
Developing Novice Programmers’ Self-Regulation Skills with
Code Replays

Benjamin Xie Jared Ordona Lim
∗ ∗

Institute for Human-Centered The Information School The Information School
Artifcial Intelligence, McCoy Family University of Washington, Seattle University of Washington, Seattle

Center for Ethics in Society Seattle, Washington, USA Seattle, Washington, USA
Stanford University jorlim7@uw.edu pkdpham@uw.edu

Stanford, California, USA
benjixie@stanford.edu

Min Li Amy J. Ko
College of Education The Information School

University of Washington, Seattle University of Washington, Seattle
Seattle, Washington, USA Seattle, Washington, USA

minli@uw.edu ajko@uw.edu

Paul K.D. Pham

ABSTRACT
Learning programming benefts from self-regulation, but novices
lack support for developing these skills of cognitive control. To
support their development, we designed Code Replayer, an online
tool that enables novice programmers to practice programming
and then replay their coding process to refect and identify process
improvements. To evaluate the impact of replaying code on self-
regulation, we conducted a formative qualitative evaluation with
21 novice programmers who used Code Replayer to practice writ-
ing code. We found that after watching code replays, participants
more frequently interpreted problem prompts and planned their
solutions, two crucial self-regulation behaviors that novices often
overlook. We interpret our results by focusing on two focal points
in the design of code replays as a programming self-regulation
intervention: interpreting pauses in replays and ensuring replays
of struggle are more informative and less detrimental.

CCS CONCEPTS
• Human-centered computing → Empirical studies in HCI; •
Social and professional topics → Computing education.

KEYWORDS
self-regulation, process data, keystroke logs, metacognition, quali-
tative methods, computing education,

ACM Reference Format:
Benjamin Xie, Jared Ordona Lim, Paul K.D. Pham, Min Li, and Amy J.
Ko. 2023. Developing Novice Programmers’ Self-Regulation Skills with

∗
Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
ICER ’23 V1, August 7–11, 2023, Chicago, IL, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9976-0/23/08. . . $15.00
https://doi.org/10.1145/3568813.3600127

Code Replays. In Proceedings of the 2023 ACM Conference on International
Computing Education Research V.1 (ICER ’23 V1), August 7–11, 2023, Chicago,
IL, USA. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/3568813.
3600127

 1 INTRODUCTION
Programming is cognitively demanding because it requires special
notation, uses abstractions, and lacks direct manipulation, making
programs difcult to inspect [4]. This burden is especially high for
novice programmers, who are still learning the syntax of program-

ming languages while also learning core concepts in computing
[65].

One skill that helps alleviate the burden of programming is self-
regulation. Efective self-regulation helps a programmer monitor
their cognitive processes as they understand a problem, search for
analogous problems, search for potential solutions, identify goals,
implement a solution, and evaluate their solution [32]. However,
novices are often unaware of the need for self-regulation, its rela-
tionship with programming, or fnd it too taxing to simultaneously
learn programming-specifc knowledge as well as self-regulation
skills [11, 49]. One explanation for this lack of awareness is that
novice programmers lack scafolded opportunities to develop these
skills [11, 33, 35, 36].

Existing approaches to developing self-regulation skills focus on
explicit instruction from an expert instructor or an emphasis on
specifc self-regulation behaviors. Prior work has explored explicit
instruction to develop self-regulation skills through personalized
tutoring (e.g. [32]) and live-coding demonstrations [44, 52, 55, 58],
but these approaches require interactions with instructors who

 have programming and self-regulation expertise. Other work has

explored using explicit prompting, such as cuing novices to un-
derstand the problem prompt prior to writing code [36, 49]. These
approaches assume a formal learning environment such as an intro-
ductory computing course. However, people often learn program-

ming in informal and online settings [5, 54]. Therefore, existing
 approaches to teaching self-regulation in programming may not

transfer to informal and online learning contexts.

https://doi.org/10.1145/3568813.3600127
https://doi.org/10.1145/3568813.3600127
https://doi.org/10.1145/3568813.3600127
mailto:ajko@uw.edu
mailto:permissions@acm.org
mailto:minli@uw.edu
mailto:benjixie@stanford.edu
https://doi.org/10.1145/3568813.3600127
https://doi.org/10.1145/3568813
mailto:ajko@uw.edu
mailto:permissions@acm.org
mailto:minli@uw.edu
mailto:benjixie@stanford.edu

ICER ’23 V1, August 7–11, 2023, Chicago, IL, USA

One opportunity to develop self-regulation skills across learning
contexts is to focus novice programmers on self-observation. Self-
observation is a crucial component to self-regulation and consists of
learners tracking their own performance, processes, and outcomes
and reactively change their strategies and behaviors [69, 71]. For
example, efective self-observation can help students recognize
unproductive struggle in a programming task and reassess their
strategies [32].

Self-observation is more efective with the support of record-
ings. Recordings can help learners self-observe by making them
aware of things that could have gone unnoticed and reducing the
cognitive demand that comes with recalling prior actions [1, 71].
Without recordings, learners often rely on recall from memory
to self-observe. This can be cognitively taxing, unreliable, or not
specifcally relevant to cognitive processes [2, 71].

For a recording to support self-observation, it must be conve-
nient to create, not rely on recall or self-report, and be closely
connected to cognitive processes. Recordings can promote learning
by creating more awareness of the importance of self-regulation
and its stages (e.g. goal setting), reminding learners of diferent
stages, stimulating refection, and recognizing the interrelatedness
of diferent stages at every phase of a learning process [40, 56].
Diaries or journals are common recording techniques (e.g. [35, 56]).
However, these recording techniques still require recall and self-
report, making them potentially difcult to create, unreliable, and at
risk of overlooking or misrepresenting important parts of cognitive
processes [2, 10, 71]. Existing code visualization tools to support
programming education (e.g. [15, 66]) tend to visualize program
behavior such as code execution and/or record intermittent snap-
shots of code execution. While important to learning about the
programming domain (e.g. for debugging [25]), intermittent record-
ings of code changes do not necessarily align with the cognitive
processes of writing code, which includes phases such as changing
strategies or debugging [33]. Prior studies have identifed that vi-
sual representations of code writing processes could help students
[9] and instructors [59] consider problem solving processes, but
these studies did not investigate the impact of visualizations on
self-regulation skills.

In this paper, we propose using replays of code edits (referred
to as code replays) as recordings for novice programmers to self-
observe with. We developed a Code Replayer tool to automatically
create recordings of novice programmers’ code edits. This makes
recordings efortless to create, more reliable than recall or self-
report alone, and closely tied to their cognitive processes because
they show entire code editing processes.

We then conducted a formative study to understand how replays
of coding processes could support self-regulation skills, investigat-
ing two research questions:

(1) How does refecting on code replays afect novice program-

mers’ self-regulation behaviors?
(2) How do novice programmers use code replays diferently?

This study contributes a formative, empirical evaluation of how
refecting on replays of code writing processes can develop novice
programmers’ self-regulation skills. These fndings can inform the
design of pedagogy and tools that embed opportunities to develop

Xie et al.

self-regulation skills into online programming practice environ-
ments.

2 PRIOR WORK

2.1 Theoretical Foundation to Connect
Self-Regulation, Metacognition, &
Self-Recording

Self-regulation and metacognition are related constructs that are
part of learning and skill development processes. Typically, metacog-
nition refers to learners’ knowledge, awareness, and regulation of
their thinking and cognitive control (e.g. which strategies are most
efective for learners) [71]. Related to that is self-regulation, which
typically describes learners’ process of cognitive control [68, 71].

To connect self-recording to self-regulation and metacognition,
we applied Zimmerman’s three phase model of self-regulated learn-
ing [71]. This model frames self-regulation as iterating between
the three phases of forethought, performance, and self-refection.
Within this model, performance includes metacognition to moni-

tor cognitive processes, and self-recordings are a tool to facilitate
self-evaluation.

In the forethought phase, learners decompose a problem into
elements and develop a plan based on prior knowledge of these ele-
ments. This phase involves task analysis: breaking a programming
problem down into sequential steps and planning out actions. This
goal setting produces an explicit feedback loop that then requires
self-evaluation. The forethought phase also includes considerations
of sources of self-motivation, but motivational factors were not a
focal point of this study and we attempted to control for this with
similar incentives for participation.

In the performance phase, learners must exercise self-control and
self-observation. Self-control methods include both task-specifc
and general strategies for addressing specifc components of a task.
Examples of general self-control strategies include self-instruction
(e.g. self-questioning when programming), imagery (e.g. converting
textual information into mental diagrams, fow charts, or other
images), help-seeking methods (e.g. asking an instructor for assis-
tance), and interest incentives (e.g. gamifying a task to enhance
motivation).

Learners must adapt strategies in the performance phase ac-
cording to intended outcomes, making self-observation crucial. Self-
observation consists of metacognitive monitoring and self-recording.
Metacognitive monitoring refers to mental tracking of one’s per-
formance, processes, and outcomes. Within this paper, we will
refer to metacognitive monitoring as metacognition. Releated to
self-observation is self-recording, creating formal records of learn-
ing processes or outcomes, such as notes or refection journals
[35]. These self-recordings can support metacognition by increas-
ing reliability, specifcity, and time span of self-observations while
decreasing students’ reliance on recall [70].

The fnal phase is self-refection, where learners evaluate and
react to their own performance. Evaluations can include comparing
performance to existing standards (e.g. prior performance, mastery
of skills, comparison with peers) or making causal attributions to
explain performance. Reactions can include cognitive and afective
reactions to evaluations as well as adaptive decisions in which

Developing Novice Programmers’ Self-Regulation Skills with Code Replays

students consider modifying their strategies for future cycles of
learning.

The three phases of forethought, performance, and self-reaction
afect each other cyclically. Within this study, we considered how
using code replays as a self-recording tool could support metacog-

nitive monitoring. Zimmerman’s self-regulation theory suggests
that this improved monitoring could provide richer evaluations in
the self-refection phase, which could then lead to improvements to
task analysis in the forethought phase and applications of strategies
in the performance phase [71].

2.2 Prior Uses of Process Recordings
The most relevant prior work is Ditton et al. [9], which explored
the impact of advanced CS students watching playbacks of their
code writing process. They found that students preferred the play-
back over reviewing static code, but found mixed evidence about
its usefulness. Multiple students mentioned that playbacks helped
them see or visualize their process, but the study did not investi-
gate thought process in detail or connect it to self-regulation. We
build upon this prior work by evaluating the efect of code writing
replays/playbacks on diferent stages of metacognitive processes
for novice programmers.

Within programming education, live-coding is a common tech-
nique to teach students programming process; for example, Com-

puter Science (CS) instructors might design and implement a pro-
gram during lecture [44], where students observe instructors pro-
gram or code alongside instructors [52]. While prior work has
found evidence that live-coding helps teach programming process
[52, 55, 58], it primarily focuses on having students observe or
model instructors’ process [58]. Therefore, a limitation to live-
coding to develop self-regulation skills is that there is a lack of
support for the transition from students observing instructors’ pro-
cess to regulating their own. Recent trends of live-streaming code
for programming education have minimal evidence of efective-
ness and also similarly focus on learners observing someone else’s
programming process rather than refecting on their own [13, 16].

Multiple studies in non-programming domains have investigated
the use of recordings, suggesting a need for being selective around
their collection and use. Lippmann Kung and Linder [28] analyzed
classroom dialog to study metacognition in physics classrooms. In
psychotherapy, therapists found that reviewing session recordings
was benefcial to their practice, but also identifed a need for selec-
tivity and sensitivity towards recordings [2]. A study in primary
school math education found that students who chose to replay
their past actions after struggling performed better in post-test [67].
In physical education, one study found that letting participants
choose when they wanted videotaped replay benefted their overall
performance when compared to regularly scheduled feedback [20].
In a study with music teachers, almost all felt video recordings of
themselves improved their ability to conduct, but their perspectives
varied in regards to frequency of feedback [37].

ICER ’23 V1, August 7–11, 2023, Chicago, IL, USA

3 METHOD: 21 NOVICES USING PYTHON
PRACTICE TOOL AND SEEING REPLAYS OF
CODE EDITING

We conducted a study where 21 participants solved programming
problems and watched replays on some problems in a 1-2 week,
self-paced online course comprised of three modules in the Code Re-
player web application. This study was approved by an Institutional
Review Board (IRB) prior to recruitment.

3.1 Critical Self-Refexivity and Positionality
This research required analysis of participants’ verbal and written
discourse, which are situated within cultural and societal norms.
Therefore, we acknowledge our assumptions and values. By doing
so, we follow critical approaches to quantitative methods which re-
quire researchers “to engage in critical self-refexivity as a necessary
frst step for the long journey of deracializing statistics” [14].

We acknowledge the bias that comes from this research and
research community being situated in Western, educated, indus-
trialized, rich and democratic societies [18, 27]. In particular, our
analysis was conducted in English with English-speaking partici-
pants. This is both exclusionary as well as potentially biasing in our
analysis, as we have may misrepresented the data of participants
with less English fuency.

We also acknowledge that our study focused on qualitative data,
which is constructed and therefore not objective [17]. We engaged
in a creative process that was heavily theory and technology laden.
Therefore, we depict the complexity our data collection and analysis
processes to make transparent potential errors alongside insights.

3.2 Study Participants: Novice Programmers
from Two Courses

We recruited from two similar introductory programming (CS1)
Python courses, Course A and Course B, partnering with their in-
structors. Course A was taught at the computer science department
of a large public research university, while Course B was taught at a
community college that was an order of magnitude smaller. Course
A consisted of about 100 students, while Course B had about 25
students. Both institutions were located in the same urban region,
which had a strong presence of multiple technology companies. Of
our 21 participants, 19 were from Course A while the remaining
two were from Course B. This discrepancy was largely because
of size of student population and timing of study relative to the
academic terms. Nevertheless, we felt the inclusion of students from
a two-year institution was important, as their experiences are often
excluded from computing education research [22]. Participation
was voluntary, so there was self-selection bias.

We reported demographics for our 21 participants below. For
free-response questions (gender, ethnicity, language), we used ter-
minology provided by participants but bucketed their responses to
prevent re-identifability.

• 10 as woman or female, 9 as man or male, 1 genderqueer,
and 1 declined to provide gender.

• 14 as Asian (including Korean, South Asian, Chinese, Cam-

bodian), 2 as white or Caucasian, 1 as Hispanic/Latino, 1 as

ICER ’23 V1, August 7–11, 2023, Chicago, IL, USA

“Mixed,” and 3 declined to provide racial or ethnic informa-

tion.
• 11 primarily spoke a language at home that difered from
the language of instruction (English). Familial languages
included Chinese (Mandarin, Cantonese), Hindi, Spanish,
Thai, and Vietnamese. Nine others primarily spoke English
at home, with 1 not disclosing.

• 14 took 0-1 prior programming courses, while 7 reported
taking 2 or more prior programming courses.

• 15 were working towards a Bachelor’s degree, 2 a graduate
degree (Master’s or Ph.D.), 1 an Associate’s degree, 1 a GED,
and 2 not working towards a degree.

• 3 were frst-generation students (parents did not attend col-
lege), 18 others were not, and 1 was unsure.

Participation in this study was to serve as a “refresher” to stu-
dents who had previously taken CS1 course or formative assessment
to those currently taking their frst.

We compensated participants $75 for completion of the online
portion of the study, which participants reported taking 2-12 hours.
Interviewed participants received an additional $25. These rates
were commensurate with minimum wage at the study location.
Participants in Course A also received participation credit. To avoid
coercion, students in Course A who did not participate in this study
had other opportunities to earn the same credit.

3.3 Overview of Study Design: Self-Paced
Online Python Practice w/ Code Replays

We followed the following principles when designing this study:

(1) Low stakes, formative experience: Learners should per-
ceive Code Replayer as a low-stakes, formative experience
to practice programming skills and develop metacognitive
skills through refection.

(2) Developing self-regulation skills requires scafolding:
To develop novice programmers’ self-regulation skills, we
must design explicit scafolded opportunities. This follows
prior research suggests that novice programmers rarely de-
velop self-regulation skills without explicit scafolding or
instruction [33].

(3) Opportunities for timely, scafolded refection: Refect-
ing on recordings is a crucial part of the self-regulation pro-
cess [71], but it also must be done so in a timely and proximal
manner to ensure benefcial recall and refection [10].

(4) Proximal, perceived value of participation: Learners
should perceive tangible and timely value for their partici-
pation.

Figure 1 provides an overview of the study fow. Participants
were required to complete each phase before continuing on to the
next one. In the remainder of this section, we describe each part of
the study.

3.4 Pre-Survey Design: Prior knowledge and
MSLQ measurement.

After signing up, participants completed an online pre-survey. We
asked participants how many prior programming classes they had
completed before and how many hours per week each participant

Xie et al.

spent doing work (defned as time spent on classwork, homework,
and studying combined) in the class. We then asked participants,
“When you are given a programming problem to solve, how do you
usually start?” We then asked participants to measure their self-
regulation using the nine-item metacognition sub-scale from the
Motivated Strategies for Learning Questionnaire (MSLQ) [45, 47],
further described in Section 4.2

3.5 Design of Online Practice Environment with
Code Replays

Participants practiced writing Python across three practice sets:
PS1 (baseline), PS2 (intervention), and PS3 (endline). Each practice
set contained seven unique items that were the same for all partici-
pants (further described in Section 3.5.1). Only PS2 had code replay
features.

In all three problem sets, participants responded to two refec-
tion prompts after each item. The refection prompts were designed
to record the self-regulation that participants engaged in and en-
courage self-regulating behaviors. While submitted practice items
could be incorrect, participants were required to complete refection
prompts in all items to complete the study. These prompts came
from prior work on programming self-regulation [33] and were
refned through piloting with a student from the target population.
Figure 2e shows an example of two refection prompts that followed
every item in PS2. We qualitatively coded the following prompt
that appeared in PS1 and PS3: How did you approach this problem?

PS1 provided a baseline for programming and self-regulation
behavior before being primed about metacognition and using the
Code Replayer. The code replay feature was then introduced to
participants for use in PS2. After completing a practice item and
answering the refection prompts, participants then used the replay
tool to see a replay of their programming process. They answered
additional refection prompts to encourage engagement with the
replay tool and collect data about participants’ new insights after
watching their code replay. The replay feature was then removed
for PS3, making the structures of PS1 and PS3 similar. We removed
the replay to understand how changes in behavior and therefore
programming self-regulation would persist after removing the code
replay intervention. Participants could go back to review previ-
ously completed practice items, but could not attempt previously
completed practice again.

3.5.1 Practice items assessed basic Python constructs across three
practice sets. We designed 21 introductory Python items to serve
as practice across three practice sets, where each practice set was
isomorphic in difculty. The items covered concepts relating to basic
Python constructs taught in class (variables, Boolean operators,
math operators, conditionals, loops, lists, and function parameters).
Each practice item required participants to read the prompt and fll
in a function with valid Python code to fulfll all user tests. Figure
2a-c shows an example of a practice item.

We designed the items based on prior research fndings with
novice programmers (e.g. [65]), openly available online tools (e.g.
CodingBat [42]), course materials shared from instructors from
both courses, and course materials from the intermediate Python
course that followed the courses that participants were enrolled in.
In total, three authors designed 24 potential items.

Developing Novice Programmers’ Self-Regulation Skills with Code Replays ICER ’23 V1, August 7–11, 2023, Chicago, IL, USA

(Interview)Exit SurveyPS3DistractorIntro Video PS2

(w/ Code

Replay)

PS1Pre-Survey

1 32

3.4 3.5, 3.5.1 3.5.2 3.5.4 3.5, 3.5.1,
3.4.1

3.6 3.7

3.5, 3.5.1,
3.5.3

Figure 1: Overview of study fow with corresponding section numbers. Practice items were separated across three isomorphic
practice sets (PS1-PS3). Only PS2 had code replays, with PS1 serving as a baseline and PS3 as a post-intervention comparison.

The 24 items were then reviewed by four computing/content
experts and three psychometric experts, all of whom were not
authors. Two authors then used this feedback to remove three
items and revise the remaining 21 items for clarity and to adjust
difculty. They then organized items to distribute difculty evenly
across each problem set.

Each item also had accompanying unit tests, where correctness
consisted of passing all unit tests in a single submission. In Code
Replayer, participants could only continue on after they passed all
unit tests or attempted fve submissions.

3.5.2 Video to introduce metacognition. We created a four-minute
video lesson on metacognition to serve as an introduction to the con-
cept before participants began watching code replays in PS2. This
explicit instruction provided novices with an abstract understand-
ing of problem solving knowledge that can help support their devel-
opment self-regulation skills when paired with refective practice
[33, 34]. Therefore, “priming” students about metacognition is cru-
cial to support efectively practicing and developing self-regulation
skills.

The video defned metacognition as “thinking about your own
thinking,” and explained its relation to programming, drawing from
fndings previously observed by Loksa et al. 2016 [32]. It also in-
cluded examples of metacognitive programming strategies to aid
in the user’s understanding of how self-regulation is applied to
writing code, such as interpreting a prompt or writing out a plan
in pseudo-code and comments. The video ended by describing the
importance of self-refection and metacognition in an individual’s
ability to improve their programming ability.

3.5.3 Design of keystroke logs and code replays. To collect data to
support code replays, Code Replayer passively collected keystroke
logs as students answered practice items. Keystroke logs included
events such as code edits (including deletions) and code submissions,
with accompanying timestamps for each event. For PS2, we also
tracked the amount of time participants watched replays. These
keystroke logs followed a ProgSnap2 compliant format for future
comparison with other process data [50]. We used these keystroke
logs to create replays of participants’ coding process.

The intro video, shown in Figure 1 3.4.2, informed participants
about the features of code replay and encouraged them to engage

them as a way to engage in self-refection on programming ability.
Participants’ replay of their coding process enabled them to view
all code edits and answer submissions they made in real time. After
fnishing practicing an item in PS2, they could switch to replay mode
and see their replay. The interface is shown in Figure 2d. Similar to
a video player, participants could play or pause the replay or click
on the progress bar or drag the slider to go to a specifc position.
They could also use next and previous buttons to jump to the next
or previous event respectively. This enabled them to skip pauses
where no events occurred.

While we encouraged students to engage in replays, watching
the replays was not required of participants in PS2. The refection
questions appeared when the participant completed a problem,
regardless if they watched their code replay or not. Furthermore,
while the refection questions in PS2 explicitly ask participants
about their replay, it was not required of participants to engage in
the replay before answering the refection response.

3.5.4 Distractor task: unrelated online survey. After using code re-
plays in PS2, we gave the students a brief distractor task before
continuing to regular practice without code replays in PS3. The ob-
jective of the distractor task was to mitigate short-term, temporary
learning gains related to viewing and refecting on code replays. A
distractor task occupies participants’ working memory with con-
tent unrelated to self-regulation in programming so participants
would rely more so on long-term memory when working on PS3
[29, 61]. The distractor was a survey that asked participants various
non-computing questions such as how long each participant takes
to shower, a musical instrument they would like to learn, and a
logic question on tracking days in a seven-day week. Because these
questions were not related to the research questions, none of the
data gathered was analyzed.

3.6 Exit Survey: Demographics, MSLQ,
Interview Recruitment

After completing the practice sets, participants completed an exit
survey. The exit survey began by asking participants for consent to
use their keystroke log data for our analysis. After this question, we
asked if participants would be interested in a 30-minute recorded
online interview intended to follow up on their metacognition while

ICER ’23 V1, August 7–11, 2023, Chicago, IL, USA Xie et al.

a

c

e

b

d

Figure 2: Code Replayer interface. Participants read a formatted problem prompt (a), then write code in a code editor (b), run
their code and see results of the unit test (c). After getting all unit tests correct or fve submissions, participants can access the
“replay” mode where they can view their replay (d). Annotations in the progress bar replay dot are events and submissions have
“run” shown underneath them. Participants must then respond to refection prompts (e) before continuing on.

completing the online portion of the study. After this, we asked
participants to look at a sample coding problem. Participants were
then asked to consider how they would approach the problem and
describe their problem solving process. Participants self-reported
their typical problem solving process before participating in the
study and afterwards were asked to recall if there were any changes.
Similar to the pre-survey, the participants were then again asked
to measure their self-regulation using the nine-item metacognition
sub-scale from the MSLQ instrument [45, 47].

After measuring their self-regulation, participants were asked on
feedback for the online portion of the study, particularly focused on
what they found helpful and what they did not fnd helpful about
the code replay intervention. We asked participants if they used
any outside resources to help them answer programming problems,
and if so, what tool they used.

We collected demographic data at the end to avoid stereotype
threat [62, 64]. While research on educational data mining often
omits demographic data [41], trying to generalize results or inter-
ventions beyond groups for whom an intervention was designed
for could mean that learners get interventions that are not suited
for them [3]. Therefore, we collected and reported demographic
data.

The demographics questions were optional and followed inclu-
sive practices [39, 60, 63]. We asked questions about what degree
participants were working towards, whether their parents/guardians
completed a college/university degree, gender, ethnicity, age, lan-
guages spoken, familial language, and disabilities. Demographics
of participants was previously reported in Section 3.2.

3.7 Follow-Up Interviews
We conducted semi-structured interviews with 12 self-selected par-
ticipants within 10 days of them completing the online portions of
the study. Interviews were conducted online and recorded video
(including screen sharing) and audio with consent. Two authors
and creators of Code Replayer conducted the interviews, which
could contribute to response bias [8].

We asked participants how much time they spent on the practice
sets, to share a general recollection of their experience, and whether
they used any external tools to complete the work (e.g. Python
Tutor). We asked each participant about their individual use of
the code replay feature–particularly, how much or how little they
engaged with it with the questions “How did watching your replays
make you feel?”, “What sort of thoughts came to mind?”, and “Why
(or why didn’t) you engage with the replays?” (RQ1). We also asked

Developing Novice Programmers’ Self-Regulation Skills with Code Replays

participants to recall if they had previously ever refected on their
learning in a class they took, if Code Replayer had any particularly
challenging practice items, and if Code Replayer reminded them of
previously used tools.

Participants were then asked to watch one of their code replays
with the interviewer; while sharing their screen, interviewees se-
lected what they recalled was the most difcult practice item for
them. We then asked them what they remembered about the prob-
lem and why they thought it was difcult. As they watched the
code replay, we asked participants to think aloud and share what
they noticed about how they solved the problem. Once the code
replay had ended, we asked participants what they were thinking
as they looked at their fnal solution to see how they refected with
code replays (RQ2).

To conclude the interview, participants were asked why they
thought watching code replays could be helpful or unhelpful, as
well as any other previous experiences that using the tool reminded
them of.

4 DATA ANALYSIS OF SURVEYS, REFLECTION
RESPONSES, INTERVIEWS

We analyzed data from refection prompts, surveys, and interviews.
Analysis of qualitative data requires judgment of data that we con-
structed in our study [17]. In this section, we describe the complex-

ity of our qualitative coding process to allow readers to analyze
this data on their own terms and employ similar analyses [7, 57].

While we intended to analyze log data (described in Section
3.5.3), we found noise in the data that came with the use of this
tool in a discretionary setting. Analysis of log data often focuses
on timestamps to calculate pause duration (e.g. [23, 24]), but this
had broad variation. For example, the amount of time spent be-
tween loading a problem and beginning code edits (time “reading
the prompt”) ranged from 4.8 seconds to 23.1 hours. While some
participants used this time primarily to read the prompt and plan
their solution, others left the site open as they engaged in other
tasks (e.g. work a shift on their job). We discuss future work related
to log data analysis in Section 6.

4.1 Qualitative coding of refection prompts to
understand impact of replays on
self-regulation

We qualitatively coded refection prompts from practice before and
after using the Code Replayer to understand how replay afected
metacognition. We analyzed responses to the prompt “How did you
approach this problem?” in PS1 and PS3 to code for evidence of
programming behaviors as well as self-regulation behaviors. We
analyzed 294 responses in total, coming from 21 participants re-
sponding to a combined total of 14 items from PS1 and PS3. In this
section, we follow recommendations from Hoyt 2010 [19] on re-
porting our process for qualitative coding data using an established
rating scale.

We applied an existing codeset for programming self-regulation
behaviors [32, 33, 35], as shown in Table 1. The researcher with the
most familiarity with programming self-regulation defned an ini-
tial code set based on prior work [33, 35]. They then had two other
researchers and themselves code randomly selected responses. All

ICER ’23 V1, August 7–11, 2023, Chicago, IL, USA

three researchers then discussed discrepancies, came to consensus,
and then iteratively refned the code set and code defnitions for
clarity. Because the orignal code set applied for journal refection
for coding projects, we needed to make adaptions to clarify the
codebook for refections on shorter code writing problems. Across
fve rounds, the three researchers came to consensus on 19% of the
data (56 responses). The remaining responses were then equally
split up such that two researchers coded each response. After each
researcher independently coded the assigned responses, we created
pairs among the 3 researchers to reach 100% agreement between
2-3 researchers for all responses. A common discrepancy was de-
termining whether a refection referred to implemented code (PIM
in Table 1), a decided upon plan (SPL), or a potential solution (PSS).

4.2 Analyzing Change in MSLQ Rankings to
identify disparate impacts of code replays

We used the metacognitive self-regulation subscale from the Mo-

tivated Strategies for Learning Questionnaire (MSLQ) to measure
diferences in metacognitive skills before and after the study [46].
Prior research developed validity evidence for use of this instru-
ment [45] as well as for its use in computing education (e.g. [24]).
The subscale consisted of nine Likert-type items where each item
asked participants to rate how true statements were from “1: not
at all true of me” to “7: very true of me” [46]. Three items were
reversed (where a higher score suggested less self-regulation), so
their scores were refected prior to analysis. Following instructions
on the use of the MSLQ [45], we took the mean of all items in the
subscale to measure participants’ self-regulation skills before and
after the study.

An inconsistency in survey design resulted in the pre-survey
and exit survey MSLQ having diferent ranges of potential scores.
The pre-survey MSLQ ranged from 0-7 (instead of the intended
1-7 as the exit survey did). Following the principle of conservative
interpretation of data, we chose not to compare MSLQ scores be-
tween pre-survey and exit surveys. We instead compared rankings
of participants in pre-survey and exit survey. With this, we could
identify how participants’ metacognitive skills changed relative to
other participants before and after the study.

We used rankings by average MSLQ score and changes in these
rankings to identify participants whose self-regulation skills changed
in disparate ways. This method is similar the contrasting groups
method of psychometrics to make judgements on borderline scores
[30, 31].

4.3 Thematic analysis of interviews to
understand how code replay afected SRL

To better understand how students used Code Replay and what
factors impacted its efects, we conducted a thematic analysis on
the transcripts of the interviews we conducted with participants.

First, three researchers identifed sensitizing concepts ([6, 43])
related to item design (e.g. difculty), human factors (e.g. prior
programming and self-regulation knowledge, familiarity with UX),
and replay attributes (length of replay) afecting usage of code re-
plays. Two researchers then reviewed interview notes, transcripts,
and recordings and added notes to a virtual collaboration platform.

ICER ’23 V1, August 7–11, 2023, Chicago, IL, USA

Three researchers then participated in collaborative afnity dia-
gramming these notes to inductively generate themes.

5 RESULTS
We used data collected from our study to answer our three research
questions related to how code replays afected self-regulation be-
havior, how participants used code replay diferently, and what
factors afected the use of code replays.

We refer to participants using an anonymous ID where the lead-
ing letter refers to the course they were enrolled in (A or B) followed
by a sequential number. IDs ranged from A-01 to A-19 and B-01
to B-02. We refer to participants using they/them pronouns for
anonymity.

5.1 Most participants watched most replays
The goal of our study was to understand how code replays could
supplement novice programmers’ typical practice to develop their
self-regulation behaviors.

While we did not intend to manipulate the amount of code re-
plays participants watched, variations in engagement with code
replays could confound study fndings. Figure 3 shows the distribu-
tion of participants by number of code replays started, as measured
by analysis of log data. We found that about half of participants
(10/21) started watching replays for all 7 items in PS2. Four in fve
(17/21) watched most of their replays (4 or more).

5.2 RQ1: Efect of Code Replays on
Self-Regulation

To understand the efect of code replays on metacognition, we
qualitatively coded the participants’ responses to refection prompts
before and after they watched their replays. Table 1 shows our
analysis of 294 refection prompts for 21 participants completing 7
items in PS1 before watching their code replays and then 7 more
items in PS3 after watching their code replays.

We found diferences in the frequency of reported self-regulation
behaviors before (PS1) and after (PS3) watching code replays. There
was a decrease in the number of refection prompts mentioning
implementation of solutions (PIM, -17%) which was statistically
signifcant (�2 = 10.135, � < 0.05, Pearson’s �2

test with Yates’
continuity correction and Bonferroni correction) with a small efect
size (� = 0.19). We also found that refections after watching code
replays more frequently mentioned interpreting the prompt (PIN,
+6%) and planning (SPL, +5%). While these were not statistically
signifcant, analysis of interview data showed how replays could
have supported these behaviors.

5.2.1 Replays improved self-regulation through reflection and self-
explanation. Analysis of interviews and think-aloud data identifed
that a majority of the 12 interviewed participants felt that code re-
plays helped them see and refect on their process and then identify
potential improvements. A-10 and A-16 felt that replays enabled
them to get a “third person” perspective of themselves coding. A-10
felt that replays helped them demonstrate their understanding to
themselves by positioning them as a teacher self-explaining their
previous behaviors:

Xie et al.

A-10: “I was like standing behind myself doing this
code... Whenever I’m talking about my ideas of what
I’m learning, I feel like that helps me. Because I am
kind of teaching it to other people what I’m doing. And
I feel like if you’re teaching or explaining what you’re
doing to other people, to myself, then I guess it shows
I’m understanding...”

Using replay as a refection opportunity enabled participants to
recognize how much time and efort they dedicated to interpreting
the prompt. A-16 used the initial pause in the replay to consider
how long they read the prompt (PIN) and planned their solution
(SPL).

A-16: “I can see how long the time when I was not
writing anything until I started to write. There’s a time,
you know, there, so I guess that’s the time I spend on
like thinking about the prompt and how to code.”

Another participant used replays to notice that they did not
dedicate enough time to interpret a problem prompt (PIN) prior to
starting to code:

A-12: “When I watch back what I was doing at the
time, I can see what myself thinking and see myself
arguing with myself. Should I do that? Or should I do
this?... Sometimes I noticed I haven’t read the question
actually, and I just go right into coding. I go back and
then realize what I did was not what the question was
asking.”

While we designed code replays to improve self-regulation skills,
two participants felt replays also helped improve their program-

ming skills by fnding new applications of learned concepts and
identifying gaps in their understanding. One participant used re-
plays to identify opportunities to apply elif (else-if), a concept
they learned in lecture (A-07, described further in Section 5.3.3). An-
other participant used replays to identify gaps in their programming
knowledge. They used patterns in code edits to identify program-

ming concepts they were less familiar with:

A-01: “Replays show me how I arranged my code and
which parts I changed... which shows areas where I’m
not familiar with these kind of code.”

Another participant found diferent benefts to watching a replay
based on whether they got a problem correct or not:

A-01: “If the code is correct, I will watch the replays
to see what I change[d] during the programming, and
I can fnd which part of that I’m weak. If the code’s
wrong, I mainly use the you replay to reorganize my
logic and thinking.”

But one highly motivated participant (A-08) did not fnd a beneft
in watching code replays. They had middle 1/3 MSLQ rank that
remained relatively unchanged (slight increase). They were a grad-
uate student taking their frst programming course for help with
data analysis. Despite their motivation to learn from replays, they
did not feel they got value from them:

A-08: “I think I was kind of like overthinking it... I was
thinking like ‘Oh, they probably gave us this tool, and...
metacognition is like going to come into play at some
point. So like maybe I’m supposed to see something

Developing Novice Programmers’ Self-Regulation Skills with Code Replays ICER ’23 V1, August 7–11, 2023, Chicago, IL, USA

Four in five (17/21) participants

at least started watching

most replays (4 or more)

Three in five

(13/21) at

least started

6 or 7 replays

0

2

4

6

8

10

0 1 2 3 4 5 6 7
Number of Code Replays Started (of 7 total)

N
um

be
r

of
 P

ar
tic

ip
an

ts
 (

n=
21

)
Number of Code Replays Participants Started Watching

Figure 3: Histogram of code replays participants started.

that’s going to be like that. I didn’t know before, or
like something was going to like expand in my mind
from watching myself over again.’ And I just like wasn’t
getting that.”

5.2.2 Perceptions of pauses/gaps varied. Pauses or gaps in the code
replays occurred whenever participants were not actively editing
their code. They often appeared in the beginning of replays when
participants were reading the prompt, within code edits when par-
ticipants stopped to think or take a break, or trying to execute code
when participants reviewed feedback.

Participants often used pauses/gaps in code replays to recall
behaviors. One participant felt that short pauses/gaps in the replay
before starting to write code suggested they did not spend enough
time reading the prompt, so they tried to change that behavior:

A-16: “I thought [code replays were] helpful because I
can get a clue to why the question was wrong and I can
also notice the gaps between thinking and typing. If the
gap was short then, I was reading the prompt not so
carefully, so I spent more time reading the prompt.”

Another participant focused on pauses in their replay that oc-
curred after their code failed to execute. They interpreted those
pauses as evaluating code relative to test-cases (PEI) or interpreting
the prompt (PIN):

A-18: “The main thing I noticed while I was watching
them was like the pauses [...] where I had to re-look
at the test cases, or reread the question again, because
there was a bug in my code.”

But long pauses could be cumbersome because there were no
actual changes to watch. As an extreme example, A-18 speculated
that for larger project-length assignments, replays would not be
helpful because it would be inefcient to replay everything:

A-18: “[replays] were helpful for shorter problems, but I
was thinking of how we would use it on a bigger assign-
ment. I don’t think it’d be super helpful since I’m not
actively coding during 100% of my time. I am mostly
looking at my work. I feel like for smaller coding chunks,
it is more efective since it is a shorter time. If it’s a re-
ally long code, I don’t know if I want to watch back
everything.”

5.2.3 Participants perspectives on replays of struggle were polarized.
Participants tended to struggle more on more difcult problems.
For easier problems, A-07 felt replays would not be helpful because
they would be too quick. However, two participants (A-03, A-08)
reported appreciating the positive reinforcement of seeing replays
of getting a problem correct:

A-03: “If I got the problem right on the frst try, it made
me feel good to watch it work.”

For more difcult problems where participants struggled more,
four interviewed participants found that watching replays of errors
ranged from not helpful to detrimental experiences.

Two participants found watching errors they just made “not
helpful” (A-05, A-12). A-12 started ranked in the bottom 1/3 by
MSLQ score and increased to the middle 1/3. They felt that watching
the same error again could reinforce poor programming habits:

A-12: “I guess sometimes you might make the same
mistakes watching [the replay].... When I normally code,
if I got really stuck, I tend to open a blank page so
that I don’t have any infuence from my frst [try]...
Sometimes if you watch it again, you may tend to do
the code the same way. If the code works, but it’s not a
good way to code it, you might end up doing the same
thing.”

Behaviors Description Example Response PS1 PS3 Δ
Interpreting the prompt, reconsider- I read the prompt and knew what it was

PIN: Inter-

ing actions in reference to the prompt, asking of me, to subtract expenses from rev- 52% 59% +6%

pret Prompt
or decomposing the problem. enue... A-09

PSA: Search I found that this problem is kind of similar
for anal- Demonstrating intent to reuse knowl- to the previous reverse number question, so

2.0% 3.4% +1%
ogous edge or code from related problems. I go back and check some of my code there...
problems A-16

Adapting solutions to related prob-
I thought about how [my instructor] said in

PSS: Search lems or by fnding solutions in text-
class that you can multiply integer n with 10% 7% -3%

for solutions books, online, or from classmates or
strings... A-18

teachers.
PEP: Evalua- Demonstrating testing or evaluating

I knew this should be a for loop that iterates
tion a poten- outcomes intent to test a potential so- 4% 2% -2%

between 1 and n. A-11
tial solution lution.
PIM: Imple-

I use str() to convert int to string, and then
ment a solu- Translating a solution into code. 82% 65% -17%

compare the result to target. A-07
tion

Once I tested my frst run and realized I
PEI: Eval-

didn’t get what I wanted, I looked at the
uate im- Evaluating correctness and quality of

actual output and decided where in my code 20% 16% -4%

plemented an implementation.
I would need to make small adjustments...

solution
A-08
First I need to tell what’s the original price of

SPL: Plan- Intended work goals or intended or- this car, then I tell its current price depending
33% 38% +5%

ning der of work. on my credit score. Finally I tell if I could buy
this car... A-15

Work being started, work currently in I frst split the value of n into 3 numbers,
SPM:

progress, when a task is complete, or and then calculated whether the sum of the
Process 46% 47% +1%

that identify actions as part of their 3 numbers is equal to the value of target..
Monitoring

process. B-01
Identifying known or unknown pro-

SCM: Com- gramming concepts or understand- I know that you can multiply a string by an
prehension ing of the problem prompt. Refection integer and it will give me X number times 18% 22% +4%
Monitoring about the understanding of code or of the string... A-12

problem prompts.
SRE: Refec-

Refecting on prior thoughts, behav- With incredible frustration... I was pretty
tion on Cog- 14.3% 13.6% -1%

iors, or feelings. nervous about running the code A-05
nition

I feel like a for loop is needed to get the difer-
SSE: Self- Code explanation for increased under-

ent numbers to multiply and then also keep
explanation/ standing or to provide rationale to de- 44% 46% +2%

track because with factorials you build on
rationale cisions or behaviors.

the previous multiplication problem. - A-10
(none) no codes apply to this response Sorry, I chose to skip the question. B-01 2.7% 7.4% +5%

ICER ’23 V1, August 7–11, 2023, Chicago, IL, USA Xie et al.

Table 1: Descriptions and examples of programming and self-regulation behaviors we qualitatively coded for in 294 refection
prompts, split evenly between PS1 and PS3. Percentages refect the proportion of refection prompts (out of 147) that were
coded for a given behavior for the problem set before (PS1) and after (PS3) participants watched their code replays.

B-02 also felt that replays reinforced sub-optimal skills and strate-
gies, which they referred to as “tunnel vision.” We elaborate on this
further in Section 5.3.2.

More alarmingly, two participants thought replays made them
feel negatively. A-16, who ranked in the top 1/3 in MSLQ in the
pre-survey but then decreased to middle 1/3, felt that the replay
made them feel “stupid” (A-16):

A-16: “Sometimes I would think of myself as kind of
stupid because I spend a lot of time [coding].”

A-03 felt frustrated seeing a replay of problems they were unable
to solve:

A-03: “If I got the problem right on the frst try, it felt
good. If there were a lot of mistakes, especially if I didn’t

Developing Novice Programmers’ Self-Regulation Skills with Code Replays ICER ’23 V1, August 7–11, 2023, Chicago, IL, USA

pass the problem, it was frustrating to watch back be-
cause you know what’s wrong but you can’t fx it.”

But not all participants found struggle to be detrimental. A par-
ticipant with a high ranking MSLQ score felt that difcult problems
were interesting because they showed how their strategies changed:

A-05: “On the ones where they got harder, the most
interesting for me was watching where I changed course,
or where I made mistakes like ‘oh wait, that’s a set not
a list’ or something. But more often, just sort of like ‘oh
I started to go at it this way and then in the process of
doing that, I realized a more way elegant way of doing
it.’ Or I realized what a problem was that I was about
to hit and then I was like, ‘back up and solve it.”’

5.3 RQ2: How novices used replays diferently
To understand how participants used replays diferently, we con-
ducted an in-depth analysis of three participants. We selected these
participants because of extreme changes in their MSLQ rankings
between the pre-survey and exit survey as well as demographic
diversity.

Figure 4 shows changes in rankings in average MSLQ score
between pre-surveys and exit surveys. The three participants we
interviewed are emphasized with purple and thicker lines. They are
A-05, who started with an MSLQ rank in the top 1/3 and fnished
with the highest ranked MSLQ score; A-07, whose MSLQ score
started in the top 1/3 but dropped to the bottom 1/3, and B-02,
whose MSLQ score started in the bottom 1/3 but fnished in the top
1/3.

The correlation between the rank of number of replays watched
(Figure 3) and change in MSLQ was very weak (Spearman rank cor-
relation coefcient �� = 0.05) and there was no signifcant diference
(Wilcoxon Signed Rank Sum Test, � = 0.97). This suggests that there
is a very weak relationship between number of replays watched
and change in MSLQ rank, likely because of minimal variation
in number of replays watched. Furthermore, all three emphasized
participants described in this section started watching six (A-07) or
all seven (A-05, B-02) of their code replays.

5.3.1 A-05: Replays encourage making process explicit, but scafold-
ing required. A-05 was an older (over 40 years old), gender queer,
White, multilingual, learner who was not working towards a degree.
They were enrolled in their frst Python course, but had previous
experience with other programming languages. They had teaching
experience, and used this prior experience to frame code replays as
a tool that can enable “thinking about thinking” but also requires
sufcient feedback and guidance to support the development of
self-regulation skills.

Initially, A-05 had a very internal process where they worked
out problems in their head. But after watching some uninteresting
replays, they started to consider making their process external:

A-05: “I watched the frst [replay] and realized that, like
oh, most of my thought process is me, just sitting there
clearly thinking for fve minutes, and then writing a
ton of code or something. In order to make [replays]
more useful, I changed my process knowing that I could

go back and watch myself and extrapolate what I was
thinking.”

They also found it interesting how replays enabled them to see
how their strategies changed throughout the problem:

A-05: “the most interesting for me was watching where
I changed course, or where I made mistakes. Like ‘oh
wait, that’s a set not a list’ or something. But more often,
just sort of like ‘oh I started to go at it this way and
then in the process of doing that, I realized a more way
elegant way of doing it.’ Or I realized a problem that I
was about to hit and then I like, back up and solve it.”

Connecting Code Replayer to their teaching experience, they
saw replays as something that could support interactions between
teachers and learners:

A-05: “As a teacher brain, I can be like ‘sure that’d be an
amazing tool’ because I could sit there with a student,
and I could be like ‘see, look what you were doing here’
or I could look at those long pauses and be like ‘hey,
instead of having these sort of long pauses, and then
writing out ten lines of code, why don’t you just like, do
that on the page?”’

5.3.2 B-02: Replays aligned plans with process, but led to fixation on
existing process. B-02 was a young (18-25 yrs old) Hispanic/Latino
man who was pursuing a Bachelor’s degree while also working
full-time. He started with an MSLQ rank in the bottom 1/3 (rank
16.5/21) and then fnished with in the top 1/3 (rank 3.5). Because
he worked full time, he used Code Replayer intermittently, using
replays to review his thought process from hours prior:

B-02: “... I was like doing it between work. So I had, like
a twelve hour jump from the start to fnish. It was really
cool for me to see like twelve hours ago, what was my
head thinking?”

B-02 used code replays to bridge a gap between his intended
plan for solving a problem and how he actually solved problems.
This was a recurring theme that he came back to four times in the
hour-long interview. His ideal process involved considering the
output and then working backwards from the desired output. His
initial process however involved “just writing code immediately.”
He felt that refecting on code replays enabled him to align his
intended plans with his process by the end of PS3:

B-02: “I defnitely I went into like wanting to see the
replays, so that I could see that diference in what I
wanted to do versus what I did. . . that defnitely helped
me later on because eventually... by the last couple of
problems, I was actually doing most of what I wanted
to do like the thought process that I wanted to use.”

B-02 felt that replays led to a “tunnel vision” in which refecting
on the wrong approach could lead to fxating on that approach:

B-02: “I feel like watching replays [in] the second prob-
lem set of me using a list might have . . . infuenced my
thinking to really like refect hard on lists, right? Which
made me feel like I could use a list to solve anything,
which obviously wasn’t the case. So I feel like, even if I
look at any problem today, I might just try to make a

 ICER ’23 V1, August 7–11, 2023, Chicago, IL, USA Xie et al.

A−07+
A−10+

A−08+

A−09

A−02

A−16+

A−03+

A−13

A−01+

A−18+

A−12+

A−05+

A−14+

A−06

A−11

A−04

A−17

A−15+

A−19

B−01

B−02+
A−07+

A−10+

A−08+

A−09

A−02

A−16+

A−03+
A−13

A−01+

A−18+

A−12+

A−05+

A−14+

A−06

A−11

A−04

A−17
A−15+

A−19

B−01

B−02+

purple denotes

participant

emphasized

in results

+ denotes

interviewed

participant

dotted lines

separate 1/3

of participants

21

19

17

15

13

11

9

7

5

3

1

pre−survey exit survey

ra
nk

in
g

Ranking Participants by MSLQ Scores Before and After Study

Figure 4: Rankings of participants’ average MSLQ scores from pre-surveys and exit surveys. We emphasized participants with
purple text and thicker purple lines in our results because of the extreme changes in their MSLQ rankings.

list right away. So maybe it’s kind of, like, giving you
that tunnel vision.”

To overcome this fxation on sub-optimal strategies, B-02 wished
he could see replays of other types of processes. He likened this to
watching replays of e-sports and online gaming:

B-02: “You’d review your match replays, and you look
through them and you see ‘What was I doing?’ and
‘What were other people doing?”’

5.3.3 A-07: Used Additional Tools in Addition to Code Replayer.
A-07 was pursuing a Bachelor’s degree and came from a household
that spoke a diferent language than the language of instruction.
They had the greatest decrease in MSLQ ranking, ranking in the top
1/3 in the pre-survey and then ending up at the bottom 1/3 in the
exit survey. In addition to Code Replayer, A-07 used the external
resources of Python Tutor [15] to test code and a computational
notebook to take notes.

A-07 used Python Tutor to identify errors in their code:

A-07: “Firstly, I write the code on Code Replayer plat-
form and then I click run to see if all the results show
correct. But [for] almost all of them, the frst time wasn’t
correct. So I just review them and after a few minutes,
if I can’t fnd the error, I go to Python Tutor to check it.
But, if I can fnd out, I directly add it in the platform

and then, when I’m done, I use Code Replayer to review
my process.”

Python Tutor [15] had better support for fnding errors, such
as visualization of stepping through code. This suggested that by
relying on it to debug, A-07 may engaged less with the debugging
process, a crucial phase in self-regulation (PEI). It also meant that
code replays no longer showed the incremental steps of code editing.
Instead, A-07’s code replays had long pauses (presumably while
they worked in Python Tutor) and then large edits when they copied
code back into Code Replayer. Nevertheless, they still felt that code
replays helped them avoid repeating similar mistakes:

A-07: “[code replays] can remind me of something so in
the future assignments I won’t make similar mistakes
[from before]”

While we theorized that code replay could improve self-regulation
skills, we did not expect them to support the development of pro-
gramming skills. But by watching replays, A-07 recognized oppor-
tunities to apply a construct they learned in class, elif:

A-07: “When I was frst coding everything I like to use
‘if’ and ‘else’ in all these things. But after [watching
replays,] I noticed that I can actually use ‘if’ and ‘elif’
to limit the [conditions to] be more precise and useful.”

Developing Novice Programmers’ Self-Regulation Skills with Code Replays

6 DISCUSSION: DESIGNING CODE REPLAYS
FOR INTERPRETATION OF PAUSES

Our analysis identifed how refecting on code replays could sup-
port the development of novice programmers’ self-regulation skills.
Qualitative coding of refection prompts identifed that participants
less frequently reported implementing a solution (PIM). Interviews
identifed that participants considered locations and durations of
pauses in code edits as potentially relevant to planning despite
replays showing no change during these pauses. Participants used
code replays in diferent ways, such as using them to make their
process more explicit (A-05) and to follow-through with problem
solving plans (B-02). Using Code Replayer in tandem with other
tools may not have benefted A-07’s self-regulation skills, as their
code replays no longer captured their entire code editing process.
However, multiple participants found replays of struggles detri-
mental. Collectively, this paper contributes a formative, empirical
evaluation on the feasibility of using code replays as a scalable
intervention to develop novice programmers’ self-regulation skills.
In the remainder of this section, we consider ways to interpret these
fndings.

6.1 Limitations
One interpretation of our fndings is that code replays did not im-

pact self-regulation skills because that we found no statistically
signifcant evidence of more frequent self-regulation behaviors be-
fore and after the study. However, this study was an initial design
exploration and feasibility study in a context that was externally
valid to self-directed practice. Analysis of rich qualitative data from
refection prompts reported immediately after completion of items
as well as interviews with think-aloud provided us with insights to
understand how participants used code replays in diferent ways to-
wards disparate outcomes. Furthermore, we intended for this study
context to be comparable to a formative practice environment. As
such, we did not try to conduct this study in a controlled, lab-like
setting. We made no attempts to control the amount of time spent
using the tool. Participants were also learning new content as the
study progressed. This dynamic environment made log data too
confounded to provide a strong signal. Future work can explore
the efcacy and efect size of code replay interventions on pro-
gramming self-regulation skills in more controlled contexts, such
as in time-constrained settings more consistent with classroom
experiences. Future work could also investigate the development
of programming self-regulation skills across a longer duration, as
prior work in foreign language learning found that seven weeks of
instruction with video replays improved undergraduates’ metacog-

nition [1].
Another interpretation of our fndings is that variations in en-

gagement with code replays confounded results. We found that 4
in 5 participants watched most of their code replays, there was a
lack of correlation between number of replays watched and change
in MSLQ rank, and all our emphasized participants watched all or
almost all of their code replays. Therefore, we do not fnd evidence
that variations in the number of replays had a detectable efect in
our study. However, students engaged with replays diferent (as
described in Section 5.3), so future work can explore how diferent

ICER ’23 V1, August 7–11, 2023, Chicago, IL, USA

“dosages” of code replays afect novice programmers’ self-regulation
skills.

6.2 Implications for research and practice
Another interpretation of our fndings is that code replays can sup-
port the development of self-regulation skills in novice program-

mers. Zimmerman’s framing of self-regulation includes learners
refecting on their own recordings [34, 71]. We found that partici-
pants were able to use replays to refect on their process and identify
improvements to their problem solving strategies. In particular, par-
ticipants focused on spending more time interpreting the prompt
and planning, two important self-regulation behaviors that novice
programmers often overlook [32, 35].

However, replays may be less helpful for advanced learners.
Multiple participants suggested that replays were unhelpful because
they had sufcient mastery of some problems. This suggests that
some participants may have had advanced enough programming
or self-regulation skills such that watching code replays was an
unnecessary burden. This aligns with Expertise Reversal Efect,
which states that the efectiveness of scafolding techniques depends
on the levels of learner expertise [21]. This also aligns the theory of
self-regulation we applied in this study, which states that learners
begin to proceduralize self-regulation skills as they develop [71].
Future work can explore how to use code replays as more targeted
interventions, perhaps focusing on reviewing replays of specifc
exercises or even “infection points” within exercises (e.g. when a
learner changed their problem solving strategy). This aligns with
prior work on process recordings from beyond computing education
which suggests a need for being selective about the collection and
use of recordings, as previously described in Section 2.2.

A fnal interpretation is that we must design interactions and
scafolding around code replays to ensure they equitably develop
self-regulation skills for novice programmers. One opportunity
involves designing for gaps/pauses in the code replay. Our study
identifed that during pauses in code edits (e.g. when a participant
is thinking), participants attempted to recall their thoughts or be-
haviors. Prior work found relationships between duration of pauses
in code writing tasks and exam scores [24]. Future work could
design techniques to provide more afordances towards thoughts
and behaviors during pauses in code edits. Designing techniques to
support richer code replays could involve unintrusively collecting
additional data. For example, one participant wrote comments in
their code to fll the pauses. Other designs could encourage and
record think-aloud or prompts that complement rather than distract
from learning experiences.

A critical tension that this study identifed was balancing the
beneft and the burden of having to relive past mistakes. Multiple
participants identifed how code replays were most benefcial for
difcult problems, where they could refect upon and improve their
programming processes. However, multiple participants also indi-
cated that reliving errors was not helpful, frustrating, or hindered
their self-efcacy. Students found replays of challenging problems
most helpful, but these replays may also be the most difcult to
review because they can refect struggles that students faced. Future
research and use of code replays must ensure that replays do not
erode learners’ self-efcacy, perhaps through scafolding, reviewing

ICER ’23 V1, August 7–11, 2023, Chicago, IL, USA

with an instructor or peer, and/or more targeted use of replays. For
code replays to more equitably support learners, we must consider
how learning from feedback is not only mediated by technology,
but also by social and cultural norms.

Given these interpretations of our fndings, there are many po-
tential ways for instructors to consider incorporating code replays
into introductory programming courses. One approach is using
code replays in existing introductory courses. While prior work
has explored having profcient programmers demonstrate their
processes through live-coding or live-streaming [16, 44, 58], partic-
ipants have suggested future designs of code replays that include
them as an optional feature in an IDE, aid teachers in understanding
students’ processes. This could help scafold students’ transition
from observing another programmers’ process to regulating their
own. Another approach is incorporating code replays into explicit
curriculum that teaches metacognition (e.g. [33, 48, 49]). A crucial
design question for this work will be how learners, their peers, and
instructors can efectively interpret and use code replays. Alterna-
tive representations of replays, such as with charts [59] or heatmaps
[12], could support shared interpretations. Shared interpretations
could arise when students use code replays, perhaps with synchro-
nized audio recordings, to refect on pair programming activities
[26, 38, 51, 53].

In conclusion, we return to the challenging yet common context
of individuals learning programming online with limited access to
instructors with computing and self-regulation expertise. This study
contributed a formative evaluation of how refecting on replays of
code writing processes could develop the self-regulation skills of
novice programmers practicing on their own. Our fndings suggest
that code replays can serve as a recording for novice programmers
to refect upon and develop self-regulation skills. However, tools
require social support and cultural considerations for them to be
equitably efective. Therefore, we must consider the interaction
of factors including interface design, learners’ prior experiences,
and broader social, contextual, and cultural factors when designing
pedagogy that uses code replays. By doing so, code replays may be
able to equitably support the development of often neglected yet
crucial self-regulations skills in tandem with programming skills.

7 ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation under Grant No. 1539179, 1703304, 1836813, 2031265,
2100296, 2122950, 2137834, 2137312, 12566082, funding from the Mc-

Coy Family Center for Ethics in Society, and unrestricted gifts from
Microsoft, Adobe, and Google. Supplementary material available at
https://github.com/codeandcognition/archive-2023icer-xie

REFERENCES
[1] Serhat Altıok, Zeynep Başer, and Erman Yükseltürk. 2019. Enhancing metacog-

nitive awareness of undergraduates through using an e-educational video en-
vironment. Comput. Educ. 139 (Oct. 2019), 129–145. https://doi.org/10.1016/j.
compedu.2019.05.010

[2] Mark Aveline. 1992. The use of audio and videotape recordings of therapy
sessions in the supervision and practice of dynamic psychotherapy. British
journal of psychotherapy 8, 4 (June 1992), 347–358. https://doi.org/10.1111/j.1752-
0118.1992.tb01198.x

[3] Ryan Baker and Aaron Hawn. 2021. Algorithmic Bias In Education. (2021).
https://doi.org/10.35542/osf.io/pbmvz

[4] Alan F Blackwell. 2002. What is Programming?. In Psychology of Programming
Interest Group (PPIG).

Xie et al.

[5] Jonas Boustedt, Anna Eckerdal, Robert McCartney, Kate Sanders, Lynda Thomas,
and Carol Zander. 2011. Students’ perceptions of the diferences between formal
and informal learning. In Proceedings of the seventh international workshop on
Computing education research. ACM. https://doi.org/10.1145/2016911.2016926

[6] Glenn A Bowen. 2006. Grounded Theory and Sensitizing Concepts. International
Journal of Qualitative Methods 5, 3 (Sept. 2006), 12–23. https://doi.org/10.1177/
160940690600500304

[7] Michelene T H Chi. 1997. Quantifying Qualitative Analyses of Verbal Data:
A Practical Guide. Journal of the Learning Sciences 6, 3 (July 1997), 271–315.
https://doi.org/10.1207/s15327809jls0603_1

[8] Nicola Dell, Vidya Vaidyanathan, Indrani Medhi, Edward Cutrell, and William
Thies. 2012. Yours is better!. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (Austin Texas USA). ACM, New York, NY, USA.
https://doi.org/10.1145/2207676.2208589

[9] Joseph Ditton, Hillary Swanson, and John Edwards. 2021. External Imagery in
Computer Programming. In Proceedings of the 52nd ACM Technical Symposium
on Computer Science Education (Virtual Event, USA) (SIGCSE ’21). Association for
Computing Machinery, New York, NY, USA, 1226–1231. https://doi.org/10.1145/
3408877.3432426

[10] Karl Anders Ericsson and Herbert Alexander Simon. 1993. Protocol Analysis:
Verbal Reports as Data Revised Edition. The MIT Press.

[11] Anneli Eteläpelto. 1993. Metacognition and the Expertise of Computer Program
Comprehension. Scandinavian Journal of Educational Research 37, 3 (Jan. 1993),
243–254. https://doi.org/10.1080/0031383930370305

[12] Gordon Fjeldsted and John Edwards. 2022. Quantifying Student Struggles using
Heatmaps and Keystroke Data. In 2022 Intermountain Engineering, Technology
and Computing (IETC). 1–5. https://doi.org/10.1109/IETC54973.2022.9796894

[13] Enrico Gandolf, Richard E Ferdig, and Robert Clements. 2022. Streaming code
across audiences and performers: An analysis of computer science communities
of inquiry on Twitch.tv. British journal of educational technology: journal of the
Council for Educational Technology (Feb. 2022). https://doi.org/10.1111/bjet.13207

[14] Nichole M Garcia, Nancy López, and Verónica N Vélez. 2018. QuantCrit: rectifying
quantitative methods through critical race theory. Race Ethnicity and Education
21, 2 (March 2018), 149–157. https://doi.org/10.1080/13613324.2017.1377675

[15] Philip J Guo. 2013. Online python tutor: embeddable web-based program vi-
sualization for cs education. In Proceeding of the 44th ACM technical sympo-
sium on Computer science education (Denver, Colorado, USA) (SIGCSE ’13). As-
sociation for Computing Machinery, New York, NY, USA, 579–584. https:
//doi.org/10.1145/2445196.2445368

[16] Lassi Haaranen. 2017. Programming as a Performance: Live-streaming and Its
Implications for Computer Science Education. In Proceedings of the 2017 ACM
Conference on Innovation and Technology in Computer Science Education (Bologna,
Italy) (ITiCSE ’17). Association for Computing Machinery, New York, NY, USA,
353–358. https://doi.org/10.1145/3059009.3059035

[17] David Hammer and Leema K Berland. 2014. Confusing Claims for Data: A
Critique of Common Practices for Presenting Qualitative Research on Learning.
Journal of the Learning Sciences 23, 1 (Jan. 2014), 37–46. https://doi.org/10.1080/
10508406.2013.802652

[18] Joseph Henrich, Steven J Heine, and Ara Norenzayan. 2010. Most people are not
WEIRD. Nature 466, 7302 (July 2010), 29. https://doi.org/10.1038/466029a

[19] William T Hoyt. 2010. Interrater reliability and agreement. In The Reviewer’s
Guide to Quantitative Methods in the Social Sciences, Gregory R Hancock, Ralph O
Mueller, and Laura M Stapleton (Eds.). Routledge, 141–154. https://doi.org/10.
4324/9781315755649-10/interrater-reliability-agreement-william-hoyt

[20] C M Janelle, D A Barba, S G Frehlich, L K Tennant, and J H Cauraugh. 1997.
Maximizing performance feedback efectiveness through videotape replay and a
self-controlled learning environment. Research quarterly for exercise and sport 68,
4 (Dec. 1997), 269–279. https://doi.org/10.1080/02701367.1997.10608008

[21] Slava Kalyuga. 2009. The Expertise Reversal Efect. In Managing Cognitive Load
in Adaptive Multimedia Learning. IGI Global, 58–80. https://doi.org/10.4018/978-
1-60566-048-6.ch003

[22] Harrison Kwik, Benjamin Xie, and Amy J Ko. 2018. Experiences of Computer
Science Transfer Students. In Proceedings of the 2018 ACM Conference on Inter-
national Computing Education Research (Espoo, Finland) (ICER ’18). ACM Press,
115–123. https://doi.org/10.1145/3230977.3231004

[23] Juho Leinonen, Leo Leppänen, Petri Ihantola, and Arto Hellas. 2017. Comparison
of Time Metrics in Programming. In Proceedings of the 2017 ACM Conference
on International Computing Education Research (ICER ’17). ACM, New York, NY,
USA, 200–208. https://doi.org/10.1145/3105726.3106181

[24] Leo Leppänen, Juho Leinonen, and Arto Hellas. 2016. Pauses and spacing
in learning to program. In Proceedings of the 16th Koli Calling International
Conference on Computing Education Research (Koli, Finland) (Koli Calling ’16).
Association for Computing Machinery, New York, NY, USA, 41–50. https:
//doi.org/10.1145/2999541.2999549

[25] Colleen M Lewis. 2012. The importance of students’ attention to program state: a
case study of debugging behavior. In Proceedings of the ninth annual international
conference on International computing education research (Auckland, New Zealand)

https://github.com/codeandcognition/archive-2023icer-xie
https://doi.org/10.1016/j.compedu.2019.05.010
https://doi.org/10.1016/j.compedu.2019.05.010
https://doi.org/10.1111/j.1752-0118.1992.tb01198.x
https://doi.org/10.1111/j.1752-0118.1992.tb01198.x
https://doi.org/10.35542/osf.io/pbmvz
https://doi.org/10.1145/2016911.2016926
https://doi.org/10.1177/160940690600500304
https://doi.org/10.1177/160940690600500304
https://doi.org/10.1207/s15327809jls0603_1
https://doi.org/10.1145/2207676.2208589
https://doi.org/10.1145/3408877.3432426
https://doi.org/10.1145/3408877.3432426
https://doi.org/10.1080/0031383930370305
https://doi.org/10.1109/IETC54973.2022.9796894
https://doi.org/10.1111/bjet.13207
https://doi.org/10.1080/13613324.2017.1377675
https://doi.org/10.1145/2445196.2445368
https://doi.org/10.1145/2445196.2445368
https://doi.org/10.1145/3059009.3059035
https://doi.org/10.1080/10508406.2013.802652
https://doi.org/10.1080/10508406.2013.802652
https://doi.org/10.1038/466029a
https://doi.org/10.4324/9781315755649-10/interrater-reliability-agreement-william-hoyt
https://doi.org/10.4324/9781315755649-10/interrater-reliability-agreement-william-hoyt
https://doi.org/10.1080/02701367.1997.10608008
https://doi.org/10.4018/978-1-60566-048-6.ch003
https://doi.org/10.4018/978-1-60566-048-6.ch003
https://doi.org/10.1145/3230977.3231004
https://doi.org/10.1145/3105726.3106181
https://doi.org/10.1145/2999541.2999549
https://doi.org/10.1145/2999541.2999549
https://Twitch.tv

Developing Novice Programmers’ Self-Regulation Skills with Code Replays

(ICER ’12). Association for Computing Machinery, New York, NY, USA, 127–134.
https://doi.org/10.1145/2361276.2361301

[26] Colleen M Lewis and Niral Shah. 2015. How Equity and Inequity Can Emerge in
Pair Programming. In Proceedings of the eleventh annual International Conference
on International Computing Education Research - ICER ’15. ACM Press, Omaha,
Nebraska, USA, 41–50. https://doi.org/10.1145/2787622.2787716

[27] Sebastian Linxen, Christian Sturm, Florian Brühlmann, Vincent Cassau, Klaus
Opwis, and Katharina Reinecke. 2021. How WEIRD is CHI?. In Proceedings of the
2021 CHI Conference on Human Factors in Computing Systems (Yokohama, Japan)
(CHI ’21, Article 143). Association for Computing Machinery, New York, NY, USA,
1–14. https://doi.org/10.1145/3411764.3445488

[28] Rebecca Lippmann Kung and Cedric Linder. 2007. Metacognitive activity in
the physics student laboratory: is increased metacognition necessarily better?
Metacognition and Learning 2, 1 (April 2007), 41–56. https://doi.org/10.1007/
s11409-007-9006-9

[29] Ye Liu and Xiaolan Fu. 2007. How Does Distraction Task Infuence the Interaction
of Working Memory and Long-Term Memory? In Engineering Psychology and
Cognitive Ergonomics, Don Harris (Ed.). Vol. 4562. Springer Berlin Heidelberg,
Berlin, Heidelberg, 366–374.

[30] Samuel A Livingston and Michael J Zieky. 1982. Passing Scores: A Manual for Set-
ting Standards of Performance on Educational and Occupational Tests. Educational
Testing Service.

[31] Samuel A Livingston and Michael J Zieky. 1989. A Comparative Study of Standard-
Setting Methods. Applied Measurement in Education 2, 2 (April 1989), 121–141.
https://doi.org/10.1207/s15324818ame0202_3

[32] Dastyni Loksa and Amy J Ko. 2016. The Role of Self-Regulation in Programming
Problem Solving Process and Success. In Proceedings of the 2016 ACM Conference
on International Computing Education Research (ICER ’16). ACM, New York, NY,
USA, 83–91. https://doi.org/10.1145/2960310.2960334

[33] Dastyni Loksa, Amy J Ko, Will Jernigan, Alannah Oleson, Christopher J Mendez,
and Margaret M Burnett. 2016. Programming, Problem Solving, and Self-
Awareness: Efects of Explicit Guidance. ACM Press, 1449–1461. https://doi.org/
10.1145/2858036.2858252

[34] Dastyni Loksa, Lauren Margulieux, Brett A Becker, Michelle Craig, Paul Denny,
Raymond Pettit, and James Prather. 2021. Metacognition and Self-Regulation in
Programming Education: Theories and Exemplars of Use. ACM Trans. Comput.
Educ. (Dec. 2021). https://doi.org/10.1145/3487050

[35] Dastyni Loksa, Benjamin Xie, Harrison Kwik, and Amy J Ko. 2020. Investigating
Novices’ In Situ Refections on Their Programming Process. In Proceedings of the
ACM Technical Symposium on Computer Science Education (SIGCSE), Research
Track. ACM.

[36] Murali Mani and Quamrul Mazumder. 2013. Incorporating metacognition into
learning. In Proceeding of the 44th ACM technical symposium on Computer science
education (Denver, Colorado, USA) (SIGCSE ’13). Association for Computing
Machinery, New York, NY, USA, 53–58. https://doi.org/10.1145/2445196.2445218

[37] Robert Lindsay McWilliams. 1996. An Investigation Into the Use and Efectiveness of
Videotape Self-evaluations of Conducting for Practicing Music Educators. University
of Minnesota.

[38] Laurie Murphy, Sue Fitzgerald, Brian Hanks, and Renée McCauley. 2010. Pair
debugging: a transactive discourse analysis. In Proceedings of the Sixth inter-
national workshop on Computing education research (Aarhus, Denmark) (ICER
’10). Association for Computing Machinery, New York, NY, USA, 51–58. https:
//doi.org/10.1145/1839594.1839604

[39] Alannah Oleson, Benjamin Xie, Jean Salac, Jayne Everson, F Megumi Kivuva,
and Amy J Ko. 2022. A Decade of Demographics in Computing Education
Research: A Critical Review of Trends in Collection, Reporting, and Use. In
Proceedings of the 2022 ACM Conference on International Computing Education
Research (Lugano and Virtual Event, Switzerland) (ICER 2022). ACM. https:
//doi.org/10.1145/3501385.3543967

[40] Ernesto Panadero, Julia Klug, and Sanna Järvelä. 2016. Third wave of measure-

ment in the self-regulated learning feld: when measurement and intervention
come hand in hand. Scandinavian Journal of Educational Research 60, 6 (Nov.
2016), 723–735. https://doi.org/10.1080/00313831.2015.1066436

[41] Luc Paquette, Jaclyn Ocumpaugh, Ziyue Li, Alexandra Andres, and Ryan Baker.
2020. Who’s Learning? Using Demographics in EDM Research. Journal of
Educational Data Mining 12, 3 (2020), 1–30.

[42] Nick Parlante. 2017. Python Practice. https://codingbat.com/python. Accessed:
2022-4-20.

[43] Michael Quinn Patton. 2014. Qualitative Research & Evaluation Methods: Integrat-
ing Theory and Practice. SAGE Publications.

[44] John Paxton. 2002. Live programming as a lecture technique. J. Comput. Sci. Coll.
18, 2 (Dec. 2002), 51–56.

[45] Paul R Pintrich and And Others. 1991. A Manual for the Use of the Motivated
Strategies for Learning Questionnaire (MSLQ).

[46] Paul R Pintrich and Elisabeth V de Groot. 1990. Motivational and self-regulated
learning components of classroom academic performance. Journal of educational
psychology 82, 1 (March 1990), 33–40. https://doi.org/10.1037/0022-0663.82.1.33

ICER ’23 V1, August 7–11, 2023, Chicago, IL, USA

[47] Paul R Pintrich, David A F Smith, Teresa Garcia, and Wilbert J Mckeachie. 1993.
Reliability and Predictive Validity of the Motivated Strategies for Learning Ques-
tionnaire (Mslq). Educational and psychological measurement 53, 3 (Sept. 1993),
801–813. https://doi.org/10.1177/0013164493053003024

[48] James Prather, Lauren Margulieux, Jacqueline Whalley, Paul Denny, Brent N
Reeves, Brett A Becker, Paramvir Singh, Garrett Powell, and Nigel Bosch. 2022.
Getting By With Help From My Friends: Group Study in Introductory Program-

ming Understood as Socially Shared Regulation. https://doi.org/10.1145/3501385.
3543970

[49] James Prather, Raymond Pettit, Brett A Becker, Paul Denny, Dastyni Loksa, Alani
Peters, Zachary Albrecht, and Krista Masci. 2019. First Things First: Providing
Metacognitive Scafolding for Interpreting Problem Prompts. In Proceedings of
the 50th ACM Technical Symposium on Computer Science Education (Minneapolis,
MN, USA) (SIGCSE ’19). Association for Computing Machinery, New York, NY,
USA, 531–537. https://doi.org/10.1145/3287324.3287374

[50] Thomas W Price, David Hovemeyer, Kelly Rivers, Ge Gao, Austin Cory Bart,
Ayaan M Kazerouni, Brett A Becker, Andrew Petersen, Luke Gusukuma,
Stephen H Edwards, and David Babcock. 2020. ProgSnap2: A Flexible Format
for Programming Process Data. In Proceedings of the 2020 ACM Conference on
Innovation and Technology in Computer Science Education (Trondheim, Norway)
(ITiCSE ’20). Association for Computing Machinery, New York, NY, USA, 356–362.
https://doi.org/10.1145/3341525.3387373

[51] Alex Radermacher, Gursimran Walia, and Richard Rummelt. 2012. Improving
student learning outcomes with pair programming. In Proceedings of the ninth
annual international conference on International computing education research
(Auckland, New Zealand) (ICER ’12). Association for Computing Machinery, New
York, NY, USA, 87–92. https://doi.org/10.1145/2361276.2361294

[52] Adalbert Gerald Soosai Raj, Jignesh M Patel, Richard Halverson, and Erica Rosen-
feld Halverson. 2018. Role of Live-coding in Learning Introductory Programming.
In Proceedings of the 18th Koli Calling International Conference on Computing
Education Research (Koli, Finland) (Koli Calling ’18, Article 13). Association for
Computing Machinery, New York, NY, USA, 1–8. https://doi.org/10.1145/3279720.
3279725

[53] Fernando J Rodríguez, Kimberly Michelle Price, and Kristy Elizabeth Boyer.
2017. Exploring the Pair Programming Process: Characteristics of Efective
Collaboration. ACM Press, 507–512. https://doi.org/10.1145/3017680.3017748

[54] Barbara Rogof, Maureen Callanan, Kris D Gutiérrez, and Frederick Erickson.
2016. The Organization of Informal Learning. Review of Research in Education 40,
1 (March 2016), 356–401. https://doi.org/10.3102/0091732X16680994

[55] Marc J Rubin. 2013. The efectiveness of live-coding to teach introductory pro-
gramming. In Proceeding of the 44th ACM technical symposium on Computer science
education (Denver, Colorado, USA) (SIGCSE ’13). Association for Computing Ma-

chinery, New York, NY, USA, 651–656. https://doi.org/10.1145/2445196.2445388
[56] Bernhard Schmitz and Franziska Perels. 2011. Self-monitoring of self-regulation

during math homework behaviour using standardized diaries. , 255–273 pages.
https://doi.org/10.1007/s11409-011-9076-6

[57] Alan H Schoenfeld. 1992. On paradigms and methods: What do you do when
the ones you know don’t do what you want them to? Issues in the analysis of
data in the form of videotapes. Journal of the Learning Sciences 2, 2 (April 1992),
179–214. https://doi.org/10.1207/s15327809jls0202_3

[58] Ana Selvaraj, Eda Zhang, Leo Porter, and Adalbert Gerald Soosai Raj. 2021. Live
Coding: A Review of the Literature. In Proceedings of the 26th ACM Conference
on Innovation and Technology in Computer Science Education V. 1 (Virtual Event,
Germany) (ITiCSE ’21). Association for Computing Machinery, New York, NY,
USA, 164–170. https://doi.org/10.1145/3430665.3456382

[59] Raj Shrestha, Juho Leinonen, Arto Hellas, Petri Ihantola, and John Edwards. 2022.
CodeProcess Charts: Visualizing the Process of Writing Code. In Australasian
Computing Education Conference (Virtual Event, Australia) (ACE ’22). Association
for Computing Machinery, New York, NY, USA, 46–55. https://doi.org/10.1145/
3511861.3511867

[60] Katta Spiel, Oliver Haimson, and Danielle Lottridge. 2019. How to do better with
gender on surveys: A guide for HCI researchers. ACM Interactions 26, 4 (2019).

[61] Michael A Stadler. 1995. Role of attention in implicit learning. Journal of experi-
mental psychology. Learning, memory, and cognition 21, 3 (May 1995), 674–685.
https://doi.org/10.1037/0278-7393.21.3.674

[62] Claude Steele. 2011. Stereotype Threat and African-American Student Achieve-
ment. In The Inequality Reader (2 ed.). Routledge, 276–281. https://doi.org/10.
4324/9780429494468-31

[63] S Stumpf, A Peters, S Bardzell, M Burnett, D Busse, J Cauchard, and E Churchill.
2020. Gender-Inclusive HCI Research and Design: A Conceptual Review. Foun-
dations and Trends in Human–Computer Interaction 13, 1 (March 2020), 1–69.
https://doi.org/10.1561/1100000056

[64] S Christian Wheeler and Richard E Petty. 2001. The efects of stereotype activation
on behavior: A review of possible mechanisms. Psychological bulletin 127, 6 (Nov.
2001), 797–826. https://doi.org/10.1037/0033-2909.127.6.797

[65] Benjamin Xie, Dastyni Loksa, Greg L Nelson, Matthew J Davidson, Dongsheng
Dong, Harrison Kwik, Alex Hui Tan, Leanne Hwa, Min Li, and Amy J Ko. 2019.
A theory of instruction for introductory programming skills. Computer Science
Education (Jan. 2019), 1–49. https://doi.org/10.1080/08993408.2019.1565235

https://doi.org/10.1145/2361276.2361301
https://doi.org/10.1145/2787622.2787716
https://doi.org/10.1145/3411764.3445488
https://doi.org/10.1007/s11409-007-9006-9
https://doi.org/10.1007/s11409-007-9006-9
https://doi.org/10.1207/s15324818ame0202_3
https://doi.org/10.1145/2960310.2960334
https://doi.org/10.1145/2858036.2858252
https://doi.org/10.1145/2858036.2858252
https://doi.org/10.1145/3487050
https://doi.org/10.1145/2445196.2445218
https://doi.org/10.1145/1839594.1839604
https://doi.org/10.1145/1839594.1839604
https://doi.org/10.1145/3501385.3543967
https://doi.org/10.1145/3501385.3543967
https://doi.org/10.1080/00313831.2015.1066436
https://codingbat.com/python
https://doi.org/10.1037/0022-0663.82.1.33
https://doi.org/10.1177/0013164493053003024
https://doi.org/10.1145/3501385.3543970
https://doi.org/10.1145/3501385.3543970
https://doi.org/10.1145/3287324.3287374
https://doi.org/10.1145/3341525.3387373
https://doi.org/10.1145/2361276.2361294
https://doi.org/10.1145/3279720.3279725
https://doi.org/10.1145/3279720.3279725
https://doi.org/10.1145/3017680.3017748
https://doi.org/10.3102/0091732X16680994
https://doi.org/10.1145/2445196.2445388
https://doi.org/10.1007/s11409-011-9076-6
https://doi.org/10.1207/s15327809jls0202_3
https://doi.org/10.1145/3430665.3456382
https://doi.org/10.1145/3511861.3511867
https://doi.org/10.1145/3511861.3511867
https://doi.org/10.1037/0278-7393.21.3.674
https://doi.org/10.4324/9780429494468-31
https://doi.org/10.4324/9780429494468-31
https://doi.org/10.1561/1100000056
https://doi.org/10.1037/0033-2909.127.6.797
https://doi.org/10.1080/08993408.2019.1565235

ICER ’23 V1, August 7–11, 2023, Chicago, IL, USA

[66] Lisa Yan, Annie Hu, and Chris Piech. 2019. Pensieve: Feedback on Coding
Process for Novices. In Proceedings of the 50th ACM Technical Symposium on
Computer Science Education (Minneapolis, MN, USA) (SIGCSE ’19). Association
for Computing Machinery, New York, NY, USA, 253–259. https://doi.org/10.
1145/3287324.3287483

[67] Qian Zhang and Teomara Rutherford. 2022. Grade 5 students’ elective replay
after experiencing failures in learning fractions in an educational game: When
does replay after failures beneft learning?. In LAK22: 12th International Learning
Analytics and Knowledge Conference (Online USA). ACM, New York, NY, USA.
https://doi.org/10.1145/3506860.3506873

[68] Barry J Zimmerman. 2000. Attaining Self-Regulation: A Social Cognitive Per-
spective. In Handbook of Self-Regulation, Monique Boekaerts, Paul R Pin-
trich, and Moshe Zeidner (Eds.). Academic Press, San Diego, 13–39. https:

Xie et al.

//doi.org/10.1016/B978-012109890-2/50031-7
[69] Barry J Zimmerman. 2002. Becoming a Self-Regulated Learner: An Overview.

Theory into practice 41, 2 (May 2002), 64–70. https://doi.org/10.1207/
s15430421tip4102_2

[70] Barry J Zimmerman and Anastasia Kitsantas. 1999. Acquiring writing revi-
sion skill: Shifting from process to outcome self-regulatory goals. Journal
of educational psychology 91, 2 (1999), 241–250. https://doi.org/10.1037/0022-

0663.91.2.241
[71] Barry J Zimmerman and Adam R Moylan. 2009. Self-Regulation: Where Metacog-

nition and Motivation Intersect. In Handbook of metacognition in education.
Routledge, 311–328.

https://doi.org/10.1145/3287324.3287483
https://doi.org/10.1145/3287324.3287483
https://doi.org/10.1145/3506860.3506873
https://doi.org/10.1016/B978-012109890-2/50031-7
https://doi.org/10.1016/B978-012109890-2/50031-7
https://doi.org/10.1207/s15430421tip4102_2
https://doi.org/10.1207/s15430421tip4102_2
https://doi.org/10.1037/0022-0663.91.2.241
https://doi.org/10.1037/0022-0663.91.2.241

	Abstract
	1 Introduction
	2 Prior work
	2.1 Theoretical Foundation to Connect Self-Regulation, Metacognition, & Self-Recording
	2.2 Prior Uses of Process Recordings

	3 Method: 21 Novices Using Python Practice Tool and Seeing Replays of Code Editing
	3.1 Critical Self-Reflexivity and Positionality
	3.2 Study Participants: Novice Programmers from Two Courses
	3.3 Overview of Study Design: Self-Paced Online Python Practice w/ Code Replays
	3.4 Pre-Survey Design: Prior knowledge and MSLQ measurement.
	3.5 Design of Online Practice Environment with Code Replays
	3.6 Exit Survey: Demographics, MSLQ, Interview Recruitment
	3.7 Follow-Up Interviews

	4 Data Analysis of Surveys, Reflection Responses, Interviews
	4.1 Qualitative coding of reflection prompts to understand impact of replays on self-regulation
	4.2 Analyzing Change in MSLQ Rankings to identify disparate impacts of code replays
	4.3 Thematic analysis of interviews to understand how code replay affected SRL

	5 Results
	5.1 Most participants watched most replays
	5.2 RQ1: Effect of Code Replays on Self-Regulation
	5.3 RQ2: How novices used replays differently

	6 Discussion: Designing Code Replays for interpretation of pauses
	6.1 Limitations
	6.2 Implications for research and practice

	7 Acknowledgments
	References

