off	
  to	
   a	
   series	
   of	
   values,	
   or	
   somehow	
  change	
   that	
   so	
  
you	
   could	
   perceive	
   mul.ple	
   values...	
   the	
   real	
   challenge	
   there	
   would	
   be	
   that	
  
you've	
   already	
   released	
   this	
   to	
   the	
   public,	
   so	
   you	
  need	
  to	
  make	
   sure	
   that	
  exis.ng	
  
things	
  s.ll	
  work	
  when	
  you	
  change	
  the	
  data.

The WebQ integration experience made the team more hesitant to 
move forward with CollectIt integration.

[pm]	
   I	
   mean	
   we've	
   been	
  wan.ng	
   to	
  allow	
  people	
  to	
   have	
  CollectIt	
  scores	
   import.	
  
And	
  the	
  problem	
  there	
  is	
  that	
  CollectIt	
  doesn't	
  have	
  any	
  concept	
  of	
  a	
  score.	
   It	
  has	
  
a,	
   "let's	
   have	
   a	
   conversa.on"	
   feedback,	
   there's	
   no	
   idea	
   of	
  giving	
  a	
   point	
   or	
   any	
  
kind	
  of	
  scale	
  or	
  anything	
  there.	
  

The GradeBook developers explored several alternatives to these 
data integration challenges, but  faced a tradeoff between 
simplifying import and supporting flexibility:

[des2]	
   We	
   actually	
   worked	
   on	
   some	
   whiteboarding	
   sessions	
   on	
   integra.ng	
  
CollectIt	
  with	
  GradeBook,	
   and	
  we	
  thought	
  we	
  had	
  something	
   that	
  made	
   sense...	
  
Even	
   the	
   thing	
  that	
  you	
  and	
   I	
  came	
  up	
  with,	
  which	
  made	
  a	
   lot	
  of	
  sense	
  to	
  me,	
  and	
  
took	
  care	
   of	
   a	
   lot	
  of	
   the	
  edge	
   casey	
   type	
  of	
   stuff,	
   we	
   weren't	
   really	
   sure	
   if	
  that	
  
was	
   sort	
   of	
  a	
  model	
   people	
   would	
   understand...	
   Sort	
   of	
  that	
   dial	
   of	
   easy	
   versus	
  
advanced	
  and	
  flexibility	
  versus	
  rigidity.

Ultimately, the team felt that in all of these integration efforts 
between the existing systems, they were limited in their ability to 
offer straightforward, usable interactions. With WebQ, the import 
process was necessarily  complex because of the data scheme 
differences, and with CollectIt, there would have been significant 
changes to  how GradeBook represents scores on  assignments. In 
both cases, the team felt  the tradeoffs might not lead to a net 
improvement  in user experience. The program manager believed 
that these tradeoffs were problematic enough that data integration 
and rewrite was the only solution to simplifying the workflow:

[pm]	
  We're	
  going	
  to	
  have	
  to	
   go	
   the	
   other	
  way	
  and	
   enable	
  much	
  more	
   integra.on	
  
and	
   make	
   different	
   kinds	
   of	
   data	
   available	
   at	
  the	
   surface...	
   Its	
   so	
   deep	
   down	
   in	
  
the	
  data	
  store	
  that	
  its	
  not	
  even	
  possible…

5.3. Minority Expectations, Global Assumptions
Like the Type 2  cases we described, the Type 3 changes conflicted 
with expectations that spanned GradeBook’s implementation. In 
contrast, however, Type 3 changes concerned user expectations that 
the team perceived to  be idiosyncratic, but severe enough to be 
addressed. We present two such changes, each receiving some 
attention from the team, but leading to changes that were ultimately 
constrained by assumptions in GradeBook’s implementation.

Improving UI Performance for Large Grids. One of the major 
assumptions the team made in their initial  testing was about the 
number of students and assignments each  GradeBook would have 
to maintain; the team tested courses with several  dozens  of students 
and 10-20 assignments, because those were the ranges encountered 
in earlier user research. In developing GradeBook, these 
performance profile assumptions  became quite global, reaching into 
the user interface, the server interactions, and the event-handling 
mechanisms that coordinated the two. 
Post-deployment, however, the team quickly realized that some of 
GradeBooks’  student and assignment  counts far exceeded these 
tested limits. For example, one problem was with initial loading, 
requiring a significant rewrite:

[des2]	
  ...performance	
   kind	
   of	
  depended	
  on	
   the	
  number	
   of	
   students	
   that	
   you	
   had	
  
in	
  your	
  class.	
   So	
  people	
  with	
   really	
  large	
  classes,	
  now	
  we	
  don't	
  load	
   everybody	
  up	
  
right	
   when	
   you	
   load	
   the	
   screen...	
   its	
   in	
   a	
   big	
   table,	
   it	
   depends	
   on	
   the	
   browser	
  
you're	
  using.

While the team became increasingly aware of the performance 
issues  through its testing, their approach to reacting to user 
feedback about Type 3 changes was  passive, waiting for explicit 
complaints from users. For example, one of the team’s testers 
reported the problem in a bug report:

[wonoix]	
   IE	
  choppy	
  when	
  scrolling	
  through	
  large	
  class	
  lists	
   in	
   FGR	
  —	
  For	
  a	
  class	
  of	
  
about	
   200	
   students	
   IE7	
   has	
   a	
   difficult	
   .me	
   handling	
   the	
   FGR.	
   Using	
   the	
   scroll	
  
wheel	
  or	
  arrows	
  is	
  typically	
  choppy...	
  

A developer on the project closed the report, arguing:
[wonoix]	
   we	
   went	
   through	
   spring	
  quarter	
   with	
   zero	
   complaints	
   of	
   choppiness...	
  
closing	
  this	
  bug.

Six months  later, one of the instructors of the introductory computer 
science courses wrote in:

[fixed]	
   I	
   just	
  don't	
   think	
  Catalyst	
   Gradebook	
   is	
   prac.cal	
   to	
   use	
  as	
   a	
  web	
   app	
   for	
  
large	
  courses...	
   When	
   I	
   try	
  to	
   look	
  at	
   a	
   student's	
   grade,	
   I	
   scroll	
   or	
   page	
  down	
  the	
  
worksheet,	
   and	
   it	
   seems	
   to	
   load	
   the	
   students	
   5	
   at	
   a	
   .me	
   with	
   Ajax...	
   It	
   can	
  
literally	
  take	
  2-­‐3	
  minutes	
  just	
   to	
  find	
   a	
  student	
  in	
   the	
  giant	
  page	
  while	
  all	
   the	
   kids	
  
are	
  loading.

The team responded in several ways with performance 
improvements, even testing the changes on example GradeBooks 
with 300-600 people and 10 assignments, tuning performance for 
larger classes. Ultimately, the developers were not satisfied:

[dev]	
   In	
   my	
  opinion	
  there	
   is	
   no	
   'good'	
  fix	
  for	
   this.	
  Either	
  we	
   slow	
  down	
   the	
  ini.al	
  
page	
  load,	
  or	
  we	
  do	
  scroll	
  as	
  you	
  load	
  and	
  lose	
  the	
  context...

Another major performance problem was caused by the number of 
assignments some teachers tracked in GradeBook:

[pm]	
   ...	
   if	
   you	
   look	
   at	
   some	
   people's	
   GradeBooks,	
   they	
   have	
   so	
   many	
   columns	
  
because	
   they're	
   tracking	
   daily	
   par.cipa.on...	
   that	
   would	
   be	
   difficult	
   to	
   change	
  
because	
  we	
  decided	
  to	
  put	
  a	
  grid	
  view.

To change the UI from a grid view fit to a browser’s width to a view 
that could scroll was infeasible for a number of reasons. The grid 
view was based on a 3rd-party library, which did not support such a 
view; moreover, most of the application’s UI code was built  on the 
assumption that the grid was always the width of the window.
These performance problems were a critical concern in  our 
interviews with both users and non-users of GradeBook:

[CSE]	
  Gradebook	
   is	
   not	
  good	
   at	
  handling	
  a	
  course	
  that	
   has	
   700	
  students,	
   at	
   least	
  
the	
   last	
   .me	
   that	
   was	
   the	
   case.	
   So	
   when	
   I	
   do	
   import	
   everything	
  at	
  the	
   end,	
   just	
  
for	
   that	
   brief	
   moment	
   like	
   we	
   talked	
   about,	
   it's,	
   I	
   pray	
   that	
   nothing	
   will	
   be	
  
wrong...	
  the	
  en.re	
  page	
  becomes	
  really	
  choppy	
  because	
  there's	
  so	
  many	
  people.

[EE]	
  ...	
  by	
  the	
  end	
   of	
  the	
  quarter	
   it's	
   very	
  slow,	
   for	
   some	
   reason	
   I	
   enter	
  a	
  grade,	
   I	
  
lose	
  a	
   lot	
  of	
   them	
  and	
   I	
  have	
   to	
   go	
  back	
  and	
   fix	
  them	
  later...	
   it	
  has	
   added	
  another	
  
layer	
  of	
  responsibility	
  to	
  instructors	
  that	
  already	
  hurts	
  a	
  workload	
  that's	
  too	
  high.

Although the users in our interviews viewed the performance 
problems as critical, only the computer science instructor had 
actually reported the problems to Catalyst. In fact, most 
interviewees were excited that we had interviewed them, because 
they expected us to report their feedback to the team. And yet, 

5



because the team waited passively for feedback, they were not 
aware of the significance of the performance problems until they it 
was too late to address them. This, in the team’s view, greatly 
affected GradeBook’s adoption:

[dev]	
  Unfortunately,	
   I	
   think	
  a	
   tool	
   gets	
   released,	
   they	
  check	
   it	
  out,	
   and	
   then	
  they	
  
go,	
   oh,	
   its	
   too	
   slow.	
   Okay,	
   well	
   we	
   hear	
   that	
   and	
   we	
   fix	
   it,	
   but	
   if	
   your	
   first	
  
impression	
  of	
  the	
   tool	
   is	
   that	
  its	
  too	
  slow,	
   its	
  not	
  a	
  whole	
   lot	
  to	
  bring	
  you	
   back	
  the	
  
second	
  and	
  third	
  .me.

Variations on Extra Credit. Another assumption underlying 
GradeBook’s implementation was the weighted sum and dropped 
scores  approach to computing final grades. The team knew that 
there were exceptions to this approach, particularly with respect to 
extra credit, but they did not account for them in the initial  design. 
This became a frequent topic of user feedback:

[pm]	
  We	
   found	
  in	
  our	
   user	
   research	
   that	
  a	
   lot	
  of	
  faculty	
  use	
   extra	
  credit	
  but	
   there	
  
wasn't	
   any	
   consistent	
   paiern.	
  The	
  one	
  thing	
   that	
  we	
  did	
  to	
   support	
  that	
  was	
  you	
  
can	
   add	
   more	
   points	
   than	
   are	
  possible,	
   so	
   you	
   can	
   have	
   an	
   assignment	
   worth	
   a	
  
hundred	
  points	
   and	
  give	
   people	
  a	
  hundred	
  five.	
  But	
  that	
  doesn't	
  work	
   for	
  a	
   lot	
  of	
  
people.	
  What	
  a	
   lot	
   of	
   people	
  want	
   to	
  do	
   is	
   have	
   a	
  whole	
  extra	
  credit	
  assignment	
  
that	
   gets	
   added	
   on	
  as	
   extra	
   in	
   the	
   category	
  weigh.ng...	
   Its	
   a	
  big	
   change	
   and	
   we	
  
hear	
  that	
   request	
  a	
   lot,	
   and	
  what	
  we	
  usually	
  do	
   is	
  to	
  help	
  people	
  download	
  their	
  
scores	
  and	
  do	
  the	
  calcula.on	
  in	
  Excel...

The team proposed  similar workarounds to users desiring other 
alternatives to the weighted sum model. For example, many faculty 
asked for explicit support for various types of class curves; in most 
cases, the team suggested falling back to Excel. These workarounds 
represented one way to escape the assumptions underlying 
GradeBook, while still  finding a way to support  users’ alternative 
practices, but  the impact on users’  workflow was inevitable. Half of 
the users we interviewed said  that the lack of support for these 
practices was a primary reason for using Excel instead.

5.4. Minority Expectations, Local Assumptions
In contrast  to the previous three types  of changes, Type 4 changes 
were primarily constrained by the variation in user expectations 
perceived by the team. The team did not see obvious  ways to 
express these heterogeneous and  often conflicting expectations in a 
way that  would preserve GradeBook’s  simplicity. In this section, we 
present three such desired changes, showing how the team 
ultimately defaulted to the assumptions already expressed in code.
Exceptional Meanings to Assignment Values. One class  of post-
deployment feedback regarded how GradeBook handled the 
assignment scores. Many of the assumptions built into score 
validation were incompatible with some users’  practices, 
particularly in computing final  grades. These incompatibilities 
forced the team to predict which of two user expectations—the 
implemented one or the one reported in user feedback—was more 
commonly desired. One example of this was in the meaning of 
particular grades. For example, in one case a user pointed out that 
“X” was a valid grade, but when importing an Excel spreadsheet 
with an X grade, GradeBook marked it as invalid until the user 
explicitly selects “X - No grade now” (the GradeBook equivalent). 
The user wanted the conversion to be automatic, but the developer 
argued that this was not a safe assumption:  

[wonoix]	
   I	
   think	
  this	
   concern	
   is	
   bogus	
   (to	
   be	
   pedan.c	
   X	
   -­‐	
   No	
   grade	
   now	
   is	
   not	
  
even	
   a	
  grade),	
  and	
   transforming	
  a	
   'X'	
  to	
   'X	
   -­‐	
  No	
   grade	
   now'	
   seems	
   like	
   a	
  big	
   leap	
  
to	
   me...	
   We	
   want	
   because	
   we	
   want	
   to	
   be	
   sure	
   he's	
   gone	
   through	
   them	
   and	
  
specifically	
   assigned	
   an	
   "X"	
   or	
   an	
   "I"	
   and	
   that	
   it	
   isn't	
   some	
   mistake.	
   The	
   other	
  
factor	
   that	
   is	
   causing	
  this	
   is	
   that	
   he	
   is	
   not	
  really	
   a	
  GradeBook	
   user,	
   but	
   someone	
  
trying	
   to	
   import	
   grades	
   at	
   the	
   end	
   of	
   the	
   quarter	
   for	
   the	
   sole	
   purpose	
   of	
  
submitng...

The developer’s  rationale for not making this change stemmed both 
from a prediction that most users would rather know about data 
entry errors than save time, and from a belief that the user was  not 
“not really a gradebook user.” The team’s reluctance to support 
exceptional meanings of values was characterized well by the 
team’s manager:

[pm]	
   The	
   mantra	
   that	
  we	
   started	
   using	
   to	
   help	
   us	
   decide	
   what	
   features	
   are	
   in,	
  
what	
   features	
   are	
   out	
   is,	
   we're	
   not	
   Excel...	
   we	
   were	
   trying	
   to	
   make	
   an	
   online	
  
GradeBook	
  that	
  was	
   useful,	
   but	
  didn't	
  go	
   into	
   a	
  lot	
  of	
  calcula.on	
   and	
  fine	
   tuning,	
  
especially	
  around	
   the	
   issues	
   where	
   there	
   was	
   not	
  wide	
   agreement	
   about	
   how	
  
things	
  were	
  done.

The team found that this  mantra was important in communicating to 
users why different interpretations could not be supported:

[des1]	
   I	
   say	
   it	
   to	
   users;	
   "we	
   can't	
   rebuild	
   Excel"	
   and	
   that	
   resonates	
   with	
   them.	
  
They	
  say,	
  "Yeah,	
  I	
  guess	
  that's	
  true."

The 4.0 Assignment Grading Scale. In the previous case, users 
identified needs that conflicted with assumptions  made in 
GradeBook’s implementation. In this next case, however, the needs 
themselves, as expressed by instructors, were quite homogenous; it 
was the reactions to the team’s expression of those needs  in code 
that varied. Originally, GradeBook supported a small set of basic 
grading scales. However, post deployment, the team received 
feedback about  the desire for a scale that matched the 4.0 grade 
point scale used in final course grades:

[dev]	
   Ini.ally	
  we	
  said	
  we're	
  not	
  going	
   to	
  do	
  a	
  grade	
  point	
  scale,	
   we're	
  going	
  to	
  do	
  
something	
  more	
  broadly	
  usable.	
  And	
   that's	
  when	
  we	
   came	
   up	
   with	
  these	
  custom	
  
labels	
   that	
   I	
   was	
  describing	
   earlier.	
   And	
  people	
  were	
   like,	
   I	
   want	
  my	
   grade	
   point	
  
scale,	
  I	
  want	
  my	
  grade	
  point	
  scale,	
  and	
  so	
  we	
  had	
  to	
  have	
  a	
  grade	
  point	
  scale.

According to the developers, actually implementing variations of 
the 4.0 scale was straightforward:

[dev]	
   ...	
   it	
   was	
   an	
   addi.ve	
   change.	
   We	
  were	
  already	
  suppor.ng	
  like	
   3	
  or	
  4	
   scales	
  
and	
   so	
   we	
   added	
  that	
  one.	
   And	
   that	
  was	
   just	
  a	
   table	
   addi.on.	
   We	
   didn't	
  have	
   to	
  
actually	
   migrate	
   any	
   data	
   or	
   anything...	
   the	
   only	
   work	
   was	
   some	
   custom	
  
JavaScript	
  and	
   there	
  was	
   no,	
   there	
  was	
  very	
   liile	
  back	
   end	
  changes	
   that	
  needed	
  
to	
  happen.

The actual  interpretation of what users meant  by a 4.0 scale, was an 
entirely different problem. As  the program manager described, the 
way that 4.0 scales actually being used by faculty were not 
amenable to formalization:

[pm]	
   We	
   didn't	
   ini.ally	
   support	
   4.0	
   scale	
   scores.	
   And	
   this	
   has	
   been,	
   its	
   really	
   a	
  
pedagogical	
   debate,	
   in	
   some	
  ways...	
   A	
  lot	
   of	
   faculty	
  want	
  to	
   use	
   4.0	
   scale	
   grades	
  
for	
   all	
   assignments	
   in	
   their	
   class	
   and	
   then	
   do	
   calcula.on	
   on	
   those.	
   And	
   the	
  
soXware	
  says,	
  "those	
  aren't	
  actually	
  real	
  numbers,	
   those	
  are	
  more	
  like	
  a	
  ranking,"	
  
because	
   its	
   not	
   a	
  literal	
   scale	
   from	
   0	
   to	
   4.	
   But	
   trying	
   to	
   communicate	
  to	
   faculty	
  
who've	
   been	
   doing	
   this	
   for	
  years	
   in	
   Excel	
  and	
   thinking	
  there's	
   absolutely	
  nothing	
  
wrong	
  with	
  it	
  is	
  really	
  difficult.

Their initial efforts to design a feature to fit the practices they 
observed in user research were unworkable:

[pm]	
  ...	
  we	
  kept	
  saying,	
   this	
   doesn't	
  make	
  any	
  sense,	
  this	
  doesn't	
  make	
  any	
  sense,	
  
this	
   is	
   really	
  hard	
   to	
   use	
   compared	
   to	
   the	
   class	
   grade,	
   and	
   then	
   we	
   just	
   sort	
   of	
  
scrapped	
   it	
   all	
   and	
  started	
  over	
  a	
  few	
  months	
   later...	
   we	
  got	
  to	
   the	
  end	
  where	
  we	
  
sort	
  of	
  had	
   a	
  Frankenstein,	
  where	
   it	
   was	
   doing	
   it	
   one	
  way	
  here	
   and	
   another	
  way	
  
there.	
  We	
  thought	
  for	
  a	
  while	
  and	
  we	
  said,	
  wait	
  a	
  second,	
  we	
  can't	
  release	
  this.

The team ultimately arrived at  a solution that represented a 
compromise between many conflicting views on the meaning of 
scale. However, this inevitably led to feedback from users whose 
practices conflicted. For example, one staff member recounted an 
instructor’s concern regarding defaults:

[wonoix]	
  When	
  you	
   score	
  assignments	
  using	
  the	
   4.0	
  scale,	
   you	
   are	
   given	
   the	
  4.0,	
  
2.0,	
   and	
   0.0	
   as	
   prompts	
   for	
   entering	
   in	
   the	
   desired	
   percentages.	
   However,	
   since	
  
the	
   client	
  used	
   percentages	
   60%	
  and	
  up	
   star.ng	
   from	
  1.0,	
   and	
  put	
   in	
  0%	
  for	
  0.0,	
  
all	
   the	
   percentages	
   under	
   1.0	
   are	
   dras.cally	
   lower	
   than	
   he	
   had	
   intended—he	
  
recommends	
  that	
  we	
  put	
  in	
  1.0,	
  0.5,	
  and	
  so	
  on	
  forth	
  to	
  avoid	
  this	
  error.

One of the designers replied:
[wonoix]	
   We	
   are	
   deliberately	
   leaving	
   the	
   interpola.on	
   open	
   to	
   the	
   user's	
  
customiza.on.	
   There	
   are	
  so	
   many	
  ways	
   that	
  people	
  do	
   grading	
   on	
   campus,	
   and	
  
there's	
  no	
  standard	
  across	
  the	
  university	
  or	
  even	
  across	
  departments...

Online Grade Submission. The last change we discuss  is the 
addition of an online grade submission feature to  GradeBook, 
which would take the grade points  in the final  grade column and 
submit  them to  the registrar. As with the previous examples, the 
team believed they were working with fairly common user 
expectations; in this case, this was because the expectations were 
fairly well defined policies dictated by the university registrar:

6



[dev]	
   there	
  were	
  a	
   lot	
  of	
  different	
  policies	
   and	
  rules	
   around	
  what	
  types	
  of	
  classes,	
  
or	
  what	
   types	
   of	
  grades	
   specific	
   students	
   can	
   get,	
   the	
   different	
   types	
   of	
  classes	
  
that	
   there	
  are,	
   I	
   think	
  there	
  was	
   just	
  a	
   lot	
  of	
  research	
  we	
   had	
  to	
  do	
   to	
   figure	
  out	
  
what	
  all	
  of	
  those	
  rules	
  were.

In addition to the relatively clear requirements, the developers  also 
found that integrating the feature was straightforward:

[dev]	
   ...it	
   was	
   almost	
   as	
   simple	
   as	
   adding	
   a	
   link	
   that	
   would	
   go	
   to	
   online	
   grade	
  
submission,	
  and	
   then	
   just	
  making	
   it	
  aware	
   of	
  what	
   classes	
   were	
  actually	
  aiached	
  
to	
  that	
  GradeBook.

Where the true challenge came was in  coordinating with the 
“SDB,” the legacy database containing student grades:

[dev]	
   the	
   biggest	
   road	
   block	
   in	
   all	
   this	
   is	
   that	
   all	
   the	
   grades	
   live	
   in	
   the	
   student	
  
database.	
   SDB.	
   That's	
   what	
   they	
   call	
   it	
   for	
   short.	
   And,	
   we	
   can't,	
   we	
   don't	
   have	
  
access	
   to	
   those	
  grades.	
   Nobody	
   has	
   direct	
  access	
   really	
  to	
   the	
   SDB...	
   at	
   the	
   .me	
  
we	
  partnered	
   with	
   those	
   folks	
   who	
   had	
  access	
   to	
   SDB,	
   and	
   they	
  created	
   a	
  series	
  
of	
  web	
  services...

Moreover, the team working on the legacy database was  focused 
less on the user experience than desired:

[pm]	
   I	
   mean	
   I'll	
   tell	
   you	
   that	
   whole	
   process	
   was	
   extremely	
   difficult...	
   They're	
  
Cobol	
  based	
  mainframe	
  structures,	
   which	
   are	
   really	
  difficult.	
  And	
   in	
   that	
  process,	
  
the	
   student	
   team	
   in	
   crea.ng	
   the	
   web	
   service,	
   really	
   was	
   thinking	
   about	
  
represen.ng	
   the	
  data	
   in	
   a	
   sort	
   of	
  honest,	
   accurate	
  way,	
   and	
   not	
  about	
  the	
   end	
  
user	
  need,	
   what	
  the	
  system	
  needs	
   in	
   order	
  to	
  make	
  the	
  experience	
  usable	
   for	
   the	
  
end	
  user.

Once deployed, however, variations in grade submission practices 
emerged. For example, grade submission delegates, staff who could 
submit  grades for multiple classes, faced significant delays in 
submitting grades:

[pm]	
   ...	
   its	
   completely	
   a	
  performance	
  nightmare	
   because	
   there	
   is	
  no	
   index,	
   so	
   it	
  
has	
   to	
   do	
   a	
   loop	
   over	
   the	
   tables	
   in	
   the	
  mainframe	
   in	
   order	
   to	
   figure	
   out	
  what	
  
classes	
  you	
   have	
  grading	
  delegate	
  access	
   to...	
   Some	
  people	
  will	
  do	
  a	
  click	
  and	
   in	
   a	
  
few	
  seconds,	
   it'll	
   come	
   up	
   with	
   a	
   couple	
   classes,	
   but	
   some	
   people…	
   there	
   just	
  
going	
   to	
   sit	
   there	
   and	
   it	
   might	
   even	
   just	
   .me	
   out.	
   And	
   that	
   was	
   because	
   there	
  
was	
  no	
  index	
  to	
  request	
  a	
  service	
  change.	
  Its	
  just	
  not	
  going	
  to	
  happen.

Other feedback arose from the fact that the online grade submission 
was codifying registrar grading policies that had previously been 
less formal paper practices. For example, in one bug report, a 
designer recounted an instructor’s need:

[wonoix]	
   She	
   needed	
   to	
   submit	
   a	
   final	
   grade	
   for	
   one	
   student	
   within	
   2	
   hours,	
  
because	
   the	
   student's	
   financial	
   aid	
   was	
   depending	
  on	
   it.	
   However,	
   she	
   had	
   30	
  
other	
   students	
   that	
   she	
   wasn't	
   ready	
   to	
   submit...	
   This	
   puts	
   her	
   in	
   a	
   very	
   s.cky	
  
situa.on...	
  

While it would have been theoretically  possible for GradeBook to 
support such functionality, the team’s only recourse was  to surface 
the registrar’s policies in the UI:

[wonoix]	
   The	
  registrar	
  does	
   not	
   let	
   you	
  do	
   such	
   a	
  thing.	
   That's	
  why	
  there's	
   the	
  X	
  
(No	
  grade	
  now).	
  Unfortunately	
   that	
  is	
   not	
  much	
  help	
   to	
   this	
   instructor,	
  but	
  that's	
  
the	
  way	
  it	
  is	
  for	
  now.	
  

GradeBook’s online grade submission feature was widely adopted, 
with 90% of all class grades submitted online in  the last academic 
quarter of our observations. Unfortunately, GradeBook itself was 
seen by most staff as just  an extra step to online submission and the 
registrar ultimately requested that GradeBook and online 
submission be separated. Unfortunately, most of the features users 
found useful for uploading grades (particularly Excel import), were 
too closely tied to the GradeBook data model to be reused.

6. DISCUSSION
The goal our case study was understand what constrains a software 
team’s  ability to address post-deployment user feedback in the form 
of the help requests and bug reports. We found that while feedback 
was a significant source of knowledge about user practices, 
translating this knowledge into changes to GradeBook’s 
implementation was constrained by conflicts between 
heterogeneous uses of grade information in the user community and 
global  assumptions made in the team’s initial implementation. 
Ultimately, the information architecture inherent in the team’s data 
schema was simply not expressive enough to support the diversity 

of information uses. Therefore, while GradeBook was adopted by 
many instructional staff, the team’s interests in evolving the 
application to serve new adopters’ new needs was hampered by the 
risk of breaking existing use cases, the costs of migrating existing 
data, and the unlikelihood of changing other infrastructure and 
processes over which the team had little control.
These results raise several questions about  the role of user feedback 
in the post-deployment  life of software applications. For example, 
would it have been possible for the team to somehow design the 
application in a more flexible way to serve a larger subset  of the 
user community, without simply rewriting Excel?  Is it possible, for 
example, that there was a degree of flexibility somewhere between 
Excel  and the data schema the team designed initially  that would 
have been expressive enough?  If so, the question then becomes 
whether the team’s oversight of this design possibility was a failure 
of the user research and requirements gathering. And yet, the team 
had already invested six months in its user research, far more than 
many commercial software projects; how much prototyping and 
iterative evaluation would have been enough?
It is also possible that the team could have done a better of 
identifying the assumptions they made in their initial user research 
and using the stream of post-deployment user feedback to test and 
validate these assumptions. Earlier detection of problems with these 
assumptions may have made it  easier for the team to have addressed 
them, before the user community  grew too large or the code grew 
too complex. For example, perhaps if LST had been more explicit 
about the limitations of their assumptions about the number of 
assignments  and students faculty would add to a GradeBook, they 
could have designed testing procedures that may have revealed the 
performance problems earlier, before the performance limitations 
reached throughout the system’s implementation.
Existing research on software design suggests several  theoretical 
framings through which software processes might be devised  to 
account for assumptions. For example, Naur described 
programming as building a theory of how a solution relates to the 
world [22]; design theory perspectives view software designs as 
value judgements [12], projecting “ideal” users [3] and expecting 
users  to conform to them. For example, Friedman et al. suggest that 
systems ought to be free of bias by identifying it [12]. Similarly, 
Fischer et  al. argue for escaping the user/developer dichotomy and 
empowering users to be their own designers [11]; but in doing so, 
teams may prioritize users who want to be empowered, but not 
those who want curated, pre-existing solutions. These perspectives 
may be helpful  in designing new software processes that formalize 
and operationalize the identification of assumptions, helping 
software teams to think  more carefully not only about the 
application’s design, but also how assumptions are manifested in 
software architectures, testing plans, and triage processes. 
While our case study primarily revealed evolution constraints 
related to  modularity and heterogeneity, our results also suggest that 
the gathering of user feedback may itself constrain software 
evolution. Our findings show that  by letting  user feedback drive 
change, the GradeBook team mostly heard from existing users of 
the application, and even then, they mostly heard from a vocal 
minority which may not have been representative of the user 
community. Moreover, when these vocal minorities did provide 
feedback, change was usually denied, disincentivizing further 
feedback. This  had the effect of hardening the original design, 
crystalizing it around existing uses, rather than future ones (in the 
same way users’  workarounds can prevent software change [23]). 
Our study therefore highlights  the importance of treating user 
feedback as less of a guide for what to  change and more of a signal 
for the need for further research. In  particular, user feedback should 
be a sign that users at  or beyond the boundary of an  application’s 
idealized user [3] are struggling to adapt the software their needs. 

7



Such signals should drive explicit  studies of non-adopters of the 
system. These recommendations reinforce arguments that the point 
of data gathering is not to drive design, but inspire it [13]. 
Moreover, it  also  reinforces arguments  that in some cases, the only 
way to better serve user needs is  to abandon software [6], as we do 
with deteriorating physical systems.
One can also  take a more positive view of the team’s responses to 
user feedback: the team succeeded in anticipating many aspects of 
their user communities’ homogeneous needs, implementing the 
application in a way that  ensured additional grading scales and 
alternative workflows would either be easily  added or supported by 
the Excel  import. While the team faced tradeoffs between designing 
for flexibility and preserving simplicity, it may not have been 
possible to design an application that served everyone in their 
community; only serving some well, even if it means not serving 
others, may be an inevitable part of software design.
The implications of these observations in our case study on the 
larger concern of software evolution are many. For one, having a 
clear notion of who software is intended for is not only important in 
the design of software, but also in the architecting, testing, and 
evolution of software. Software processes should focus on ways of 
making the audience more explicit  and finding ways of weaving the 
assumptions inherent in a design throughout an application’s 
implementation and  throughout a team’s processes. Our study also 
suggests that an inherent part  of triaging post-deployment feedback 
involves clarifying the values a team wants to uphold; without 
clarity, there is  little to decide whether a potential change is 
important enough to risk  the harm that changes might do through 
new defects and broken uses cases to the existing user community.

7. LIMITATIONS
As with any case study, our results should be generalized  with 
caution. The team we studied did compete with other products, but 
for users, not  for money. This could have affected how much weight 
was given to user concerns, relative to market concerns. The team 
was also focused on serving a university  community to which it  was 
directly affiliated with; this is  in contrast to many other software 
development contexts, where software teams serve a client or a 
purchaser, rather than end-users directly. The team also followed an 
Agile process  with two week sprints; the length of sprint might 
have influenced the size of changes that would  be considered, 
relative to a team that works in 6-month cycles.

8. ACKNOWLEDGEMENTS
We thank the University of Washington’s Learning and Scholarly 
Technologies team for their support  and participation, as well as the 
University of Washington instructors and teaching assistants  who 
agreed to be interviewed.
This material  is based in part upon work supported by the National 
Science Foundation under Grant Number CCF-0952733. Any 
opinions, findings, and conclusions or recommendations expressed 
in this material are those of the author(s) and do not necessarily 
reflect the views of the National Science Foundation. 

9. REFERENCES
1. Arnold, R.S. (1996). Software change impact analysis. IEEE

Computer Society Press.
2. Bagozzi, R. P. (2007). The legacy of the technology 

acceptance model and a proposal for a paradigm shift. J. of the
Association for Info. Sys., 8(4): 244-254.

3. Bardzell, S. 2010. Feminist HCI: taking stock and outlining an
agenda for design. ACM Conf. on Human Factors in 
Computing Systems (CHI), 1301-1310.

4. Baron, J. (2000). Thinking and deciding. New York:
Cambridge University Press.

5. Blackwell, A.F. (2002). First steps in programming: A 
rationale for attention investment models. IEEE Symp. on 
Human-Centric Computing Lang. and Env., 2-10.

6. Buxton, B. (2007). Sketching user experiences: getting the
design right and the right design. Morgan Kaufman.

7. Cartwright, M. and Shepperd, M. (2000). An empirical
investigation of an object-oriented software system. IEEE
Trans. on Soft. Engineering, 26(8): 786-796.

8. Corritore, C.L. and Wiedenbeck, S. (2001). An exploratory 
study of program comprehension strategies of procedural and 
object-oriented programmers. Int’l J. of Human-Computer
Studies, 54: 1-23.

9. Eaddy, M., Zimmermann, T., Sherwood, K.D, Garg, V., 
Murphy, G.C., Nagappan, N. and  Aho, A.V. (2008). Do 
crosscutting concerns cause defects? IEEE Trans. on Soft. 
Engr., 497-515. 

10. Edwards, W. K., Newman, M. W., and Poole, E. S. (2010). 
The infrastructure problem in HCI. ACM Conf. on Human 
Factors in Computing Systems, 423-432.

11. Fischer, G., Giaccardi, E., Ye, Y., Sutcliffe, A. G., and 
Mehandjiev, N. (2004). Meta-design: a manifesto for end-user 
development. Comm. of the ACM 47(9): 33-37.

12. Friedman, B. and Nissenbaum, H. (1996). Bias in computer 
systems. ACM Trans. on Information Systems 14(3): 330-347.

13. Gaver, B., Dunne, T., and Pacenti, E. 1999. Design: Cultural
probes. interactions 6(1): 21-29.

14. Grossman, T., Fitzmaurice, G., and Attar, R. (2009). A survey 
of software learnability: metrics, methodologies and 
guidelines. ACM Conf. on Human Factors in Computing 
Systems, 649-658.

15. Hollan, J., Hutchins, E., and Kirsh, D. (2000). Distributed 
cognition: toward a new foundation for human-computer 
interaction research. ACM Trans. on Computer-Human 
Interactions, 7(2): 174-196.

16. Janneck, M. (2010). Challenges of software
recontextualization: lessons learned. ACM Conf. on Human 
Factors in Computing Systems, 4613-4628.

17. Kahneman, D.; Knetsch, J.L.; Thaler, R.H. (1991). Anomalies:
the endowment effect, loss aversion, and status quo bias", J. of
Economic Perspectives, 5(1): 193–206.

18. Ko, A. J. DeLine, R., Venolia, G. (2007). Information needs in
collocated software development teams. Int’l Conf. on Soft. 
Engr., 344-353.

19. Lehman, M.M. (1980). Programs, life cycles, and laws of 
software evolution. Proc. IEEE , 68(9): 1060-1076.

20. Lindgaard, G. and Chattratichart, J. (2007). Usability testing:
what have we overlooked? ACM Conf. on Human Factors in 
Computing Systems, 1415-1424.

21. Nagappan N. and Ball B. (2005). Use of relative code churn 
measures to predict system defect density. Int’l Conf. Soft. 
Engr., 284-292.

22. Naur, P. (1984). Programming as theory building. 
Microprocessing and Microprogramming, 15: 253-261.

23. Pollock, N. 2005. When is a work-around? Conflict and 
negotiation in computer systems development. Science, 
Technology & Human Values 30(4): 496-514.

24. Scott, K.M. (2009) Is usability obsolete? ACM Interactions,
16(3): 6-11.

25. Stevens, W., Myers, G., Constantine, L. (1974). Structured 
design. IBM Systems Journal 13(2): 115-139.

8


