

Representations of User Feedback in an Agile, Collocated Software Team

The Information School | DUB Group

University of Washington
Seattle, USA

{mjslee, ajko}@uw.edu

Abstract—Support requests are a major source of feedback

in software development. However, like sentences whispered in
a children’s telephone game, as an issue moves through a
software development process, it may undergo many changes,
making it difficult to ensure that the problem reported was
actually fixed. To better understand how software teams
preserve the integrity of user-reported issues, we observed a
software team over a 6-month period, analyzing the trajectory
of user requests through their software development processes.
Our observations revealed several representations of issues,
highlighting several points where information about an issue
was lost or transformed. Although this information loss
appeared to be unavoidable as an issue went through the
resolution process, we found it was offset by a web of
transactive memory distributed throughout the support and
product teams. This memory was reinforced by asynchronous
chat about recent and commonly reported issues, and shared
notions of what issues should be considered severe or urgent.

Keywords-User-centered design; feedback; issue tracking

I. INTRODUCTION
Technical support is a major source of user feedback in

most software development teams. Support requests can
reveal defects, the desire for new features, and usability
problems that users encounter daily, among a variety of other
user concerns. This feedback is a particularly important
resource from a user-centered design perspective because,
unlike lab-based usability testing, it comes directly from the
user and their experience interacting with the software.

One challenge in utilizing support feedback to better
satisfy user needs is in preserving its integrity throughout a
software process, so that teams can be sure the changes being
made to address a matter actually attend to the originally
reported issue. While recent studies have specifically
examined the role of issue and bug tracking tools in
facilitating coordination around issues [2,3,6,12,16], there
has been little work to understand the range of ways that
software teams represent issues in support tickets, bug
reports, discussions of issues, and work plans. For example,
a software support member trying to explain a reported issue
via e-mail to other team members remotely, might lead to
information loss or miscommunication; similarly, a brief
description of an issue in a bug report title might appear to
capture the original issue, but have subtleties that might
cause a patch to overlook the originally reported problem
with the user experience. Such information loss may lead a
team to fix the wrong issue or erroneously believe a user’s

issue has been resolved when it has not. Exploring the
trajectory of user-reported issues may reveal better ways to
capture and represent issues, as well as surfacing better ways
for developers and support teams to coordinate and
communicate user issues to incorporate into their software.

To better understand how representations of issues affect
issue tracking and resolution, we performed a 6-month field
study of a software team with 20 full-time and 40 part-time
staff. Our study analyzed how issues are represented, through
what processes issues are transformed into new
representations, to what extent each of these representation
types are prone to information loss, and whether there are
consequences to information loss. To answer these questions,
we attended meetings, observed and interviewed staff,
analyzed chat logs, and monitored 2,142 user reported issues,
tracking them from initial request through final resolution.

Our results contribute several findings about how a small,
collocated software team following an agile process manage
and represent user-reported issues. We found that although
information loss appeared to be unavoidable, this was largely
offset by a web of transactive memory, in which groups
collectively encode, store, and retrieve knowledge [19],
highlighting the importance of communication in identifying
and preserving critical user feedback. We also found that
most representations of issues primarily serve not to store
actual details about user-reported issues, but rather cues for
recalling the combined transactive memory about issues.

II. RELATED WORK
In a recent study, Bertram et al. examined issue-tracking

practices of a small, collocated software engineering team
from a social perspective [3]. They found that issue-tracking
software is more than a repository to track bugs and tasks,
but also serves as a multifaceted social medium for
communication and coordination for many stakeholders,
even though face-to-face exchange is readily available. Our
study also concerns issue trackers, but focuses on the issues
themselves and how they are represented.

Other related work focuses on the contents of user issue
requests and bug reports. This includes guidelines for
effective bug reporting, such as Bettenburg et al.'s work
exploring the mismatch between what users provide and
what developers consider helpful [4], and Zimmermann et
al.'s work proposing changes to bug tracking systems to
increase relevant information for reported issues [21]. Our
work considers many of the same questions, but focuses on
user-reported issues and how they are converted into bug
reports and work plans by experienced bug report writers.

978-1-4673-1824-2/12/$31.00 c© 2012 IEEE CHASE 2012, Zurich, Switzerland76

 Michael J. Lee and Amy J. Ko

There have also been several studies on technical support
and help requests. One example is Bowers and Marin’s work
[5] analyzing the process in which incoming phone calls to a
bank’s help center are opened, closed, and resolved. Their
work provides a detailed account of the role of the operators
in understanding how customer requests fit with the
organizational procedures and terminology. Halverson et
al.’s work analyzed the evolution of a CSCW system by
analyzing a help desk [10], revealing how the system was
designed by bricolage. Our work compliments these studies,
exploring how support and software teams collaborate to
ultimately resolve user-reported software issues.

Our work is also related to prior work on systems for
knowledge management and organizational memory. Lutters
and Ackerman have proposed organizational memory
systems, showing how they transfer information between
groups to better support collaboration [14]. Ackerman and
Halverson have described help-line operators working
together to solve an individual's request, illustrating the wide
variety of resources combined into a working organizational
memory that keeps track of how to deal with past issues [1].
This is consistent with subsequent research by Yamauchi et
al. [20], who found that service technicians encountering
new, difficult problems had a large number of resources that
they could refer to for assistance, but preferred asking other
technicians for help, or referring to informal tips written by
other technicians. This is in line with Cunningham et al.’s
work studying technical support workers, who “selectively
use resources that will enable them to effectively and
efficiently solve problems” [9]. Our study compliments these
works, contributing observations in the similar domain of
software teams, but explicitly focusing on the relationship
between support and development staff.

III. METHOD
The goal of our study was to learn how software teams

represent issues, how these representations change
throughout a software process, and how limitations in these
representations affect a team’s user-centered design (UCD)
efforts. To answer these questions, we sought a team
committed to user-centered design. We ultimately chose to
study a software development team (SDT), which works on
the Spark Tool Suite for the local university (names have
been changed for anonymity). This group was responsible
for the creation, support, and improvement of a suite of web
applications designed for faculty staff, and students. This
suite included a grade book for courses, a survey generator,
and an assignment submission tool, among several other
applications used broadly by the university community.

There were several factors behind our choice of SDT: (1)
the group was situated closely, allowing convenient access,
(2) both researchers were familiar with at least a few of the
applications, and most importantly (3) SDT’s commitment to
UCD, reflected in their mission statement:

“We follow an iterative, user-centered design and development process that
focuses on understanding the needs and experiences of our users. […] our
design decisions are based on direct feedback, user research, and findings
from usability studies.”

This was an important trait because we wanted to observe

how the team organized itself to process user feedback in a
user-centered manner.

SDT followed a variant of the Scrum development
process, an agile, or iterative methodology focused on
regular, two-week release schedules called sprint cycles
[15,17], with a flat management hierarchy.

We collected data over 6 months of direct observation:
• Attending, recording, and transcribing team meetings.

This helped us gain familiarity with the team, establish
rapport, and understand their practices and processes.

• Observing the shared office space. This allowed us to
observe the staff’s individual work and ask clarification
questions about interesting observations.

• Monitoring the Internet Relay Chat (IRC) channel. This
was important to gain understanding how different team
members, particularly those who did not regularly attend
team meetings, exchanged information.

• Monitoring the Issue Tracking System (RT & Bugzilla).
This allowed us to access the complete set of issues, and
enabled us to backtrack through multiple logs to see the
progression of an issue, what was worked on, and how it
changed throughout the process.

A. Team Structure
SDT consisted of two distinct groups with offices half a

mile apart. When necessary to distinguish between the two
groups, we will refer to them as the support team (on-
campus) and the product team (off-campus).

The support team’s staff included a full time manager
and system administrator and 11 part-time student workers,
called consultants, who responded to phone and e-mail
support requests. Four of the more experienced students,
called leads, had additional managerial responsibilities and
helped the manager train and coordinate new consultants.

The product team included the development team, design
team, quality assurance team, managers, and administration.
The full-time staff we interacted with included the
developers, designers, the quality assurance (QA) engineer,
and the project manager (PM). The part-time, student
workers we interacted with here were the quality assurance
assistants, namely the quality assurance leads (QA leads).

Communication within each site occurred in open office
spaces with desks. Staff walked over to a colleague’s desk, e-
mailed them, or met in conference rooms to discuss
questions or concerns. The support team did not hold any
team meetings during our observations, which was normal
according to the support manager. The product team had a
daily scrum meeting at 8:45am, where everyone briefly
reported their previous day’s progress [17]. In addition, they
had biweekly sprint planning meetings, where the agenda
was to discuss current progress on assignments, get an
update on what other individuals and groups were working
on, demo projects, and set 2-week goals [17].

Communication between sites took place daily over e-
mail and through a shared IRC channel. In addition, a
weekly “leads’ meeting” took place, where the support
manager, QA engineer, and at least one lead and QA lead
each, would meet to discuss ongoing support issues and
upcoming software patches and features.

77

B. Support and Development Process
When users needed help, they generally e-mailed the

support group with a message describing their issue using
either an online form or an e-mail address. The support
team’s issue tracking software, Request Tracker 3.4.4 (RT)
(www.bestpractical.com/rt), automatically processed the e-
mails, creating a ticket in its database. If a solution could not
be provided for the user, the issue was escalated to a shared
IRC-channel populated with personnel from both the support
team and product team. The few issues that were not
resolvable in IRC discussion were closed in RT and a new
report was created in the product team’s issue tracker,
Bugzilla 3.0 (www.bugzilla.org). Non-urgent issues that
were not immediately resolvable (e.g. feature requests) were
closed in RT and logged in Bugzilla for future review.

In accordance to the scrum methodology [17], the
product team worked in 2-week sprints, releasing major
updates to their software on a biweekly schedule. Deciding
what reports the team would work on occurred in a biweekly
sprint planning meeting which typically took place 2 days
before a release. During these meetings, post-it notes on the
whiteboard were updated to reflect the new two-week sprint.
The developer, design, and QA teams met within their
groups to decide what to work on, then each individual
created physical representations of the Bugzilla reports on
post-it notes and then posted it on the whiteboard. Issues or
projects that would take longer than one sprint to complete
were reclassified as stories, and written on index cards to
post on the whiteboard. In addition to the biweekly sprint
planning meetings, morning scrum meetings were scheduled
to update post-it notes on the sprint backlog whiteboard. This
allowed the product team to visually track members’
progress during the sprint.

In all, the team logged a total of 2,142 reports into RT
during our observations. There was a median of 17 incoming
e-mails per business day, with 302 (14.1%) RT tickets with
corresponding IRC conversation, and 223 (10.4%) Bugzilla
reports originating from RT tickets.

IV. RESULTS
Our observations revealed five issue representations:

1. User e-mails sent to technical support;
2. The automatically generated RT ticket that the support

team used to annotate the e-mail;
3. IRC discussions between the support and product team

about issues deserving of escalation;
4. The Bugzilla reports written by product team members

to capture the discussed issues; and
5. The post-it notes and index cards used to represent

Bugzilla reports in face-to-face meetings.
In this section, we describe each of these representations,

analyzing their role in capturing user concerns and how they
were transformed into other representations. Further, we
examine the information loss that occurs at these transition
points, and how SDT coped with this. All names are
pseudonyms and any personally identifiable or private
information has been replaced with asterisks. All
communications are reported verbatim.

A. Limited Information Provided in Support Request E-Mails
The primary source of user feedback was through e-mail

generated by hyperlinks embedded in the team’s web
applications. Users’ messages tended to consist of a few lines
of text (as in Fig. 1), limiting what information the team had
to understand and resolve the issues.

Prior works have examined the content of similar user-
reported content; for example, studies have considered the
linguistic content of bug report titles [13], the expectations
stated in bug report summaries [8], and the need for
reproduction steps [4]. These studies focused heavily on how
users state expected behavior, observed behavior, and input
leading up to a problem, and so we included these in the set
of content categories we looked for in user e-mails (Fig. 1).
The team also explicitly requested (but did not require)
several details, including the browser being used, the
application and URL in which the problem was encountered,
and the operating system used; we also analyzed these.

To understand the extent these various types of content
were included in requests, we devised the coding scheme
shown in Table 1 and selected a uniformly random sample of
268 tickets from the population of 2,142 RT tickets (12.5%)
for detailed coding. The sample had the expected number of
IRC and Bugzilla reports in proportion to the population.
The first author coded the 268 issues using the established
categories, marking either yes or no for the presence of the
information type; examples of the information we coded are
given in Fig. 1. To test the reliability of this categorization,
the second author redundantly coded 25% of the sample;
85.6% of classifications were in agreement. Table 1 shows
the statistics of the sample data. The numerical values are the
percentage of user requests that contained the corresponding
categorical information in descending order of prevalence.
These results show that users described issues as a contrast
between expected and observed behavior.

TABLE I. INFORMATION CONTENT OF USER REQUESTS

Category Definition %	
 of	

sample

Expected	
 behavior What	
 should	
 have	
 happened? 100%
Observed	
 behavior What	
 actually	
 happened? 76.6%
University	
 affiliation Am	
 I	
 a	
 student,	
 faculty,	
 or	
 staff? 57.9%
User	
 actions	
 prior	
 to	
 issue What	
 did	
 I	
 type	
 or	
 click? 47.2%
Activity	
 context What	
 was	
 I	
 trying	
 to	
 do? 30.7%
Application What	
 application	
 was	
 it? 27.7%
Attempted	
 workaround(s) How	
 did	
 I	
 try	
 to	
 fix	
 it? 16.8%
URL What	
 was	
 the	
 URL? 16.7%
Personal	
 consequence How	
 did	
 it	
 affect	
 my	
 goals? 12.6%
Browser What	
 browser	
 was	
 I	
 using? 12.0%
Operating	
 System What	
 OS	
 was	
 I	
 using? 10.2%
Pleas	
 for	
 help Am	
 I	
 pleading	
 or	
 begging? 9.8%
Attachment(s) Did	
 I	
 include	
 any	
 attachments? 1.3%
Emotional Am	
 I	
 being	
 emotional? 0.8%

i sent out a messge several weeks ago drawing your attention to the fact that
my courses for the winter quarter of 2010 have NOT been listed in my spark
account page up tll now[1,2]. will you please tell me WHY? [4,5] i need to use
the grade book for my chinese 412 class[6,7]. please advise and i'd appreciate a
prompt answer[2]. thanks.

Figure 1. An annotated user request showing:
1) observed behavior, 2) expected behavior, 3) personal consequence,

4) plea for help, 5) emotion, 6) application, and 7) activity.

78

B. Resolving Issue Ambiguity with Transactive Memory
The results in the previous section are consistent with

prior work on bug reports, showing that most users do not
provide the information that teams need to reproduce and
resolve problems [4,11]. However, in contrast to the
problems this limited information caused in the bug
reporting processes in previous studies, the staff in our study
reported that users’ provided more than enough information
for them to infer the problem they were experiencing, even
when the users’ e-mail was vague. For example:

Is there a way to turn off the results notification? I find it doesn't give me any
useful information (like who took the quiz) and so I'd rather not receive the
notification (or I'd rather receive it but with info about who took the quiz).

Here, the user request was characteristic of the type of
request received (in that it primarily indicated an
expectation), but the user did not say what application they
were using, what they meant by “notification,” or which quiz
they were referring to, all of which were important in either
providing help or adding a new feature.

Despite this lack of detail, the support team resolved this
issue without any additional information from the user,
sending a particularly targeted set of instructions as shown:

You can turn off the results notification by following these steps:
1) Go to the Summary section of your WebQ quiz/survey. 2) Click "Results
notification" under Settings. 3) De-select the checkbox "Notify me about
submissions to this quiz." 4) Click Save.

Of the sample of 268 tickets in the last section, 86.6%
were resolved without requesting additional information
from the user, showing that in most cases, the support team
found the limited context users provided adequate for
inferring the specific issue the user was encountering.

Why was this enough information for the support team to
interpret the meaning of users’ issues? We found through
observations and interviews that the support team relied
heavily on keywords in the user e-mails to match the reported
issue against the staff’s knowledge of known issues. A
consultant confirmed this in an interview stating, “I just look
for keywords [in the e-mail] to determine what they [the
user] are talking about.” During repeated observations of the
support team, we learned that the keywords the consultant
mentioned were specific words or phrases that would
commonly occur for certain tools and their functionality (e.g.
“quiz,” “submit,” “late” for the team’s survey-making tool).
Therefore, the RT tickets that stored users’ issues were less a
container for a description of an issue and more an index into
the support teams’ knowledge of existing prior issues.

In our observations of the support team, we also noticed
staff querying fellow staff for knowledge. Shown in Figure
2, these short, ad-hoc conversations happened between
individuals in close physical proximity in the office. In this
exchange, the 1st consultant attempted to replicate a user’s
issue but could not do so. By asking her colleague about a
potential cause, she learned that there was an issue the
previous day when she was not on duty. She went on to let
the user know that it was an isolated incident, and that the
developers had fixed the problem. From this point, the 1st
consultant was able to answer subsequent questions that
appeared to be about this without asking for assistance.

Exchanges likes these were especially important since
most support staff worked less than 20 hours per week. This
meant that there were regular intervals where staff would

develop gaps in knowledge about the software suite and
trends in user issues. The support manager was the exception
to this, but did not look at all the incoming tickets because of
other duties. There was also always one lead on duty, so they
tended to be the persons other consultants would ask
questions. Ad-hoc conversations, such as the one shown in
Figure 2, filled in gaps in knowledge of current issues,
spreading such knowledge throughout the team.

Experience appeared to be associated with the number of
keywords one could recognize. This was most apparent when
comparing the leads with newly hired consultants. Since
leads typically worked more hours than consultants, others
usually went to them with questions. On the other hand,
newly hired consultants had large gaps in knowledge of
known issues, and tended to be those who asked questions.
New consultants spent their first two weeks reading through
resolved RT tickets and observing senior consultants. They
would spend the following two weeks mock-answering
users’ issues. Leads or the manager would review these
before approving them to be sent to users.

The support team explicitly avoided requesting
information from users. According to the manager, the team
“tries to minimize asking the user for more information
because it really slows down the process waiting for
someone to reply.” If a user did not provide a complete
picture of their problem, the support team used other
resources to narrow it down. Most cases, especially user-
interface issues, were resolvable using the limited
information provided by the user. However, in cases where
there was a specific problem with a specific aspect of an
application (e.g. a quiz not submitting for a particular user),
leads and the support manager were able to log in as the user
to try to replicate the problem.

While the staff relied heavily on keywords to infer
missing context and detail, they explicitly did not use users’
statements about personal consequences, pleas for help, or
emotional distress. The staff indicated that they “mostly
ignore that information,” because “it’s not useful” and “does
not help […] replicate [the problem].” Extremely emotional
cases were forwarded to the support manger, who had more
training in customer relations; however, he mentioned that
being emotional did not help the user’s case; the concern was
more with whether the issue was known or new.

C. Escalating Issues via IRC
RT tickets that could not be resolved by providing help

or workarounds were escalated by a lead or the support
manager to an IRC channel shared by SDT staff. A median
of three RT tickets per day were escalated to IRC, for a total
of 333 during our six months of observations.

From the team’s perspective, the purpose of escalation
was for the support team to get the information they needed
to close tickets. However, we observed several other
functions that these brief discussions played. One was to

Alex: Hey, look at [RT] 716424, did we have some kind of connection problem
yesterday?
Cameron: Oh yeah, there were some issues about that, but the devs fixed it and
everything should be working by now.
Alex: Yup, I wasn’t getting any errors, so just checking.

Figure 2. One consultant obtaining knowledge about an issue from another.

79

decide whether the issue was known or whether it was new;
these discussions were rarely explicit, but were implied at the
conclusion of the discussions. For example, here, a developer
and designer are having a conversation about a recently
discovered bug, but never explicitly state that it is new:

15:05 <taylor> her grid view is set to a specific filter group, but that filter
group no longer exists!
15:05 <devin> huh […] interesting
15:05 <taylor> I will file a bug
15:06 <devin> indeed
15:06 <taylor> the code assumes that the filter groups will always exist, it
doesnt bother to check
15:07 <taylor> I guess in this case the filter shold revert to 'all'
15:08 <devin> that seems right
15:08 <taylor > k
15:10 <taylor > alright, bug 11501 […]

We also found that these discussions transferred
knowledge from the product team about what would be
changing in the near future, and application functionality that
had broken recently. In addition to the support team learning
a great deal about the product team’s recent work, they were
also an opportunity for the support team to communicate
trends in recurring issues such as usability problems.

Determining whether an escalated RT ticket was known
or new ultimately determined whether it received attention
by the product team. Known issues tended to be spotted and
resolved quickly by others in IRC, often by targeting
requests for knowledge to particular staff by preceding
messages with the intended recipient’s handle:

09:56 <drew> we might have a bug here [...]
09:56 <drew> is you look into the grade book for june titled *****
09:56 <drew> we can't get sections to show [...]
09:57 <hayden> drew: yup that is a known issue, already fixed in
development

On the other hand, new issues required much more
conversation and verification before they were escalated:

15:18 <alex> hayden: I'm with an instructor ***, who is attempting to sync
a webQ quiz (***) to a Gradebook (***) assignment (***). However, when
he attempts to import the WebQ, he receives the "application experienced an
error ..." message. What's happening?
15:20 <hayden> Alex: i'm looking into it now, it appears the instructor may
have found a bug
15:23 <hayden> Alex: the survey hasn't been deleted has it?
15:24 <hayden> actaully nevermind, that shouldn't matter
15:31 <alex> I noticed that the url says "survey", although the summary
page says "About this quiz"
15:34 <hayden> Alex: the quiz is deleted, which should be ok, but i'm
checking
15:37 <hayden> Alex: being deleted is what the problem is. it is a bug for
sure, but that is why
15:39 <hayden> can you submit that as a bug for me?

Discussion about whether an issue was known or new in
IRC was similar to that of the exchange between consultants.
People would ask clarifying questions in IRC, sometimes
directed at an individual, or groups of people. However,
since this was a shared, asynchronous exchange, other
people in the IRC channel (or those who joined later in the
day) could see the entire day’s conversations at any time and
interject as needed. By having conversations in this medium,
a wider set of people with different expertise and transactive
memory could and did participate at any point in the
conversation. Although it was not mandatory, we observed
that the leads, managers, and all other staff on the product
team logged into the IRC channel during their shifts. In
analyzing the IRC logs, we found that every staff member
contributed to conversations in IRC, though the amount of
participation from each individual varied.

The product team also used the IRC medium to
disseminate information to the support team. Oftentimes, this

was used to teach a workaround or to report changing or
broken features:

09:10 <jordon> everyone: old tools are down (simplesite, portfolio). Taylor is
working on getting them up and running. Updates to come.
09:10 <alex> ok […] thanks for letting us know

IRC was also used by the support team to let the product
team know of recurring issues that they had collected over
time. These issues were captured in a Bugzilla report, and
once there were more than two requests, a lead would bring
it to the attention of the product team in IRC. In the
following example, a lead starts a conversation by linking to
a recurring issue and giving a brief description of the
problem. The product team members evaluate it and
subsequently take ownership of the issue:

10:17 <cameron> hayden: can you look at gradebook [url removed]
10:17 <cameron> it has an administrator *** that does not have the
gradebook showing up their account
[14 lines of unrelated conversation removed]
10:49 <parker> Taylor is telling us its designed behavior
10:49 <parker> when you're an admin on both the cv and the tool
10:49 <devin> or a participant, i assume
10:50 <parker> he said that the CV hides the tools in it when its in the inbox.
so the user was looking for a GB, but didn't see it
10:50 <riley> wow
10:50 <parker> anyway... cameron: what's the bug number on that?
10:51 <cameron> Bug 11182

Finally, IRC was also used to converse with people in
close proximity (i.e. same office space):

12:56 <devin> devs: is there any chance that the fix for bug 9931 did not get
merged onto trunk? i'm still seeing the bug

When asked why they would chat using IRC instead of
talking face-to-face, a designer said, “it’s much more
convenient to say it here [in IRC] because the other person
might be busy at the moment, and they and other people will
see the message.” As the designer mentioned, posting a
question in IRC, even if it was directed towards a specific
individual, had the benefit of everyone else in the channel
having a chance to see it. Conversely, it also had the
advantage of everyone being able to see the conversation and
result, adding to everyone’s knowledge. Ultimately, IRC was
an opportunity for team members to not only access shared
transactive memory, but synchronize theirs with the team.

D. Relating Issues as Bug Report Titles and Descriptions
When issues from technical support were escalated to

bug reports, all the information from past representations
was consolidated into bug report titles and descriptions. This
act of consolidating issue content was particularly important
since the product team might not work on the issue for
several weeks, months, or years, making the word choice and
phrasing critical for cueing the team’s knowledge of the
issue in relation to the software implementation.

To understand how knowledge of the issue was
consolidated into bug report titles and summaries, we
analyzed 29 RT tickets in the sample of 268 RT tickets
discussed in the previous sections (due to authorization
issues, however, we were unable to access two of these bug
reports). We focused on how knowledge of the issue was
consolidated into report titles, how the bug report titles were
used, and what the team wrote in each report’s description.

First we consider how the titles were derived from the
users’ e-mails. We compared each of the titles of the original
RT ticket with their corresponding Bugzilla report’s. While
the original issues contained a variety of information (as

80

discussed earlier), including expected and observed behavior
and other context, the titles almost exclusively indicated one
of two types of information: (1) a noun phrase indicating
some desired feature (e.g., “Copy-Paste to and from grading
sheet column”), or (2) a phrase indicating some existing
feature, with a characterization of some aspect of that feature
implied to be undesirable (e.g., “Plain text editor treats return
character as
”). The first phrasing focused on expected
behavior and the context in which it was expected, while the
second focused on the observed behavior, implying the
expectation. The authors classified each report as one of
these two independently, arriving at 93% agreement; the
sample was half of each type. Little of the other information
from user e-mails or IRC discussions appeared in the titles.
We found that the 27 Bugzilla titles in our sample contained
a median of 8 words; the corresponding user requests in RT
were significantly longer, with a median of 89.5 words.

In our observations and interviews, we found that the
report title and number were the two primary pieces of
information the support team used to select issues for
upcoming sprints. Having a good title reminded them about
what the issue was, which application it concerned, and how
complicated it would be relative to the time and resources
available to address it. The support manager described the
goal of title writing as “making it easier […] to distinguish
between [Bugzilla reports] and kind of know what it’s about
without having to open [it].” We observed this same goal in
sprint planning meetings: some reports (usually older or not
created by the group members present) were opened to read
the description before deciding whether or not to work on it.
Other reports were not opened at all, but added to their to-do
list, suggesting that they had a general idea about what the
issue was, and approximately how long it would take to
resolve. Interviews with the product team confirmed this:

“yeah, [I didn’t have to open the report] because I was the one who put it in
[to Bugzilla] [….] I think about … 3 …or 4 sprints [1-2 months] ago. Oh, and
that other [report], Devin knew what it was […] and I think I know what it is,
so we didn’t bother opening it.”

When asked why he opened some of the reports, he said,
“ah, it’s because I don’t think I was the one who put it in there [Bugzilla]. I
remember talking about it… and I was pretty sure what it was … but I just
wanted to make sure it was the one I was thinking of. […] it just takes […] 5
seconds to open up the [report] to check it out.”

These observations show that the team used the report
titles to quickly recall transactive memory of the issue and
the kind of engineering and design work it would involve.

In addition to analyzing report titles, we also analyzed
what information in Table 1 the team members left out from
RT tickets when creating a Bugzilla report and what
information was added from IRC discussions or elsewhere.
Using our list of Bugzilla reports originating from RT
tickets, we worked backwards tracking the origins of what
was in the Bugzilla report. We compared each pair, checking
to see if the report contained verbatim text from IRC or RT.
We also checked to see if the report author elaborated on the
issue with original text. Finally, we checked whether the
author included text either confirming that they replicated the
issue, or providing steps to reproduce it. There was no clear
pattern in the combinations of these sources of information.
The product team verified this, telling us that the descriptions
were completely up to the person making them, and there

was no standard practice or expected way to create them.
There were, however, preferred sources. Authors elaborated
on issues in 70% of the reports; 44% of reports used
verbatim text from the original RT ticket in the description.
Only one report contained text from IRC discussions, and
15% included reproduction steps.

E. Issues as Physical, Organizational Cues
Near the end of every 2-week sprint, the product team

would meet to go through the list of Bugzilla reports and
chose the ones they felt they should work on based on what
they were currently working on, the age of a report, and the
estimated time it would take to resolve. The team kept a
physical record of the active issues on a whiteboard with
post-it notes and index cards attached.

The post-it notes and index cards were similar in
structure. Bugzilla reports were written by the individual
who was going to work on it onto post-it notes with any
combination of the report number, short description, and
estimated time it would take to resolve in hours. Likewise,
Bugzilla stories were written as they arose by the PM onto
3x5 inch index cards, always containing the report number,
story identification number, verbatim description from the
digital version, and the estimated number of hours or sprints
it would take to resolve. Though these physical
representations of user issues were created using data from
Bugzilla reports, almost all the accumulated data up to this
point is lost in this transition, stripped to the bare minimum.
However, as the rest of this section will demonstrate, these
meager representations of users’ issues were enough of a cue
for the product team member(s) to access their knowledge of
the issue and work towards resolving it.

During the morning scrum meeting, everyone would go
to the whiteboard, make any necessary changes to time
estimates, and move their post-its to the next column,
signifying that there was progress made. The whiteboard
acted as a wall-sized to-do list and allowed individuals to
track their own progress; it also enabled everyone on the
team to see others’ progress. As one designer stated, “it’s
embarrassing if you have a bunch of… not finished tasks…
when everyone else is clearly ahead of you and can see that.”

These meetings had a secondary function of maintaining,
reinforcing, and updating the knowledge of members in the
product team about active reports. Through their colleagues,
teammates were exposed to more Bugzilla reports, adding to
individuals’ transactive memory about the work of their
colleagues, enabling any of the staff to share this knowledge
to the support team on IRC. In addition, everyone saw who
was working on what, creating knowledge about who the
expert for certain types of reports was, so that they could
direct questions to that person about similar reports later on.

The physical representations of Bugzilla reports, the
post-it notes, served as indexes into transactive memory.
Post-its were created by the individual who was going to
work on it, so it could have any combination of the report
number, short description, and estimated number of hours it
would take to resolve. Even though a lot of information was
omitted when creating the physical representation of the
Bugzilla report, it did not appear to matter at all for the

81

person working on it, or others on the team. They were
simply an efficient way to remind everyone what was being
worked on, without having to verbalize or explain the whole
issue. Everyone we interviewed on the team thought of and
referred to the functionality of the post-its as “bookmarks” to
their memory and originating Bugzilla report. These results
illustrated that the product team did not rely on the digital
representations issues to do their work; they were cues for
accessing and coordinating around transactive memory.

V. DISCUSSION
Throughout our observations and analyses, we

increasingly realized that the actual content in the
representations were secondary; most of the information
about user-reported issues was already in the team’s
collective knowledge. Users’ e-mails occasionally provided
new knowledge, but ultimately, the information conveyed by
users was used primarily to cue knowledge already known
by the team. Moreover, the content in subsequent
representations of issues throughout the team’s processes
were secondary as well, serving primarily to cue the much
richer knowledge of issues distributed throughout the team’s
collective memory. Finally, we found that many of the
team’s support and engineering processes, while primarily
focused on accomplishing engineering work and making
decisions, had the secondary effect of sharing and
reinforcing the groups’ transactive memory. Our finding
showing SDT’s ability to work effectively with incomplete
information is consistent with prior works showing that
transactive memory improves both information integration
processes [7] and decision-making processes [18].

These findings reveal the importance of frequent
communication between support staff and the rest of the
product development team. The communication in IRC we
observed appeared to be a critical part of ensuring not only
that the support staff was able to help the users requesting
assistance in a timely and detailed manner, but it was also an
essential part of ensuring that the product team had a daily
awareness of the types of new or recurring problems that
users were encountering. Our findings also highlight the cost
of support staff turnover, as the knowledge that support staff
acquired over time was critical not only in providing
effective user assistance, but it was an important part of
ensuring that recurring user concerns that support staff saw
daily could be escalated to the product team.

Our findings have several implications for issue tracking
software like RT and Bugzilla, and other similar products.
For example, our results suggest that the way issue content
should be presented in these tools might focus on
emphasizing the noun phrases in issue descriptions, to aid
staff in identifying what a ticket concerns. Such tools might
also consider visualizations that highlight what noun phrases
are current, especially for products developed with Agile
methods, to help teams identify recurring topics that might
be overlooked as support staff change shifts.

As with any case study, our results should be interpreted
with caution. The team we studied did compete with other
products, but not financially; the team was also focused on

serving a directly affiliated user community. Its products
were cloud-based, web applications and these applications
were evolved iteratively over two week sprint cycles. All of
these characteristics of the team we studied may have
contributed to our findings, meaning that the phenomena we
observed might not occur in teams in different contexts.

REFERENCES
[1] Ackerman, M.S. & Halverson, C. (1998). Considering an

organization's memory. CSCW, 39-48.
[2] Aranda, J. & Venolia, G. (2009). The secret life of bugs: Going past

the errors and omissions in software repositories. ICSE, 298-308.
[3] Bertram, D., Voida, A., Greenberg, S., & Walker, R. (2010).

Communication, collaboration, and bugs: the social nature of issue
tracking in small, collocated teams. CSCW, 291-300.

[4] Bettenburg, N., Just, S., Schröter, A., Weiss, C., Premraj, R., &
Zimmermann, T. (2008). What makes a good bug report? FSE, 308-
318.

[5] Bowers, J. & Martin, D. (2000). Machinery in the new factories:
interaction and technology in a bank's telephone call centre. CSCW,
49-58.

[6] Breu, S., Premraj, R., Sillito, J., & Zimmermann, T. (2010).
Information needs in bug reports: improving cooperation between
developers and users. CSCW, 301-310.

[7] Cannon-Bowers, J.A. & Salas, E. (2001). Reflections on shared
cognition. Journal of Organizational Behavior 22 (2): 195–202.

[9] Cunningham, S.J., Knowles, C., & Reeves, N. (2001). An

ethnographic study of technical support workers: why we didn't build
a tech support digital library. ACM/IEEE Joint Conf. on Digital
Libraries, 189-198.

[10] Halverson, C.A., Erickson, T., & Ackerman, M.S. (2004). Behind the
help desk: evolution of a knowledge management system in a large
organization. CSCW, 304-313.

[11] Ko, A.J. & Chilana, P.K. (2010). How power users help and hinder
open bug reporting. CHI, 1665-1674.

[12] Ko, A.J., DeLine, R., & Venolia, G. (2007). Information needs in
collocated software development teams. ICSE, 344-353.

[13] Ko, A.J., Myers, B.A., & Chau, D.H. (2006). A linguistic analysis of
how people describe software problems. VL/HCC, 127-134.

[14] Lutters, W.G. & Ackerman, M.S. (2007). Beyond boundary objects:
collaborative reuse in aircraft technical support. JCSCW 16(3): 341-
372.

[15] Rising, L. & Janoff, N.S. (2000). The scrum software development
process for small teams. IEEE Software 17, 26-32.

[16] Schmidt, K. & Simone, C. (1996). Coordination mechanisms:
towards a conceptual foundation of CSCW systems design. JCSCW,
5(2-3), 155-200.

[17] Schwaber, K. & Beedle, M. (2001). Agile software development with
Scrum. Prentice Hall, 2001.

[18] Stasser, G., Stewart, D.D., & Wittenbaum, G.M. (1995). Expert roles
and information exchange during discussion: The importance of
knowing who knows what. J. of Experimental Social Psychology, 31
(3): 244–265.

[19] Wegner, D.M. (1986). Transactive memory: A contemporary analysis
of the group mind. In B. Mullen & G. R. Goethals (Eds.), Theories of
group behavior. New York: Springer-Verlag, 185-208.

[20] Yamauchi, Y., Whalen, J., & Bobrow, D.G. (2003). Information use
of service technicians in difficult cases. CHI, 81-88.

[21] Zimmerman, T., Premraj, R., Sillito, J., & Breu, S. (2009). Improving
bug tracking systems. ICSE Companion.

82

[8] Chilana, P., Ko, A.J., & Wobbrock, J.O. (2010). Understanding
 expressions of unwanted behaviors in open bug reporting. VL/HCC,
 203-206.

