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ABSTRACT
One way to teach programming problem solving is to teach explicit,
step-by-step strategies. While prior work has shown these to be
effective in controlled settings, there has been little work investigat-
ing their efficacy in classrooms. We conducted a 5-week case study
with 17 students aged 15-18, investigating students’ sentiments
toward two strategies for debugging and code reuse, students’ use
of scaffolding to execute these strategies, and associations between
students’ strategy use and their success at independently writing
programs in class. We found that while students reported the strate-
gies to be valuable, many had trouble regulating their choice of
strategies, defaulting to ineffective trial and error, even when they
knew systematic strategies would be more effective. Students that
embraced the debugging strategy completed more features in a
game development project, but this association was mediated by
other factors, such as reliance on help, strategy self-efficacy, and
mastery of the programming language used in the class. These
results suggest that teaching of strategies may require more explicit
instruction on strategy selection and self-regulation.
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1 INTRODUCTION
Programming is hard to learn [21]. It requires the mastery of pro-
gramming language semantics [18], common patterns of computa-
tion [15], ever-changing APIs and tools [13], and several software
engineering skills, such as testing, debugging, and program design
[12]. Learners also need strong self-regulation skills, both to reg-
ulate their learning [7], but also to regulate their programming
process [16, 17]. The range of skills required in programming may
be one reason why teaching programming is so difficult [11, 21].

One approach to improving learning is to teach strategic skills
[19]. For example, one strategic skillset is self-regulation, helping
students to reflect on and change their strategies when they find
them to be ineffective. Studies show that learners’ self-regulated
learning skills tend to be shallow, but when strong, are associated
with learning success [10, 16, 20]. Others have investigated the self-
regulated learning strategies that higher education CS students find
effective [7], including explicitly assessing task difficulty. One study
developed adolescents’ self-regulation skills by prompting learners
to reflect on their strategies; this increased students’ independence,
sustained their growth mindset, and increased their productivity
[17], mirroring findings in science education (e.g., [1]).

While self-regulation appears to be key in helping learners select
strategies, a related approach has been to teach explicit, step-by-
step strategies for solving specific problems. For example, a strategy
for debugging might involve prompting students to first find strong
evidence of the cause of a failure, and only then edit their program
to repair the defect. Experiments on explicit strategies for program
design [8, 22], program tracing [23], code reviews [5], and spread-
sheet modification [3] have all showed promising short term gains
in adult problem solving. Our recent work has further shown that
explicit strategies supported by a tool for managing the execution
of strategy steps [14] cause experienced developers to have greater
task success and more confidence in their progress [14].

While this prior work establishes that self-regulation skills may
be important and that explicit strategies for specific programming
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tasks can help in controlled settings with adults, there is little prior
work investigating the teaching of explicit programming strategies
in classrooms. Moreover, even less work has considered teaching
strategies to adolescents, who may have distinct challenges from
students in higher education, due to their still-developing execu-
tive functioning [2]. These gaps in prior work leave open several
important questions about the efficacy of strategies in classrooms:

• RQ1: What barriers do students face trying to use explicit pro-
gramming strategies in their problem solving? For example,
from an adoption perspective, do students welcome the guid-
ance that explicit strategies can offer, or do they view them
too structured and time-consuming?

• RQ2: To what extent is scaffolding necessary to support the
execution explicit strategies? Can strategy support eventually
be removed or is it augmentation that remains valuable even
after having learned a strategy?

• RQ3: To what extent is using explicit strategies associated with
more success at programming problem solving? And to what
extent do other factors such as prior knowledge and self-
efficacy mediate this success?

To answer these questions, we conducted a classroom study of
explicit programming strategies, teaching a 5-week summer course
to a group of 17 adolescents. We taught students the game design
subset of Code.org’s CS Discoveries curriculum and two explicit
programming strategies for debugging and code reuse. In the rest
of this paper, we detail the course, the strategies, our answers to
the questions above, and their implications.

2 METHOD
Our approach to teaching explicit strategies was to offer deliberate
practice [6], including direct instruction on two strategies, concrete
contextual guidance on using the strategies, and feedback on their
use throughout the duration of our. In the rest of this section, we
detail the classroom context of this strategy practice, the strategies
we taught, and the data we gathered.

2.1 Setting and Participants
We focused on students aged 14-18 in U.S. high schools who were
novice to programming. To reach diverse students, we partnered
with a university’s Upward Bound (UB) program. UB is a U.S.
federally-funded college preparation program that helps students
who are low-income and/or have no parent or guardian with a bach-
elor’s degree access higher education. The programweworked with
served four public high schools and reached about 180 students
per year. The program was free; students received lunch money to
attend and a stipend upon completion.

UB’s summer session last 5-weeks. We offered a “Game Design”
elective. The UB staff solicited students’ elective preferences and
then randomly assigned students to their 1st and 2nd choices. After
enrollment stabilized, we had 17 students. The group was mostly
low-income racial minority students with little to no programming
experience. Students were aged 14-17 years old. Of the 17 students,
9 identified as boys and 8 as girls. All but one student identified
as Asian, African American, Hispanic, and Middle Eastern. About
65% of students reported speaking a language other than English
fluently, as well as 71% speaking a non-English language at home.

The languages reported included English (15), Vietnamese (3), Ben-
gali (2), Somali (2), Cham (2), Mien (1), Russian (1), Nepali (1), and
Amharic (1). Students’ parents’ education mostly ranged between
completing some high school to some college.

Students had little to no prior experience with programming:
12 reported never having written a program, but 9 reported hav-
ing used at least one programming language, including HTML (4),
Minecraft (3), Excel (3), Scratch (2). Three students mentioned pro-
fessional languages such as Java (2), Python (2), and JavaScript
(1). To assess prior programming knowledge, we gave students a
pre-test which measured their knowledge of basic programming
principles such as variables, conditionals, loops, and Game Lab
APIs, all in JavaScript. Out of 10 points on the pre-test, the median
was 3. One outlier student correctly answered 8 questions.

2.2 Course design
Our course spanned 18 contact hours across 18 days. Class was
in a computer lab that seated 25. The 1st author taught the class
with the help of four teaching assistants (three undergrads and one
high school student). The class followed Code.org’s game design
curriculum, which used Game Lab, a simple web-based IDE with
both a block-based and text-based editor for authoring 2D interac-
tive games with JavaScript. The Code.org curriculum spans more
than 30 hours of instruction, so we excluded some lessons. The
first 3 weeks of the course covered the subset of JavaScript used
in Game Lab and key Game Lab APIs on sprites, animations, and
collision detection. Each class began with a brief 5-10 minutes of
direct instruction on the lesson for the day, followed by a 45 minute
period of self-guided Code.org instruction.

After 3 weeks of instruction, we administered a midterm, then
began a 2-week period of game development in which students
worked alone or in pairs to design and implement a simple game
of their own design across ten class periods. To receive full credit,
students’ projects needed to: 1) have a background, 2) have a sprite
controlled by the player, 3) have a sprite that moves automatically,
4) draw at least one shape, 5) have an animated sprite, and 6) have
at least one sprite that responded to collisions. We offered students
extra credit for features they wrote down and implemented beyond
the basic requirements, incentivizing independent work.

2.3 Explicit strategies
We taught two explicit strategies during the class. To represent
strategies, we used a format called Roboto [14], and a tool that helps
students execute each step of a Roboto strategy while tracking their
progress. Figures 1 and 2 show the text of the strategies and Figure
3 shows the strategy tracker.

The debug strategy, shown in Figure 1, was a generic approach
to localizing a defect by brainstorming possible causes and investi-
gating each one systematically. If this approach failed, the strategy
prompted students to ask the teacher for ideas on possible causes.
We taught the strategy just after the lesson that introduced condi-
tionals. To teach the strategy, we discussed the metaphor of fixing
a car engine. We asked students if they would use a strategy of
unscrewing something without first understanding how the engine
worked; most agreed that would be a bad strategy. We then dis-
cussed how debugging programs was they same, requiring one to
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# If you need help finding the problem, ask for help. 
Find what your program is doing that you do not want it to do 
# Write the line number inside of the program 
# and separate with commas. 
SET 'possibleCauses' to any lines of the program that  
    might be responsible for causing that incorrect 'behavior' 
FOR EACH 'cause' IN 'possibleCauses' 
    Navigate to 'cause' 
    # Ask for help if you need guidance on how. 
    Look at the code to verify if it causes the incorrect behavior 
    IF 'cause' is the cause of the problem 
        # If you need help finding the problem, ask for help.             
        Find a way to stop 'cause' from happening 
        # Ask for help if you need guidance on how. 
        Change the program to stop the incorrect behavior 
        # Ask for help if you need guidance on how. 
        Mark the task as finished 
        RETURN nothing 
IF you did not find the cause 
    Ask for help finding other possible causes 
    Restart the strategy 
RETURN nothing 

Figure 1: The debug strategy.

# Describe the behavior as specifically as possible. 
SET 'behavior' TO the behavior youd like 'program' to exhibit 
IF I know how to implement 'behavior' 
    Write code for the 'behavior' 
    Run 'program' to test if it exhibits 'behavior' as you expect 
    Mark this task as finished 
    RETURN nothing 
# Use a search query that contains the language you are using and  
# describes 'behavior' 
Using a search engine such as Google search for relevant examples 
UNTIL you have looked at ALL relevant examples 
    IF 'result' example seems to be related to your goal 
        Click on the link and read the text 
        IF the example seems like it might help  
            Copy and paste the code into your code editor and ask a  
                teacher for help if you don't understand it 
            # Change any values to match your needs 
            Adapt the code to your needs deleting any lines that you 
                are confident are not necessary 
            Test your program to ensure the behavior works 
            IF the program does not work 
                Use the debug strategy to find out why 
                RETURN nothing 
IF you have not yet found a example 
    Ask your teacher for guidance 
RETURN nothing 

Figure 2: The reuse strategy.

Figure 3: The strategy tracker, showing a conditional step
of the debug strategy. The tracker acts as a scratchpad for
relevant information and enforces the steps of the strategy.

first understand how the program works and only then edit it. We
walked through an example of using the strategy. Then, for the
next week, when students asked for help debugging, we prompted
them to use the debugging strategy, modeling each step for them,
and showing how the strategy could structure their process.

Just before students began developing their own games, we
taught the reuse strategy shown in Figure 2. The goal of this strat-
egy was to guide program design, helping students to identify the
behavior they wanted to implement, then utilize resources such
as the web, documentation, and instructors to identify an example
to adapt to their game. (To students, we called this the “how to”
strategy, but we will call it the reuse strategy in this paper). To
teach this strategy, we provided direct instruction about how to
use it, walked the class through an example, and then modeled its
use during one-on-one help requests by showing students how to
execute each step of it.

When students had questions in class, we solicited information
about their strategy use as follows: 1) we asked “What is your goal
right now?”, 2) then asked “What strategy are you using to achieve
the goal?”, and 3) then provided help. While this disincentivized
independent use of strategies, it was an opportunity to provide
individualized instruction on the strategies, as well as gather data
about strategy use. Additionally, not providing help would have
subverted the learning goals of the class, which took priority over
the research goals. Because of this, we did not expect all students
to have a strategy or be using a strategy that we taught. When a
student did report using a strategy, it was evident, because they
either referred explicitly to a strategy we had taught or struggled
to articulate a strategy, instead describing actions they had taken.

One confounding factor in the study was that students needed
to feel safe asking for help, otherwise they would not see the strate-
gies modeled, or learn effectively. To mitigate this, we focused on
developing trust and rapport with the students, sharing personal
details about our experiences with games, game development, pro-
gramming, and college. All instructors learned students’ names and
worked with them one-on-one.

2.4 Data collection
To measure barriers to using strategies (RQ1), we gathered three
forms of data. The first was during the help requests described
above, in which we gathered students’ reactions to being taught
the strategy (e.g., reluctance, eager opening of the tracker), what
help we provided, the outcome of providing the help, and students’
reaction to the help we provided. A second source was a daily
survey at the end of each class involving programming in which
we asked “If you used the debugging strategy, did it help you find
the problem?” The third source were two one-on-one interviews
in which we asked each student, “What do you like about the
strategies?”, “What do you not like about the strategies?”, and “What
strategy do you prefer to use?” We performed these interviews just
before the midterm and on the last day of class.

Measuring strategy use (RQ2) was challenging because strategies
occur in the mind and are not directly observable. Therefore, we
triangulated three sources of data. The first was the use of the
Roboto strategy tracker tool. We used usage logging to determine
whether students had stepped through any part of a strategy on each
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day of instruction. The second sourcewas help requests during class;
we gathered data about whether students were using the strategy
we taught, which we defined to students as “using the strategy
tracker or reading the strategy to guide your work.” The third
source was self-report via an end of class survey asking students
whether they used one of the strategies to solve a problem on that
day, with or without the tracker. We collated all three data sources
for each student, combining them into a single binary variable of
whether the strategies had been used.

To measure the relationship between strategy use and produc-
tivity (RQ3), we measured productivity by analyzing students’ final
games for a set of game features (described later). To control for
knowledge of JavaScript, we used the midterm scores assessing
knowledge of variables, conditionals, Boolean logic, and Game Lab
APIs. To measure strategy self-efficacy, our daily debrief survey
asked students to express their agreement with the statements “I
can follow the debugging strategy that [the instructor] taught to
find and fix defects in my programs.” and “I can follow the ’how to’
strategy to find and adapt examples for my programs.” on a 5-point
scale of strongly disagree to agree. We asked this each day for each
strategy that had been taught on that day or prior.

3 RESULTS
To contextualize our results, we begin by describing the classroom
environment. Most students were engaged, but some were tired and
slept, some occasionally used their smartphones, and some were
distracted by sitting next to friends. The instructor and assistants
wandered the lab, proactively offering help, responding to questions,
and ensuring students were on task. Since most students spoke Eng-
lish as a second language, students moved at very different paces
and the instructors and TAs regularly needed to give further expla-
nation of the Code.org content. As suggested by prior work [11],
the purely content-driven instruction in Code.org’s curriculum was
insufficient to produce robust knowledge of JavaScript’s semantics,
which led to many defects in students’ programs.

3.1 RQ1: Barriers to using strategies
To answer RQ1, we performed several qualitative analyses. We
followed Hammer and Berland’s views on qualitative coding, not
treating the results of our category generation as data itself, but as
an organization of claims about data [9].

3.1.1 Strategy Interviews. The first analysis we performed was of
the responses to our two interviews about the strategies, one prior
to the midterm concerning the debugging strategy, and the second
at the end of the course covering both strategies1. One author began
by identifying categories of sentiments that students expressed
about the strategies. This author then discussed the substance of the
categories with the rest of the authors and resolved disagreements.
The quotes we include paraphrase students’ verbatim responses.

The first round of interviews about the debug strategy revealed
that 46.7% of students preferred to guess the cause of defects and
edit the program to verify their guess, 26.7% preferred asking for
help, and 13.3% preferred reading and analyzing their code. Only
13.3% preferred the debug strategy. Out of the 13 distinct sentiments

1Our analysis omitted data from 2 students who missed one of the interviews.

students expressed, only three were positive. Students claimed that
they liked the step-by-step nature of the debugging strategy, feeling
it helped them stay on track, one calling it a “formula for when
you get stuck.” Many students reported liking the debug strategy
because it gave them an alternative to their ineffective editing
strategy. One student said that it “forces us to actually look at our
code instead of adding random stuff.”

Although many students said that the debug strategy made it
easier to solve their problems, the majority of their sentiments
about it were negative. These included not being able to use the
strategy independently, being unsure where to start, having diffi-
culty identifying possible causes of defects, finding the strategy too
time consuming, finding the strategy tracker interface confusing,
disliking the tracker’s design (having to log in, the website “looking
boring”), and finding the strategy as too general and repetitive.

In the second round of interviews, conducted after 2 weeks of
open-ended game development, 13.3% students preferred the debug
strategy over guessing and editing (33.3%), asking for help (33.3%),
and analyzing their code (20.0%). A chi-squared analysis on the
frequency of the preferred strategies in the middle and end of the
class showed no significant change in strategy preference (χ2=0.64,
p=.89). Students expressed many of the same sentiments about the
debug strategy as before, but none of the students reported disliking
the interface, being annoyed by having to log in, feeling unsure
where to start, or feeling that the strategy was too general. Two
new sentiments also emerged: students reported that the steps of
the strategies were harder to remember without the tool, and that
they disliked strategies rarely gave them solutions right away.

In responses about the reuse strategy, 60% of students claimed
not having used it. Students preferred strategies including looking
for resources without the tool (26.7%), asking for help (33.3%), and
guessing implementation details (20.0%). Only 20.0% preferred the
reuse strategy. Students reported liking that the reuse strategy
helped them find solutions and that it prompted them to search for
resources, whether online or from peers. They disliked, however,
that it did not help them find solutions right away and found it
harder to remember the steps without the tool. They also reported
feeling like the reuse strategy was “pretty much cheating” because
it used resources online, that they struggled to interpret the code
they found online, that they often could not find resources, and
that their lack of prior knowledge hindered their use of it: “kind
of hard to know, because some of the things you’re trying to learn
you don’t know yet.”

3.1.2 Reactions to Strategy Modeling. To further understand bar-
riers to using strategies, we analyzed notes about the 239 help
requests for students' reactions to the help we provided when mod-
eling strategy use. We conducted an inductive, qualitative coding
of these notes, which involved generating and refining a set of
categories from students' reactions, then classifying and resolving
inconsistencies. Table 1 shows the range of reactions.

Students exhibited both positive and negative reactions toward
the strategies. Positive reactions were characterized by compliance
with, expressions of belief in, or an indication of learning as a re-
sult of the strategy. Negative reactions included impatience with
the time strategy use required, frustration when the intended goal
was not met, or inclination to revert back to guessing and editing.

Paper Session: Teaching Practice 1 SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

472



Table 1: Categories of student reactions to strategy modeling

Category Definition Example notes about student reaction Frequency
Reaction Not Recorded Reaction to the help given was not recorded 53
Reaction Irrelevant to Strategy Reaction was not regarding strategy usage 17
Indifference No positive or negative feelings toward the strategy "No reaction to mentioning the debug strategy" 15
Positive Sentiments
Confidence in Strategy Indication of a belief in the effectiveness of strategy use "Seemed satisfied following the strategy and that it helped" 30
Compliance Willing or enthusiastic use of the strategy "Willingly participated in using the strategy tool" 19
Internalization Ability to use strategy without the tool "Was using the strategy in her head, but not online" 5
Negative Sentiments
Reluctance Indications of mild unwillingness to use the strategy "Smiled and reluctantly agreed to using the strategy tool" 27
Dissatisfaction Expressions negative emotions in response to the strategy "He said 'I don’t think [the strategy] is useful.'" 12
Resistance Decision to revert to personal strategy "Didn’t use the strategy because he thought it wasn’t helping" 16
Strategy Understanding
Indicated Learning Better understanding of the subject from strategy use "He navigated to the causes and noticed missing parameters" 94
Indicated Difficulty Confusion or missteps in the process of strategy use "Didn’t know possible causes" 38

These reactions reveal perceived barriers such as reluctance, dis-
satisfaction, and resistance. External factors, such as the strategy
tracker’s interface or strategy presentation, might have influenced
sentiments, introducing other barriers.

Help request reactions also revealed expressions of struggle.
These included difficulty completing the step of the debug strategy
that required students to identify possible causes of failures and the
step of the reuse strategy that required translating solutions into
code. Conversely, students reported that they gained an ability to
achieve a goal and indicated a greater understanding of the subject
on which they received help by using a strategy.

3.1.3 Sentiments about Strategy Utility. We analyzed students’
daily sentiments about the utility of the strategies based on the daily
debrief surveys. We present these sentiments as percentages of the
total student sentiments at the end of the course, added throughout
each day the students were surveyed.

According to students’ self-reported data over the whole class,
73% of students said they either agreed or strongly agreed to being
able to understand the debug strategy, while 51% of students either
agreed or strongly agreed to being able to understand the reuse
strategy. Only 53% of the students said that the debug strategy was
either helpful or somewhat helpful, while 46% of students said that
the reuse strategy was either helpful or somewhat helpful. Only 1%
of student responses claimed that both strategies were unhelpful
and they were unable to follow said strategy. A large portion of the
student responses claimed they never used a strategy: throughout
the class, only 54% of students claimed they used the debug strategy,
while 47% claimed they used the reuse strategy, at the end of the
day. Fishers exact tests showed a significant association between
students who reported using the each strategy and students who
reported it helpful (both p<.00001).

3.2 RQ2: Scaffolding or tool?
To investigate whether the strategy tracker was scaffolding that
eventually could be removed or a tool of consistent utility, we
analyzed the use of the strategies over time and how they were
used. Figure 4 and 5 show the debug and reuse strategy use over
time respectively, including four measures. The first (blue) was the
total number of students using the strategies, as indicated by a help
request (yellow) in which someone was independently using the

Figure 4: Debug strategy use
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Figure 5: Reuse strategy use
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strategy, log data (green) showing the students using the strategy
tracker, or self-reported use of the strategies (orange) in the daily
surveys. These figures show that while use of the strategy tracker
rapidly declined over several days, use of the strategies without the
tracker continued throughout the course.

3.3 RQ3: Is strategy use related to productivity?
Our last question concerned the relationship between strategy use
and problem solving success. We defined productivity as successful
implementation of game features. To identify these features, the
teaching team analyzed all 13 final games as a group, generating
a comprehensive list of game functionality. The final list of fea-
tures and their respective frequencies included: keyboard input
(13), collisions (13), score tracking (11), enemies (8), sound effects
(8), scrolling background (6), lives (4), obstacles (2), gravity (3),
animated sprites (8), falling objects (8), collectibles (7), levels (6),
dynamic background music (4), title screen (6), game over screen
(8), multiplayer (4), bouncing (3), instructions (1), mouse input (1),
and restart functionality (1). Students’ feature counts ranged from
7 to 12 with a median of 9.

To answer RQ3, we sought to model the relationship between
strategy use and this productivity metric. We measured strategy use
as the total number of days a student used a strategy via any of our
three measures of strategy use and number of features implemented.
We first checked for correlations between between game feature
count and strategy use for each strategy. We found that using the
debug strategy was significantly correlated with productivity (R2 =
0.2627, p < 0.05), but using the reuse strategy was not (R2 = 0.1414,
p > 0.05).
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Table 2: Ordinal logistic regressions

Odds Ratio SE β Wald Pr > χ2

Debug Self Efficacy 0.70 0.75 0.23 0.63
Team 2.15 0.99 0.61 0.44

Debug Usage 1.56 0.36 1.54 0.22
Midterm Score 1.05 0.25 0.04 0.85

Help Request Count 0.98 0.07 0.08 0.77
Reuse Self Efficacy 0.55 0.68 0.76 0.38

Team 1.82 0.99 0.36 0.55
Reuse Usage 1.15 0.26 0.30 0.58
Midterm Score 1.01 0.26 0.00 0.96

Help Request Count 1.03 0.05 0.37 0.54

To account for other factors that may have mediated productiv-
ity, we next created ordinal logistic regressions for each strategy
including more possible factors that influence the number of im-
plemented features. The other factors we included were 1) prior
knowledge of the Game Lab API based on midterm score, as brittle
knowledge of the API would have limited productivity; 2) the most
frequent response to the self-efficacy question for the strategy on
the daily surveys after the midterm, as self-efficacy should have
mediated successful use of the strategies; 3) whether or not they
were on a team, as teams may have been more productive; and 4)
the number of times they requested help from an assistant, as help
seeking was likely to play a significant role in successfully building
game features. Table 2 shows the resulting regressions. Neither
model significantly explained the variation in productivity, suggest-
ing that additional factors, or interactions between factors, were
responsible for the number of game features students implemented.

4 DISCUSSION
Our case study revealed several trends. First, with respect to barriers
(RQ1), all of our data sources suggest that while the adolescents in
our class could see the merits of the strategies in the abstract, many
did not see enough value to use them. Most chose to engage in rapid
cycles of editing and testing, without deeply understanding their
code, rather than the more systematic strategies we taught that
required reasoning about program behavior. Student sentiments
suggest that this was partly because of a perception that strate-
gies slowed them down, but also because many of the skills the
strategy required were something students’ did not feel confident
performing without help, such as identifying possible causes of
defects or finding and reasoning about relevant code online. Our
results on scaffolding (RQ2) suggest that having a tool that aided
strategy execution may have scaffolded strategy learning over time,
but that students who used the strategies appeared to do so by
internalizing the them, rather than use the tracker. Our results on
productivity (RQ3) suggest that while there was an association
between using the debug strategy and how many game features
students implemented, the relationship was not a direct one: there
were likely many interacting factors that we did not model that
determine whether students’ were able to use explicit strategies to
effectively guide their problem solving.

There are several possible interpretations of these results. One
is that while explicit strategies may be more effective in princi-
ple, unless students believe they can perform them independently,

they will be reluctant to use them, even when they have directly
observed their benefits. A related interpretation is that providing
effective, explicit strategies may only be effective for learners that
have strong self-regulation skills, as prior work shows that learners
with weaker regulation skills are often unaware of the need for bet-
ter strategies [7, 10, 17, 20]. Another interpretation is an “attention
economic” one [4]: in a classroom environment with substantial
teaching support, asking for help is a more efficient strategy than
trying to independently use a programming strategy a student has
just learned; after all, both strategies had numerous failure modes
that encouraged students to ask for help if they got stuck. Another
interpretation is that the strategies were simply too sophisticated
to learn while also learning basic programming concepts. Perhaps
simpler strategies, scaffolded by instructor guidance, would be more
likely to be adopted and more likely to impact behavior, even if
they are less effective. For example, future work could explore a
debugging strategy that simply prompts students to “find and un-
derstand the cause before editing,” or a reuse strategy that prompts
students to “ask an expert for an example and then work with them
to adapt it to your needs.” This level of strategic detail might be
more appropriate for rank novices, and the level of complexity of
problems they tend to face. Finally, perhaps most adolescents, who
are known to have not yet fully developed executive functioning [2],
do not yet have the self-regulation skills yet to delay gratification
in a way that explicit programming strategies require.

Our study’s limitations complicate these interpretations. Stu-
dents might have been more positive in the interviews and surveys
because of participant response bias. Our class was students’ last of
the day, and so many of their self-regulation skills may have been
exhausted by a long day of math, writing, college prep, and other
electives. The students we studied are also not representative of all
adolescents learning to code.

Despite these limitations, our results have important implications
for future research and teaching. First, our data suggest that there
appear to be many interacting factors that influence adoption and
use of explicit strategies in classrooms, such as students’ willingness
to delay gratification, the availability of help, the strength of their
self-regulation skills, self-efficacy with the specific strategies taught,
the likelihood of students’ encountering problems that benefit from
strategy use, and the alignment between the specific strategies
taught and students’ prior knowledge. This suggests that studying
strategies in strictly controlled settings that omit these factors is
not likely to be fruitful. Second, despite having a tool that carefully
taught the strategies, an instructor that patiently explained the
strategies, and an entire team of teaching assistants model the
use of strategies with individual students, most students did not
adopt the strategies. If we are to succeed in teaching adolescents
programming strategies we know to be effective, future work must
invent more effective, scalable ways to teach strategies. We hope
our results are a solid foundation for this work.
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