
How Designers Design and Program Interactive Behaviors

bam@cs.cmu.edu; sunyoun1@andrew.cmu.edu; yokonakano@alumni.cmu.edu; gmueller@andrew.cmu.edu; ajko@cs.cmu.edu

Abstract
Designers are skilled at sketching and prototyping

the look of interfaces, but to explore various behaviors
(what the interface does in response to input) typically
requires programming using Javascript, ActionScript
for Flash, or other languages. In our survey of 259
designers, 86% reported that the behavior is more dif-
ficult to prototype than the appearance. Often (78% of
the time), designing the behavior requires collaborat-
ing with developers, but 76% of designers reported that
communicating the behavior to developers was more
difficult than the appearance. Other results include
that annotations such as arrows and paragraphs of text
are used on top of sketches and storyboards to explain
behaviors, and designers want to explore multiple ver-
sions of behaviors, but today’s tools make this difficult.
The results provide new ideas for future tools.

1. Introduction
Designing user interfaces differs from designing

static pages and movies in that user interfaces involve
interactivity. Users click on buttons and links, fill in
fields, directly manipulate graphical objects, and there-
by control the results in a variety of ways. There have
been many previous studies of the processes, tech-
niques and tools that are used by designers, but none
have focused on how the interactive behavior of the
interface is created and communicated. Creating the
behaviors inherently deals with programming concepts,
such as conditionality (e.g., behaviors that only happen
if the user interface is in a certain mode), and abstrac-
tion (e.g., a behavior should happen when users click
on any object of a particular type). Designers can be
classified as end-user programmers (EUP), since they
do not write programs as a primary goal, but rather in
support of designing a web page or an animation [12,
13].

The tools that have been made for designers either
focus on the static design (such as Photoshop or Illu-
strator), provide only limited interactivity such as rol-
lovers and pages changes for web pages (such as in
Dreamweaver), or are based on conventional languages
and tools aimed at professional programmers (for ex-
ample, the ActionScript language in Flash is basically

Javascript). Our intuition was that none of these ap-
proaches was meeting the needs of designers.

To evaluate our intuition, we conducted field studies
of 13 designers, followed by a web-based survey,
which received 259 responses, to investigate the design
and programming of interactive behaviors. We particu-
larly focused on people who are trained and work on
interaction design, graphics design, information archi-
tecture, experience design, visual design, user interface
design, or equivalent.

In our survey, we defined a behavior as:

“...anything that an application does. If you think
of “look and feel,” we are mainly focusing on the
“feel.” Another way to look at it is that we are
focusing on what you cannot draw in Photoshop,
but instead need to describe in other ways, such
as using storyboards, code, etc. Or, if you were
developing in Flash or Director, the behavior
would be anything that required using the time-
line or scripting.”

Since these behaviors happen in response to user in-

puts in the target applications, we classify them as in-
teractive behaviors. In this paper, we use behaviors
and interactive behaviors interchangeably.

Many of our findings confirmed what others have
reported in previous surveys (e.g., [4, 6, 14, 18]), for
example that designers prefer to start by sketching
(about 97% in our survey), and most designers (88%)
also use storyboards. However, we did find five inter-
esting new results that have not been previously re-
ported:

Figure 1: Sketches by a contextual inquiry participant
showing two different options being investigated for an
interaction, with lines and textual annotations to explain
what is intended.

2008 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

1-4244-2528-0/08/$25.00 ©2008 IEEE 177

Brad Myers, Sun Young Park*, Yoko Nakano, Greg Mueller, Amy J. Ko
Human Computer Interaction Institute; *School of Design

Carnegie Mellon University

1. By a large margin, the participants in our survey
agreed that programming the behaviors is more dif-
ficult than designing the appearance.

2. The behaviors that the designers wanted were quite
complex and diverse, beyond what could plausibly
be provided by a system that provided only a few
built-in behaviors or a selection of predefined wid-
gets, and therefore seemingly requires full pro-
gramming capabilities.

3. Sketches and storyboards cannot adequately convey
the behaviors by themselves, so designers must
augment them with annotations such as arrows and
many textual descriptions of the desired behaviors
(see Figure 1).

4. The purpose of implementing the interactive beha-
viors, and for annotating pictures, is often primarily
to serve as documentation and specifications for
others. Almost all designers worked in teams, and
communicating with others is a key part of their
jobs. Communicating the design of behaviors to de-
velopers was reported to be more difficult than the
appearance by 76% of the designers in our study.

5. As reported for other kinds of design [4, 9, 17], the
designers in our survey agreed that the design of in-
teractive behaviors emerge through the process of
exploration. In other words, designers do not have a
final conception of the behavior before they start.
However, whereas iterating on the look of the inter-
face can be easily done by sketching, designers felt
it difficult to iterate on the behavior. Today’s au-
thoring tools make it difficult or impossible to com-
pare two implementations of behaviors side-by-
side, and even keeping around and reverting to old
versions of code is difficult.

2. Related Work
It is well known that designers prefer sketching for

early phases of design [4, 14, 18]. Bill Buxton has de-
voted an entire book to this subject [4], which makes
clear that sketching is an important technique for de-
termining what should be designed, as well as for de-
termining what the design should be. However, that
book says little about determining the behavior of the
designs, devoting only one page to interaction design.
It gives some requirements for sketching behaviors,
without any hint of how to achieve them [4, p. 136].

A recent survey of 370 practitioners, both designers
and developers, reported that “evolutionary prototyp-
ing” was the most common development process [5].
Tools used included paper and pencil, whiteboards,
html editing, analysis and modeling tools, visual inter-
face builders, etc. Other studies have looked at design-
ers for particular domains, such as web authoring and

animation. A study of 11 designers showed extensive
use of informal tools in the early design phases of web
sites [14]. None of these designers were involved in the
programming of the final version of the web sites. To
collaborate with developers, they used site maps, sto-
ryboards, annotations on top of sketches, and detailed
Photoshop renderings. This study did not differentiate
difficulties that designers had with the appearance from
the behaviors.

A later study of 334 web developers who did not
have professional training in programming showed that
the collaborative group in which the developers worked
was a greater contributor to their successes and failures
than the tools they used [15]. Virtually all of the partic-
ipants taught themselves at least some of the program-
ming skills they needed, and they often wanted to use
behaviors that they could not successfully implement.

Other surveys have looked at designers of animation
and multimedia. One study interviewed 7 animators
and 8 non-animators [6]. About half of the animators
used paper sketching and storyboards before switching
to digital tools. Another study interviewed 12 and sur-
veyed 13 professional multimedia designers [2], and
showed that a script was often the first thing created for
multimedia, which is not an artifact mentioned for
creating other types of design. The participants rated
scripts, storyboards, sketching, and prototypes as im-
portant, but inadequate to relate important aspects of
the dynamic aspects such as interactivity or timing.

Many people have created tools to help designers
with sketching and authoring behaviors, often informed
by the studies mentioned above. For example, tools for
early design focused on use by designers who are not
programmers include SILK [11], Electronic Cocktail
Napkin [8], DENIM [14], SketchWizard [7], DEMAIS
[2], Designer’s Outpost [10], and many others. Howev-
er, these tools mainly provide a limited fixed set of
behaviors and are focused on particular domains. The
upcoming Adobe Thermo product provides a menu of
19 behaviors that can be applied to graphics [1].

3. Method
Our first study used the Contextual Inquiry (CI) me-

thodology [3] with 13 participants. CIs involve observ-
ing and interviewing participants while they are in the
process of working in their natural work environments
to understand their practices and problems. For this
study, we employed retrospective and artifact walk-
throughs to investigate transitory work processes that
would have been too time-consuming and impractical
to study using the traditional CI method. We asked
participants to “walk through” their recent projects
involving interactivity using the resulting artifacts.

178

Each CI took about 90 minutes, and participants were
not compensated.

We then assessed the generalizabity of the CI data
using a widely distributed survey. We sent requests to
fill out the survey to our alumni mailing lists, to CHI-
Announcements, CHI-RESOURCES, and the Interac-
tion Design Association (IxDA) mailing list. We re-
ceived 259 responses, of which 203 (78%) completed
all 47 questions. The complete survey took about 30
minutes to finish. The survey participants were entered
into a raffle for five $25 gift certificates. To encourage
respondents to answer the essay questions, we doubled
the odds for those who filled them out completely,
which worked pretty well – about 40% of the partici-
pants wrote comments in all of the fields.

4. Results
Across both studies, there seemed to be a high inter-

est in this topic, and participants seemed very willing
to help. Many said they were hopeful that there would
eventually be interesting new tools as a result. After
presenting the demographics and tool use of the partic-
ipants, we then describe our five most interesting find-
ings.

4.1. Demographics and Tool Use
The participants in both studies had a wide variety

of backgrounds and degrees. The CI participants were
university faculty, a Flash instructor, master’s students,
and professional designers. Of the professionals, most
worked as consultants, but one was an in-house design-
er for a small company.

Most participants in the survey (about 45%) had a
Masters degree, with 31% having a bachelor’s as their
highest degree. The area of the degree varied widely,
and included psychology, human factors, anthropology,
English, computer science, engineering, HCI, and
many others. A few (17%) had a CS degree, although
63% of them also had one or more degrees in the other
areas mentioned. Regarding work related experience,
9% had more than 20 years, 26% had 11-12 years, 36%
had 6-10 years, 27% had 1-5 years, and 2% had less
than one year.

Many worked in a design department of a company
that consulted on various products (about 25%) or
worked directly in a product division (24%). About
21% worked for a design consultancy (a company that
mostly consults with other companies), and about 13%
worked alone. Many of the rest worked in universities
and did design consultancy on the side. 60% worked
for companies bigger than 100 people. About 55%
spent most their time on websites, 9% on desktop ap-
plications, and 1% on phones.

Their job titles at work included Interaction Design-
er (32%), User Interface Designer (20%), Information
Architect (12%), and many others. About 6% were
managers of groups that included designers.

In terms of their tool use and expertise, we saw that
designers use a wide variety of tools, depending on the
stage of the design process and their skills. For ideation
sketches, all of our CI participants used paper and
whiteboards. In the more collaborative work settings,
ease of use and ability to combine parts created by dif-
ferent people determined which tool to use. In one
company, PowerPoint was used since everyone could
share the results, although the designer complained that
updating changes was a hassle, since they are not re-
flected in all of the files. In our survey, we saw a wide
variety of tools mentioned. Figure 2 shows the tools
participants use often.

Because the CI participants mentioned annoyance
with differences in the user interfaces among all the
tools they use, we asked about this on the survey. For
the statement, “I find the differences in how different
tools work to be frustrating,” 18% of the participants in
the survey strongly agreed, 42% agreed (totaling 60%),
with only 6% strongly disagreeing and 14% disagree-
ing (totaling 20%), with the rest (20%) neutral.

4%

6%

6%

8%

10%

12%

13%

17%

19%

23%

25%

37%

43%

52%

54%

66%

83%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Microsoft Expression Blend

GoLive

Flex

Axure

AfterEffects

Frontpage

Director

Fireworks

VisualStudio

Omnigraffle

InDesign

Visio

Flash

Illustrator

PowerPoint (for mocking up interfaces)

Dreamweaver

Photoshop

Figure 2: Percent of participants in survey that use each
tool at least often (N=259)

4.2. Programming Behaviors is Difficult
Our CIs suggested that designers have more diffi-

culty programming interactive behaviors (feel) com-
pared to the appearance (look). Designing the beha-
viors was reported to be an ongoing process while de-
signing appearance is a simpler process of creating a
single static image. Behaviors were said to often re-

179

main ill-defined until the application is actually imple-
mented.

These results were supported by the survey, where
86% of the participants listed behavior as more diffi-
cult to prototype than appearance (see Figure 3). 91%
of participants with CS degrees answered that the “Be-
havior” was harder, compared to 84% of participants
without a CS degree.

We asked participants how they divided their time
between the behavior and the appearance, and the re-
sults ranged from 0% to 100% for each. Participants
reported spending significantly more time on behavior
(t=6.8, p < .0001). The two distributions for appearance
and behavior were normally distributed. The mean per-
cent of time (with the standard deviation) spent on the
appearance was 39% (± 21), compared to 61% (± 21)
for behavior.

14%

86%

0% 20% 40% 60% 80% 100%

Appearance

Behavior

Figure 3: “Regarding Appearance versus Behavior,
which is more difficult to prototype?”

To explore the source of difficulties with behaviors,
we first wanted to understand how the participants
were programming. When asked on the survey, “Is
programming (also called ‘scripting’) a regular part of
your job?” 63% answered “no.” Interestingly, of the
people who had a CS degree, 51% still answered “no,”
and for people without a CS degree, 65% answered
“no.” However, about 79% said they were good or ex-
pert with HTML, and 95% knew some other program-
ming language at least to the level that they “can do a
few things.” Many programming languages and tools
were mentioned, including (in decreasing order of pop-
ularity) Javascript, PHP, ActionScript for Flash, Vi-
sualBasic, Java, C++, Lingo for Director, .Net, C#,
Ruby on Rails, CSS, “Processing” (from
www.processing.org), Perl, Cocoa & Objective C, Py-
thon, XML, ASP, MAX/MSP, SQL, and a few others.

When participants in the survey had trouble under-
standing how to implement something, they usually
“use Google or another search engine to search for ex-
amples” (91% do this “at least sometimes”). All of the
other options we listed were also popular: “I go to on-
line tutorials or on-line documentation” (90%), “I look
for examples in code that I have around” (89%), “I ask
a colleague how to do it” (81%), and “I go to the ma-
nual or books and look it up” (80%).

Participants gave a variety of reason for why beha-
viors were more difficult to prototype. Here are some
categories of problems and supporting quotes:

• Interactions must be specified at a low-level of de-
tail:
o “Details are important, and you never have them

all until full implementation.”
o “There are so many factors that can influence the

behavior. It isn’t a controlled event and [it’s] very
difficult to communicate the entire experience via
a prototype.

o “Because of the many different states that must
be demonstrated and their dependence on differ-
ent conditions preceding those states.”

o “It’s more complex with more variables and con-
straints attached. There are also more stakehold-
ers and coworkers involved”

o “It’s harder for people to fill in the gaps with im-
agination. Small changes make big differences in
experiential outcomes so if something is not quite
right it can cloud whole thing.”

o “There’s no such thing as low-fidelity interaction,
it has to be right.”

• Difficulty with today’s tools:
o “I work in mobile, so often I have to wait until

developers have something working before I can
actually test out how a new behavior ‘feels’ on a
phone. What it looks like is easy to test by just
putting a picture of the mockup onto the phone.”

o “Current tools for defining behavior suck.”
o “I can represent very exactly the desired appear-

ance. However, I can only approximate the
backend behaviors.”

• The richness of the interactions themselves (see
next section).

4.3. Desired Behaviors are Complex
A goal of some prior research systems and commer-

cial tools has been to make it easier to investigate in-
teractive behaviors (e.g., [1, 2, 7, 11, 14]), usually by
simplifying the kinds of behaviors that can be ex-
pressed. This is in conflict with the wide variety of
behaviors we saw in our investigation. For example, in
our CIs, participants were creating interfaces that use
3D rotation, physical simulations of dominos falling
onto each other, interactions among graphical objects
on the screen such as bouncing off each other, graphics
that changed based on various sensors, novel physical
devices, etc.

In the survey, we asked for ideas of what a future
tool should support, and participants requested many
things, including “character animation (using jointed
inverse kinematics),” support for “more dynamic con-
tent, like AJAX,” “database or CMS integration; for
example, showing different content to different users
based on business rules,” “data-driven interactions,”
“ability to create RIA functionality” (Rich Internet

180

Applications – web applications that act like traditional
desktop applications), and “ease of ... connect[ing] to
live data sources.”

55% of the participants said that they had had an in-
teractive behavior they wanted to explore on paper but
could not, and therefore had to explore by implement-
ing it. We asked them to describe what they wanted to
do, and participants listed 107 behaviors. Here are
some representative quotes:
• “Rich interactions, such as a sliding dock or an ob-

ject that can be dragged and dropped. These are
hard to illustrate in static documents.”

• “Interactive maps”
• “Camera interaction.”
• “Complex transitions / animations.”
• “Synchronised behaviours.”
• “Issues around scrolling long pages.”
• “A button that changes color to draw attention to

itself.”
• “Window/panel transparency within the OS and

various applications.”
• “Dynamic navigation systems (e.g. accordion me-

nus), 3D or graphical navigational systems.”
• “Mobile interaction.”
• “More advanced interactions like drag-and-drop,

column sorting, resizing on rollover, etc.”
• “Hover effect on a graphic, that when clicked, also

selected a visible tab.”
• “Detailed keyboard-level interactions.”
• “Interactive art - engaging experiences.”
• “User experience of interaction with graphs.”
• “The exact timing of certain interactions.”
• “An animated ‘lens effect’ list UI.”
• “Gaming behaviour.”
• “Multi-dimensional selections that impact the dis-

play of other controls and data.”
• “Dynamic layout based on user preferences.”

4.4. Annotating Sketches and Storyboards
Consistent with previous studies (e.g., [14]), we

found that virtually all of our participants used sketches
and storyboards as part of their work (see Figure 4).
However, participants also agreed that sketches and
storyboards were not sufficient for exploring interac-
tive behaviors, consistent with previous studies (e.g.,
[2, 4]). We observed during our CIs that designers ex-
tensively use annotations on sketches, storyboards,
wireframes, and formal design documents to describe
the behaviors (see Figure 1 and Figure 6). The kinds of
annotations we observed included labels, arrows, and
narrative textual descriptions.

Our survey confirmed that annotations are important
to designers, used by 97% at least sometimes (see Fig-

ure 5); 88% used storyboards. In the comments on this
question, one participant emphasized: “[I] SCAN my
drawings to PDF and combine with design notes: I
NEED to TYPE and SKETCH on the same paper.”
Another said: “Word is probably our most important
tool because the text support allows us to easily de-
scribe UI behavior in great detail and everyone can
open the file and edit it if needed... However, format-
ting in Word is a huge pain.”

0% 20% 40% 60% 80% 100%

Timelines

State Diagrams

Sitemaps or screen transition diagrams

Information Architecture Diagrams

Wireframes

Storyboarding

Flowcharts

Scenarios

Screen Comps / Mock ups

Sketching

All the time

Usually

Often

Sometimes

Never

Figure 4: How often participants in the survey typically
used each of these techniques when working on a
project (N=210).

0% 20% 40% 60% 80% 100%

Making a movie or animation with the
pictures to explain the behaviors

Writing paragraphs of text about a picture

Putting the pictures into a presentation
(like PowerPoint)

Drawing arrows and connecting lines on
top of and between the pictures

Creating click through mockups or
interactive prototypes

Adding annotations and small pieces of
text as explanation on a picture

All the time
Usually
Often

Sometimes
Never

Figure 5: How often participants in the survey used
each of these techniques to help explain how a digital
drawing behaves (N=210).

4.5. Purpose is Communication
Our CIs suggested that a primary job of the designer

is to collaborate with a developer and communicate
their designs. Most participants preferred to work face-
to-face, but often their final deliverable would be a
detailed design document to hand off to the developer.
These documents typically use many paragraphs of text
and description of details around the pictures to explain
the behaviors (see, for example, Figure 6). After deli-
vering the documents, the designers would assume
more of a support role, clarifying designs to developers
as they implemented them. The CI participants empha-
sized that they considered the detailed design document
to be an important deliverable, and they spent signifi-
cant time making sure it was clear and looked polished.
The behaviors were reported to be more difficult to

181

communicate because people can imagine the final
detailed appearance even from a vague sketch; howev-
er, it is very hard to communicate behavior and to get a
sense of the final version from a prototype.

Figure 6: Annotations from a CI participant on a detailed
design to serve as a specification for developers.

These findings were confirmed by the survey. On
the participant’s “current or most recent project,” 91%
said they were working as part of a team, which usually
(78% of the time) included a developer. The designers
usually (37%) met with developers “multiple times
throughout the week”, “work side-by-side” (18%), or
“meet multiple times per day” (13%).

In the survey, we investigated what techniques the
participants used to communicate with developers.
Although sketching is a key tool for designers, appar-
ently it is not used as a communication tool: 56% of the
participants never “draw sketches on paper then hand
them off to the developer to build,” with only 8% say-
ing they did this “usually” or “all the time.” In contrast,
the most popular techniques used for communication
were to “write textual descriptions of how the applica-
tion will work” (78% do this at least “often”), followed
by “static designs digitally” (66%), “collaborating
around a whiteboard or sketchpad” (56%), and “semi-
functional, interactive prototypes (like in Flash)”
(33%). So, designers seem to sketch and annotate the
sketches for themselves (as in Figure 1), but use anno-
tations on more formal drawings (as in Figure 6) to
communicate.

76% of the designers felt that the behavior was more
difficult to communicate to the developer than the ap-
pearance. Two of the reasons that participants men-
tioned for this problem were that developers not were
not native English speakers, and the lack of details in
the UI specifications which seem to be solved by face-
to-face, phone, IM, and email conversations. One inter-
esting comment was that “we publish our spec as a
wiki – thereby allowing developers to add their annota-
tions, questions and comments which we can in turn

address. This makes deliverables more of ‘living doc-
uments’ than static paper weights.”

Designers emphasized that they often were able to
design the final appearance, but the developers were in
charge of the code for the behaviors. Some participants
reported that it would be important for a new tool to
make sharing easier and be able to export designs into
formats that can be easily viewed and commented on
by others.

4.6. Iteration and Exploration for Behaviors
It is well known that designers sketch multiple vari-

ations when exploring designs (see Figure 1). Buxton
quotes Linus Pauling saying that “the best way to a
good idea is to have lots of ideas” [4, p. 121]. Other
studies have also documented this [14]. We were inter-
ested in how multiple versions were used for exploring
interactive behaviors. In the CIs, one participant noted
that “most ideas are bad and you want to get the bad
ones out quickly” by iterating. Designers also frequent-
ly mentioned that because of the difficulties involved
in communicating behavior to developers, versions of
the behavior are much harder to iterate on. In contrast,
variations in appearance are easy to iterate on and can
even be changed at the very end of the design process.

Participants mentioned that interactive behaviors
had to be explored throughout the design process, in-
cluding during the early stages when navigational
structures being worked out because interactivity is
often involved in changing among states. However, the
subtle details of interactive elements are tweaked until
the end, even after the final graphics are implemented.

As shown in Figure 1, we saw in our CIs that de-
signers frequently wanted to have multiple designs
side-by-side, either in their sketchbooks, on big dis-
plays, or on the wall. However, this is difficult to
achieve for behaviors – there is no built-in way in to-
day’s implementation tools to have two versions of a
behavior operating side-by-side. Therefore we asked in
the survey, “How important is it to you to be able to
compare alternatives to decide which one to use?” Fig-
ure 7 shows the responses. The behavior-related items
(the last three) are at the bottom of the list, possibly
reflecting the participant’s lack of ability to do this
now.

Programmers rarely start a new project from
scratch, but instead reuse old code as a starting point.
We wondered if this applied to designers as well. In the
CIs, we saw one participant having a library of tem-
plates in tools such as Photoshop and Illustrator to save
time creating standard widgets.

In the survey, we asked how often design elements
are reused for a later project. Figure 8 shows the re-
sults. As expected, sketches are almost never reused –

182

only 5% said “often,” 4% said “usually,” and 1% said
“all the time.” In contrast, widgets and controls are
reused frequently. Code and scripts are reused about
half of the time.

11%

29%

43%

47%

54%

55%

58%

0% 20% 40% 60% 80% 100%

Code Examples

Storyboards

Implemented User Interfaces

Layouts / Grids

Detailed images

Sketches

Wireframes

Figure 7: Percent of participants in survey who said it
was “very important” or “crucial” to be able to compare
alternatives to decide which one to use (N=210)

11%

14%

15%

33%

39%

40%

46%

50%

50%

57%

60%

76%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Sketches

Storyboards

Sounds

Wireframes

Detailed graphic elements

Images / Photos

Code / Scripts

Layouts / Grids

Colors / Palettes

Icons

Templates / Style Sheets

Widgets / Controls / Interaction Techniques

Figure 8: How often various kinds of design elements
are reused in a later project (N=210)

0% 20% 40% 60% 80% 100%

I copy old versions to external media, like
CDs or a file server

I use an electronic version tracking / version
control system such as CVS or Visual

SourceSafe

I use different folders for different versions

I name the old versions with different file
names

Usually
Often
Sometimes
Never

Figure 9: How often participants use these techniques
to keep track of previous versions of the code (N=167).

We saw in the CIs that users did not have any good
way of saving and reusing different versions of their
code, either to enable comparisons in the current
project, or to save for future projects. They had to use
various naming schemes and file structures of their
own invention. This was evident when a participant
had a hard time locating the file he wanted to show the
researchers during a CI.

Therefore, we wanted to see in the survey what par-
ticipants did to keep track of previous versions of the
code for a project, as shown in Figure 9. This shows

that at least 75% of designers do some kind of version
control on their own, and since few (28%) frequently
use formal version-control software, they have to do
this by hand.

5. Discussion
Our results suggest that there is definitely a need

among designers for quickly and easily prototyping
interactive behaviors. Many do not program, and have
difficulty prototyping behaviors. Consequently, they
resort to heavy use of annotations and other means for
communicating their intentions to people who do pro-
gram. Specifying behaviors textually is often inade-
quate, time-consuming and sometimes leads to mis-
communication and confusion between designers and
developers. Since designers strive to be creative and
explore new and complex behaviors, this is a signifi-
cant pain point for them both today and in the future.

5.1. Threats to Validity
There are a number of reasons our results may not

generalize. In our CIs and survey, we tried to focus on
interaction designers, but we cannot be sure who filled
out our survey, and whether they are representative of
the entire field of interaction design. Our means of
reaching designers may have biased the results towards
the views taught at our university (since we targeted
our alumni), or who are members of a particular organ-
ization (ACM SIGCHI) and mailing list (IxDA). How-
ever, since our results match those previously reported,
and since we seemed to have quite a wide variety of
degrees and jobs represented, we feel comfortable rely-
ing on the results. Another limitation is that the discus-
sion about communication and annotations should in-
clude the perspective of what the receivers want from
designers, so it might be wise to also survey develop-
ers. It is also important to note that many developers do
not collaborate with designers.

5.2. Implications for Future Tools
All but one person out of the 272 we interviewed or

surveyed was interested in a new tool. Our results pro-
vide clear requirements for such tools, which go
beyond what any of today’s commercial or research
tools offer. For example, designers are very comforta-
ble sketching and using digital tools for the look of the
interface, but still are severely lacking in appropriate
tools for exploring behaviors. They would like to ite-
rate and explore multiple behaviors themselves, but are
inhibited by today’s tools. However, just providing a
few behaviors in menus for the designers to pick from
is not sufficient, since designers want to explore quite
complex behaviors.

183

Future tools should also support exploring multiple
versions of the behaviors. Today’s tools make the user
be responsible for naming multiple versions of files,
and often do not even let designers compare multiple
versions side-by-side. Terry provides an example of
how this might be done [16].

There are also significant opportunities for support-
ing tasks for behaviors beyond programming them. No
tool today makes it easy to annotate and describe the
behaviors, which is important for facilitating commu-
nication about the behaviors with developers. And
since many designers work in teams with other design-
ers, tools to facilitate collaboration around the explora-
tion might be helpful. Many designers expressed the
need for their coding tools to better integrate with
drawing tools, like with Visio and Photoshop, to avoid
redundant work.

6. Conclusions
Our contextual inquiries and surveys have con-

firmed what others have reported, but also revealed
new requirements and ideas. Although time-
consuming, these kinds of user research are very im-
portant to do before embarking on new tool efforts to
ensure that the results will actually be helpful for the
target audience. We hope the information presented
here will enable us and others to produce such tools.

7. Acknowledgments
We thank Jodi Forlizzi, John Zimmerman, Ilpo Koskinen,

Jeff Wong, Thomas LaToza, Chris Scaffidi, Jeff Stylos, and
all the anonymous participants and reviewers for help with
this work. Thanks to Adobe for financial support and advice
for this research. This research was supported by Adobe and
by the NSF under Grant No. IIS-0757511. Any opinions,
findings and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily
reflect those of the National Science Foundation.

8. References
[1] Adobe Systems Incorporated, “Product Codename:

'Thermo',” 2008.
http://labs.adobe.com/wiki/index.php/Thermo.

[2] Bailey, B.P., Konstan, J.A., and Carlis, J.V. “Supporting
Multimedia Designers: Towards more Effective Design
Tools,” in 8th International Conference on Multimedia
Modeling. 2001. pp. 267-286.

[3] Beyer, H. and Holtzblatt, K., Contextual Design: Defining
Custom-Centered Systems. 1998, San Francisco, CA:
Morgan Kaufmann Publishers, Inc.

[4] Buxton, B., Sketching User Experiences: Getting the De-
sign Right and the Right Design. 2007, San Francisco,
CA: Morgan Kaufmann.

[5] Campos, P. and Nunes, N.J., “Practitioner Tools and
Workstyles for User-Interface Design.” IEEE Software,
January/February, 2007. 24(1): pp. 73-80.

[6] Davis, R.C. and Landay, J.A. “Informal Animation
Sketching: Requirements and Design,” in AAAI 2004 Fall
Symposium on Making Pen-Based Interaction Intelligent
and Natural. October 21-24, 2004. pp. 42-48.

[7] Davis, R.C., Saponas, T.S., Shilman, M., and Landay,
J.A. “SketchWizard: Wizard of Oz Prototyping of Pen-
based User Interfaces,” in Symposium on User Interface
Software and Technology: UIST 2007. October 7-10,
2007. Newport, RI: pp. 119 - 128.

[8] Gross, M.D. and Do, E.Y.L. “Demonstrating the electron-
ic cocktail napkin: a paper-like interface for early de-
sign,” in Conference companion for CHI'96: Human fac-
tors in computing systems. 1996. Vancouver, British Co-
lumbia, Canada: pp. 5-6.

[9] Henderson, K., On Line and On Paper: Visual Represen-
tations, Visual Culture, and Computer Graphics in De-
sign Engineering. 1999, Cambridge, MA: MIT Press.

[10] Klemmer, S.R., Thomsen, M., Phelps-Goodman, E.,
Lee, R., and Landay, J.A. “Where do web sites come
from? capturing and interacting with design history,” in
Proceedings of CHI'2002: the SIGCHI conference on
Human factors in computing systems. 2002. Minneapolis,
Minnesota: pp. 1-8.

[11] Landay, J. and Myers, B., “Sketching Interfaces: Toward
More Human Interface Design.” IEEE Computer, March,
2001. 34(3): pp. 56-64.

[12] Myers, B.A., Ko, A.J., and Burnett, M.M. “Invited Re-
search Overview: End-User Programming,” in Extended
Abstracts, CHI'2006. April 22-27, 2006. Montreal, Cana-
da: pp. 75-80.

[13] Myers, B.A., Smith, D.C., and Horn, B. “Report of the
`End-User Programming' Working Group,” in Languages
for Developing User Interfaces. 1992. Boston, MA: Jones
and Bartlett. pp. 343-366.

[14] Newman, M.W. and Landay, J.A. “Sitemaps, Story-
boards, and Specifications: A Sketch of Web Site Design
Practice,” in Designing Interactive Systems, DIS 2000.
August, 2000. New York City: pp. 263-274.

[15] Rosson, M.B., Ballin, J., and Rode, J. “Who, What, and
How: A Survey of Informal and Professional Web Devel-
opers,” in IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC'05). 2005. pp. 199 -
206.

[16] Terry, M. and Mynatt, E. “Recognizing creative needs in
user interface design,” in C&C'02: Proceedings of the
ACM Conference on Creativity and Cognition. 2002.
Loughborough, United Kingdom: pp. 38-44.

[17] Tversky, B., Suwa, M., Agrawala, M., H. J, C.S., Hanra-
han, P., Phan, D., Klingner, J., Daniel, M., Lee, P., and
Haymaker, J., “Human behavior in design: Individuals,
teams, tools,” in Sketches for Design and Design of
Sketches, 2003, Springer. pp. 79–86.

[18] Wong, Y.Y. “Rough and Ready Prototypes: Lessons
from Graphic Design,” in Extended Abstracts,
SIGCHI'92. May, 1992. Monterey, CA: pp. 685.

184

