Research, Teaching, and Service Statement
Research

As a society, we are creating a software-based world that few of us can comprehend. Users
wrestle with intricate and endlessly changing software applications, asking many
questions but finding few answers. Aspiring programmers, faced with the staggering
complexity of modern programming languages and tools, give up learning all too early.
And professional software developers, despite their expertise, often struggle to
understand the code that they and others have created, making software slow to test,
debug, and evolve. As we further leverage software to solve grand challenges in health,
energy, education, security, and science, | predict that program understanding challenges
such as these will become an increasingly significant barrier to human progress.

| seek to lower these barriers through interactive program understanding tools that
enhance people’s ability to understand why programs behave as they do, so that they
change its behavior by modifying its code or configuration. | view program understanding
as a task in which people build mental representations of the relationships between
program inputs, program outputs, and the source code that maps one to the other. What
makes this task difficult is that input, code, and output are inherently disjoint in time and
space: developers must search for causal relationships across disparate program elements
executing at imperceptible speeds; end users must somehow infer these same causal
relationships from input and output alone, with no access to or ability to understand a
program’s internal logic.

My interest in program understanding has emerged from a lifelong interest in lowering
barriers to people using software to express themselves and solve problems. As a
teenager, | created digital tools to help my friends create art, music, and games, gaining
firsthand experience with the challenge of designing software that people understand. As
an undergraduate, | investigated testing and debugging tools for spreadsheets users with
no formal training in computer science. As a Ph.D. student, | invented the Whyline
debugging tool [15,16,18] and published studies of the barriers that end users, novice
programmers, and professional developers face when reasoning about software behavior.

In the past five years as an assistant professor, | have broadened my focus to four new
aspects of program understanding: (1) helping developers find and fix bugs by
automatically discovering relationships between code and output, (2) helping developers
manage and interpret users’ descriptions of software problems, (3) helping end users
answer questions about software behavior through new forms of help retrieval, and (4)
helping aspiring programmers acquire program understanding skills through a new genre
of educational debugging games. Throughout this work, | have also contributed a more
robust understanding of how program understanding affects society through descriptive
social science on large data sets of software problems from open source [7,14,11], social
media [10], and the news [8].

My approach to this research is both iterative and interdisciplinary. | conduct social science
on how people describe and reason about software behavior, including how designers,
developers, and users interact with each other to fix software problems and respond to its
failures. | then use the discoveries from these studies to invent and evaluate new
technologies that facilitate software understanding. My work is also highly collaborative: |
conduct most of my research with Ph.D. students, helping them to perform research
within the framing and direction that | provide. My publications from the past five years,
which | discuss throughout the rest of this section, are therefore a mix of first-authored and
student-authored work.

01010010010100111
™00100101001
0100101001
0010100101
100100101
1001010
10100110100101001

| invent interactive program
understanding tools that
help people search for and
understand the causes of
software behavior.

g

In the past five years | have
worked closely with four
fantastic Ph.D. students, co-
authoring much of my
research with them as first
authors.

Finding and Fixing Bugs by Linking Code and Output

A fundamental challenge in evolving software is quickly and accurately understanding a
program'’s behavior. Whereas most research in this space focuses on automating ths
understanding through formal verification, my research has focused on interactive
program analysis tools that help developers acquire knowledge about program behavior.

One example is Timelapse [1], designed by my co-advisee Brian Burg. The key insight
behind Timelapse is that program state is ephemeral, making it difficult to observe,
control, and therefore understand. Timelapse can record replayable input traces that allow
developers to navigate to arbitrary points of an execution and inspect program behavior,
with virtually zero recording or replay overhead. Timelapse is the first to do so in an
interactive, on-demand manner that integrates seamlessly with existing tools, such as
breakpoints and logging. This makes it possible to adapt powerful debugging tools such as -

my dissertation work on Whyline [18,16,15] into lightweight, on-demand tools that T,me,apsesupp(;rtsh -
minimize a developers’ need to plan their tool use in advance. In our evaluations, we interactive replay of web
showed that Timelapse changes how developers think about program execution, shifting it applications.

from something that moves uncontrollably forward to something that can be explicitly

navigated, indexed, and searched to support program understanding.

Program execution is not only ephemeral, it is also highly variable, making it difficult to T,
comprehensively understand. | have explored interactive static analysis techniques that

help developers acquire this comprehensive view. The first of these projects is Cleanroom class=

[20], which | designed, prototyped, and then evaluated in collaboration with Jacob .

Wobbrock. Cleanroom addresses a limitation of dynamically typed programming e

languages, in which there are no guarantees that a name will refer to a value at runtime. | Cleanroom provides keystroke-
observed that programs use names both to define and refer to values, and so names that level feedback about invalid
only appear once in a program are likely to be wrong (because they either define but not names for dynamically typed

. L . languages. It won best paper
use a value or use but not define a value). Cleanroom [20] exploits this insight, providing athL/HgCC >010. pap

keystroke-level, immediate feedback warnings about singleton variable names. In our
evaluation, we found that Cleanroom detects many legitimate errors with few false
positives and that it helps developers find these errors more quickly and reliably [20].

Like Cleanroom, FeedLack [21] also helps developers acquire a comprehensive view of feososiomal |} T
program behavior, but it searches for a more complex type of defect: scenarios in which a Resnes i
user interface provides no response to user input, such as error conditions in which buttons “ER | . -
clicks are ignored and other edge cases that fail to provide feedback. The insight behind o™ S
FeedLack was that this design principle—that user interfaces should always provide ;“1'&12?’4 PR
feedback in response to user input—is something that can be operationalized and analyzed —
automatically, by verifying that each code execution path that originates from user input ey ——
should produce output. FeedLack finds execution paths that violate this property in web ,D’, post(text) atinde)
applications, highlighting paths that do not make a visible change to the web page content e rrodces " e s
or appearance. Across both HCl and software engineering research, FeedLack is one of the Viaypress ot o
first automated verifications of an interactive aspect of user interface usability. FeedLack finds scenarios in
which a user interface fails to
I have made many other contributions in this space through collaborations. My work with provide feedback in
student Kayur Patel on Gestalt has explored how to help developers reason about the link response to user input.

between data and machine learned program behavior [29]. With Margaret Burnett and her
students at Oregon State University, | have also worked on tools for troubleshooting
machine learned programs such as spam filters [22,23]. | have also collaborated with
Microsoft UX Designer Yann Riche on studies of the domain knowledge required to
successfully use software APIs [19]. With over a dozen researchers, | have also synthesized
a decade of research on end-user software engineering tools into a frequently cited survey
paper [13] and contributed research methods for evaluating software engineering tools [g].

Interpreting Descriptions of Software Problems

Every day, millions of people report software problems in bug reports, support requests,
and social media, writing vague, incomplete, and sometimes incorrect natural language
descriptions of problematic program behaviors. Whereas prior work has investigated
automated techniques for mining and processing this user feedback, my research has
focused on understanding the content of this feedback, the contexts in which users
contribute it, and the meaning that developers extract from it.

Most of my work on software problems has been descriptive, analyzing contexts in which
people describe software problems to software teams, who must then interpret, triage,
and manage these descriptions. With the help students Parmit Chilana and Mike Lee, |
have studied the problems that users report to open source projects [7,14], the arguments
between users and developers in bug reports about application behavior [11], the support
requests received by software teams and how they process them [12,27], and the changes
in reported software problems between beta and release versions of software [28]. | have
also analyzed how teams leverage user feedback to improve software, studying the data-
driven design processes at Facebook [2] and the design challenges in domains such as
aviation, bioinformatics, and health care [5,6]. | have also examined popular press on
critical software problems, analyzing over 500,000 news articles published since 1980 [8].

These studies have revealed much about how developers, organizations, and society
manage information about software problems:

e The imprecise nature of natural language leads to many inefficiencies in the
description, reproduction, diagnosis, and resolution of software problems [7,14],
causing issue tracking systems, technical support forums, and support knowledge
bases to grow unbounded with redundancy [12,27]. Developers are desperate for
more precise ways of capturing and observing problematic program behavior (e.g.,
as made possible by Timelapse recordings [1]).

e Because end users struggle to observe, analyze, and comprehend the causes of
problematic software behavior, most simply abandon their tasks, avoiding complex
diagnostic work [27]. Those that do troubleshoot problematic behavior often rely
on poorly curated and vetted web resources, causing additional problems that
further confound problem diagnosis.

e To users, what constitutes “correct” software behavior depends less on the
developers’ intents and more on how they have appropriated software. This
disparity between intent and appropriation, and the inherent power imbalance
between designers’ and users’ ability to change software, leads to heated
arguments about what constitutes the “right” design [17,14].

While these findings are important in their own right, they also suggest the need to help
developers make sense of the endless stream of support forum posts, tweets, and e-mails
on the web. To facilitate this, | invented Frictionary [10], which aggregates descriptions of
software problems from the web over time. The key insight was that software problems
could be discovered and organized by using the words that appear in a user interface.
Frictionary indexes these user interface labels, using the index to mine the web for
sentences that describe software problems. It then extracts, normalizes, and aggregates
these sentences into human-readable problem descriptions, providing extensive time-
based statistics and visualizations of software problem trends. | evaluated Frictionary on
over 100,000 posts about Firefox, showing that the technique reliably aggregates
descriptions of software problems and that Firefox designers and technical support staff
found it useful for discovering new problems [10].

1

4
[it
kit
I

The frequency of critical
software problems reported
in global news since 1980
based on a corpus of 500,000
English news articles.

Frictionary mines the web for
software problems described
by end users in support
forums, helping software
teams discover unreported
software problems.

Explaining Software Behavior to Users

One reason for the software problem reports discussed in the previous section is that
everyday, millions of users struggle to understand inscrutable error messages, confusing
features, complex workflows, and poor feedback pervasive in modern software. Only the
most persistent of users try to overcome these problems, and even these users must rely
on the web, writing and rewriting queries until they find a potential answer buried in a
discussion forum. With my student Parmit Chilana and her co-advisor Jacob Wobbrock, we
envisioned a simpler and more effective approach to finding software help called
LemonAid [4]. The key insight behind LemonAid is that it is much easier for people to point
to a problem than it is for them to describe it accurately; we found empirically that people
are also be more likely to point to the same things for the same problem than they are to
describe a problem in the same way. LemonAid exploits these insights, allowing users to
select a label or image in a user interface as their query. LemonAid then uses the selection
and its context to retrieve previously asked questions that were asked in a similar context.
This approach effectively crowdsources a mapping between user interface elements and
relevant Q&A, placing help content where users expect to find it, rather than in a
decontextualized help resource that is difficult to search and browse.

Our evaluations of LemonAid have involved both a large scale simulated user community
on Amazon’s Mechanical Turk and a 6-month field deployment to four software teams at
the University of Washington, including the UW Libraries [3]. We found that LemonAid is a
highly effective search mechanism, retrieving relevant Q&A in the top 5 results for over
80% of help requests. We have also found that both users and site maintainers found
LemonAid to be superior to web search, live chat, phone support, and knowledge base
searches for finding and provisioning software help. Site owners also found the analytics
that LemonAid provided a unique view into the problems that users are having, without
having to explicitly investigate users’ perspectives with traditional usability methods [4].
The LemonAid algorithms are patent pending and Parmit Chilana, the student leading the
work, will be starting as an Assistant Professor at the University of Waterloo in Fall 2013.

Learning Program Understanding

The fourth research thread | discuss focuses on teaching program understanding skills
rather than facilitating them. This focus emerged from an investigation | performed of 8o
young adults’ first encounters with computer programs, which | solicited in the form of
“code autobiographies” [17]. | discovered that many young adults’ first encounters with
code were not in the classroom, but in informal settings, such as learning to write a script
to customize a game or creating a web page to represent a social group online.
Unfortunately, once these young adults began writing their first program, they were
immediately faced with debugging their mistakes, which for many was an insurmountable
challenge. Many expressed that they had similar experiences in their first computer
science classes, where they were taught much about how to write programs, but little
about how to read and understand them.

With my Ph.D. student Michael Lee, we therefore began to explore the benefits of explicit
instruction on program understanding. Our approach was to create an educational game
that distilled the task of debugging programs into a simple game mechanics. Our game,
called Gidget [26], gives players a series of defective programs written by Gidget the robot.
Gidget explains that it does not know what is wrong with the programs and asks the player
to help fix them. By completing a series of progressively more complex debugging puzzles,
players learn a series of program understanding skills, learning the semantics of Gidget's
programming language in tandem. The key principle behind this design was to convert
programming from what is a traditionally creative task to a comprehension task, asking
learners to understand program behavior rather than both define and understand it.

Questions and comments b

‘ How do | sync the calendar with
How do I change the color of rep
Can | color code today's events?

LemonAid crowdsources a
mapping from user interface
elements to Q&A, enabling
end users to find help by
recognizing relevant
elements rather than
describing them.

code & goals

Level 12. Setting Array Variables.
9000010000 1008010000 10000100010+
estore origina code | WO
o 1 2

Gidget challenges players to
find and fix defects in
programs. Our studies
examine the effect of the
game design on learning and
engagement.

We have already learned much about the benefits of the game. Over 2,000 have played it
through a series of online lab studies, with many expressing that they did not know
programming could be so much fun [26]. In observing people play the game in the lab, we
observed that unlike creative tasks where each barrier encountered in expressing their
creative vision was personal failure, in Gidget, each barrier is simply a puzzle to solve that is
known to have some solution.

We have also discovered several important aspects of the game’s design on learning and
engagement. Across three online experiments, we have shown that giving the robot a face
and having it use personal pronouns such as “I” and “we” led players to voluntarily
complete more than twice as many levels as players who interacted with a faceless robot
[26]. We have found that the more purposeful a goal, even if that purpose is meaningful
only inside the context of the game, the more learners attend to the game’s instruction
and the longer they play [25]. Our most recent study has shown that explicit in-game
assessments of learning not only increase how long learners play the game, but also the
speed with which players learn [24].

These results are building an evidence-base for the design of other informal computing
education learning technologies, as well as a debugging-first approach to teaching
programming, complementing existing research which has focused primarily on teaching
people how to write programs, rather than read them. In the coming year we will evaluate
the game in a series of summer camps for high school girls, begin a 3-month longitudinal
field study of learning outcomes, and publicly release the game.

Contributions, Awards, Impact, and Funding

Taken together, my decade of research contributes an examination of program
understanding and the interactive tools that can facilitate it. Some of these technologies
help developers find and fix defects (FeedLack, Cleanroom, Frictionary), some help
developers better control and inspect the execution of programs so that they may better
understand them (Timelapse, Whyline), and some help non-developers better understand
how software works (LemonAid, Gidget, Crystal). These tools, and more broadly, the genres
of tools that they exemplify, help envision a world in which program understanding is a
more accessible skill, streamlining people’s ability to successfully create and use software.

In examining program understanding, | have also contributed several insights about the
nature program understanding, its role in software development work, and more broadly,
the importance of studying the human and social aspects of software engineering. Many
of my most frequently cited papers are cited for their careful attention to the interaction
between people and their tools, and the subtle ways in which software development is a
social activity as much as a technical one.

My contributions have been recognized as rigorous, high quality, and significant. In the
past 11 years, | have received 3 best paper awards at CHI and ICSE (two top conferences in
HCl and software engineering), 2 best paper awards at VL/HCC (the main conference in my
research area of interactive developer tools), and 1 best paper honorable mention at CHI.
The first paper | wrote as a Ph.D. student in 2003, which proposed a framework for
reasoning about software errors, was also recently nominated for a Most Influential Paper
award at VL/HCC. My work has been cited over 2,100 times in the past decade by hundreds
of researchers across HCl and Software Engineering. My h-index (the largest number h
such that h publications have at least h citations) is 22 as measured by Google Scholar,
which is similar to that of many of my recently tenured peers, including Scott Klemmer
(24, Stanford), Jeffrey Heer (27, Stanford), Gillian R. Hayes (21, Irvine), and Martin Robillard
(25, McGill). Nine of my articles have been cited more than one hundred times.

400
300
200
100

2003 2006 2009 2012

Citations to my publications
per year, according to Google
Scholar.

My research has also been impactful in industry. | frequently consult with Microsoft's
Developer Division, synthesizing insights from my research and others’ for Microsoft
product developers and designers. Some of my early ideas on the design of integrated
development environments from 2005 are now part of Microsoft's Debugger Canvas plugin
for Visual Studio. With Ph.D. student Parmit Chilana and colleague Jacob Wobbrock, | have
also co-founded a company based on LemonAid. Over a dozen companies are using our
technology to offer software help to hundreds of thousands of web site visitors. We have
already raised $500,000 in venture capital investment, which will allow us to grow the
company and further disseminate our research to the world. | view technology transfer
such as this an essential part of my responsibilities as a public intellectual, providing a
much needed and often missing bridge between research and practice.

In my five years as an Assistant Professor | have raised $4,417,047 in grants and gifts to
support my research. Most of this amount ($4,192,446) has been through two competitive
National Science Foundation Grants as lead Pl (a CAREER grant, which supports work on
LemonAid, and a CE21 grant, which supports work on Gidget) and one as a Co-PI (an HCC
Large grant, which supports new work on programming with variations). The remainder of
my funding has come from gifts from Microsoft Research and Google Research, a
competitive UW Royalty Research Fund grant, and several smaller grants to fund doctoral
consortiums, workshops, and commercialization efforts.

Future Research

As the world becomes more complex, so will software, further compounding challenges in
software understanding. Machine learning, big data, cloud services, and pervasive sensors
are only part of this increased complexity. The growing weight of legacy systems, the rapid
change in consumer applications, and the proliferation of smartphones with access to
anything, anywhere will also increase these complexities, making the task of
understanding how software works even more formidable and necessary than ever.

In my future work, | want to invent interactive program understanding tools that help
humanity exploit these advancements. | want to invent software that can explain itself to
people rather than requiring people actively seek explanations. | want to create an
ecosystem of accessible educational games that not only teach program understanding
effectively but also efficiently, empowering everyone who wants to understand computing
to do with minimal barriers. Through these inventions, | want to begin to create a science
of human-computer interaction that bridges our deep understanding of human cognition
with our burgeoning knowledge of software architecture, creating a deeper understanding
of how low-level software implementation choices in information technology affect high
level interactive experiences. | believe these efforts are essential not only for enabling
increases in software complexity, but also for humanizing what are often
incomprehensible software systems.

Looking beyond tenure, | also plan to investigate research questions that require more
time, resources, and planning, shifting from a research program that has been defined by
individual papers, to a research program defined by a broader, more lasting vision. | am
particularly excited about the vast array of open questions in computing education
learning technologies, as they address a problem both significant to society and combine
my lifelong interests in helping people better comprehend software. In the next 10 years, |
anticipate creating a stronger presence in the computing education research community,
conducting basic science on pedagogy and broadly impacting computing literacy through
my inventions. | also hope to play a significant role in persuading the federal funding
agencies in the U.S. to further invest in computing education research, which is still
chronically underfunded apart from service efforts to broaden participation.

Teaching

My favorite teachers in life have all had one thing in common: every day, in small ways,
they showed me that they personally cared about my learning. | have always aspired to
achieve the same level of personal connection with my students and have worked hard to
design my courses in a way to facilitate this. For example, in spearheading the design of
our undergraduate Design Methods (INFO 360) and Collaborative Software Design (INFO
461) courses, I've planned classroom time to be primarily interactive and interpersonal,
focusing on skill-development, team projects, individual feedback, and small group
discussions about each class’s big ideas. In all of these, | interact extensively with individual
students and groups of students, posing and answering questions that are specific to each
students’ level of understanding, and developing relationships with each student that last
beyond their time as students. In my Ph.D. courses, | treat students as advisees, working
closely to tie course materials with their research. As an advisor to Ph.D. students, |
collaborate closely with Ph.D. students as if they were my colleagues, helping them to
develop into world-class independent researchers and supporting their own visions by
seeking funding to support their research.

As a member of our teaching community, | frequently discuss teaching methods with
colleagues in the iSchool and around UW, highlighting the pros and cons of flipping the
classroom, discussing the merits and manifestations of peer instruction, and refining
methods for teaching through team work. | read literature in learning sciences and
education to improve my teaching and inform my research. | relish the challenge of
designing courses that maximize learning and minimize burden and engage even the most
disengaged of students. Since | began dreaming of being a teacher as a middle school
tutor, my teaching responsibilities are not a distraction from research, but something that
drives and informs the research | conduct.

Across the 15 courses | have taught in the past 5 years, my course evaluations are
consistently above 4.5 on a 5 point scale. | was nominated for my school’s PROF award,
with my dean writing, “We are very fortunate to have such an enthusiastic, knowledgable,
open and innovative professor on our faculty.” In a recent survey of our Informatics
undergraduates, | was described by several students as “One of the best things about the
Informatics degree.” Students also send me unsolicited praise; for example, | received this
LinkedIn recommendation from a former undergraduate two years after his graduation:

Andy is a truly brilliant, innovative, and inspiring teacher. | took several classes of his, and
each of them were instrumental in my college education and career today. My favorite was
"Collaborative software design," a class that he pioneered within the Information School. He
had the keen insight to develop the class after identifying the need for real-world job skills
and experience within the Informatics curriculum. He taught us how software teams design
and build products, and gave many of us our first taste of iterative design, software
specifications, testing, design thinking, version control, and more. The lessons | learned from
his class are still relevant today, and I'm immensely proud of the web-application | developed
in the class. His enthusiasm and encouragement were inspiring, and helped push me to do
some of the best work of my college career... Andy Ko is an incredible asset to the University
of Washington and I'm immensely grateful that | got to learn from him!

Others have had similar experiences in my design courses:

I had lunch yesterday with [the Principle UX Manager of Microsoft]. We talked about a
number of things, but naturally the conversation became focused on the topic of design,
particularly the design process. Everything, and | mean literally everything, were things that
I had learned in INFO 360. Obviously | was very excited to be able to be conversant! Design is
a powerful skill because of its scalability: you can design a single icon or an entire system

using the same process. This isn‘t something easily taught but | think you did an excellent job,
considering those ideas are still with me 2 years after INFO 360.

Comments like these remind me that teaching is not just about transferring knowledge
and building skills, but also developing wisdom, confidence, and judgment to youth that
are at the beginning of a lifelong career in learning.

As a teacher and a mentor, | still have much to learn myself. In the short term, | will
continue to lead efforts to define undergraduate and masters level education in HCl and
Design at the University of Washington. In the long term, | will continue to innovate in my
teaching, especially as the Internet continues to transform where, when, and how people
learn. With my research in computing education, | am especially excited to begin
integrating my research and teaching efforts, bringing the learning technologies | create in
the lab into my classroom.

Service

As a boundary spanning researcher, | view service as an opportunity to bridge the HCI,
Software Engineering, and Computing Education research communities, providing a
conduit for exchange between three communities with significant conceptual overlap but
little interaction. To achieve this, | have joined program committees at both CHI and UIST
(two of the top HCI venues) and ICSE and FSE (two of the top software engineering
venues). | have also served on several other program committees that bridge HCl and
Software Engineering, such as VL/HCC and the CHASE workshop. | have also been selected
for several leadership roles, acting as a Sub-Committee Chair at CHI in 2012 and 2013 and
Technical Program Co-Chair of VL/HCC in 2011.

| play a similar interdisciplinary role at UW. As a core member of our DUB cross-campus
HCI consortium. | participate in faculty and Ph.D. student recruiting and inviting
internationally recognized HCl researchers to speak at our weekly seminar. | have been key
in helping to define, launch, and staff our new Masters in HCl and Design. Within the
Information School, | have served as a central member of our Informatics committee,
refining the degree’s curriculum and defining it for our faculty and students. | have also
championed design in our curriculum at all levels, helping our faculty to recognize design
as a critical perspective in information science. This has led to curriculum changes in all of
our academics programs and a better understanding of the relationship between HCI,
design, and the other disciplines represented in our school. | have also voluntarily joined
iSchool hiring committees on top of my normal service duties, helping with the iSchool’s
recent and extensive faculty hiring efforts. In 2012, | was elected to our Elected Faculty
Counsel, working with senior faculty on decisions about our school’s future directions.

Selected Works Cited ail papers below were published since starting at UW in 2008

1. Burg, B., Bailey, R, Ko, A.J. & Ernst, M.D. (2013). Interactive record/replay for web
application debugging, ACM Symp. on User Interface Software and Technology.

2. Chilana, P. K., Holsberry, C., Oliveira, F., & Ko, A.J. (2012). Designing for a billion users: A
case study of Facebook. ACM Conf. on Human Factors in Computing Systems, Case Studies.

3. Chilana, P.K.,, Ko, A.J.,, Wobbrock, J. (2013). A multi-site field study of crowdsourced
contextual help: Usage and perspectives of end-users and software teams. ACM Conf. on
Human Factors in Computing Systems.

4. Chilana, PK., Ko, A.J.,, Wobbrock, J. (2012). LemonAid: Selection-based crowdsourced
contextual help for web applications. ACM Conf. on Human Factors in Computing Systems.

5. Chilana P., Wobbrock, J.0., & Ko, A.J. (2010). Understanding usability practices in complex
domains: Implications for training the next generation of usability professionals. ACM Conf.
on Human Factors in Computing Systems.

Chilana, P.K., Palmer, C.,, & Ko, A.J. (2009). Comparing bioinformatics software
development by computer scientists and biologists: An exploratory study. Workshop on
Software Engr. for Computational Science & Engineering.

Chilana, P.K., Ko, A.J., Wobbrock, J.O. (2010). Understanding expressions of unwanted
behaviors in open bug reporting. IEEE Visual Languages and Human-Centric Computing.

8. Ko, A.J., Dosono, B., Duriseti, N. (in review). Thirty years of software problems in the news.

9. Ko, AJ., LaToza, T.D., & Burnett, M.M. (in review). A practical guide to controlled

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28

29.

experiments of software engineering tools with human participants.

Ko, A.J. (2012). Mining whining in support forums with Frictionary. ACM Conf. on Human
Factors in Computing Systems, alt.chi.

Ko, A.J. & Chilana, P.K. (2011). Design, discussion, and dissent in Open Bug Reports. iConf..
Ko, A.J., Lee, M., Ferrari, V., Ip, S., & Tran, C. (2011). A case study of post-deployment user
feedback triage. Int’l Workshop on Cooperative and Human Aspects of Software Engineering.
Ko, A.J., Abraham, R., Beckwith, L., Blackwell, A., Burnett, M.M., Erwig, M., Scaffidi, C.,
Lawrance, J., Lieberman, H., Myers, B.A., Rosson, M.B., Rothermel, G., Shaw, M., &
Wiedenbeck, S. (2011). The state of the art in end-user software engineering. ACM
Computing Surveys.

Ko, A. J. & Chilana, P.K. (2010). How power users help and hinder open bug reporting. ACM
Conf. on Human Factors in Computing Systems.

Ko, A.J. & Myers, B.A. (2010). Extracting and answering why and why not questions about
Java program output. ACM Transactions on Software Engineering and Methodology.

Ko, A.J. & Myers, B.A. (2009). Finding causes of program output with the Java Whyline. ACM
Conf. on Human Factors in Computing Systems.

Ko, A.J. (2009). Attitudes and self-efficacy in young adults' computing autobiographies. IEEE
Visual Languages and Human-Centric Computing.

Ko, A.J. & Myers, B.A. (2008). Debugging reinvented: Asking and answering why and why
not questions about program behavior. Int’l Conf. on Software Engineering.

Ko, A.J. & Riche, Y. (2011). The Role of conceptual knowledge in API usability. IEEE Visual
Languages and Human-Centric Computing.

Ko, A. J. & Wobbrock, J.0. (2010). Cleanroom: Edit-time error detection with the uniqueness
heuristic. IEEE Visual Languages and Human-Centric Computing.

Ko, A.J. & Zhang, X. (2011). FeedLack detects missing feedback in web applications. ACM
Conf. on Human Factors in Computing Systems.

Kulesza, T., Stumpf, S., Wong, W., Burnett, M.M., Perona, S., & Ko, A.J. (2011). Why-oriented
end-user debugging of naive Bayes text classification. ACM Interactive Intelligent Systems.
Kulesza T., Wong W.K., Stumpf S., Perona S., White R., Burnett M.M., Oberst I., & Ko, A.J.
(2009). Fixing the program my computer learned: Barriers for end users, challenges for the
machine. Journal of Intelligent User Interfaces.

Lee, M.J,, Ko, AJ., & Kwan, I. (2013). The effect of assessments in on engagement and
learning efficiency in discretionary computing education. Int’l Computing Education Research
Conference.

Lee, MJ. & Ko, AJ. (2012). Investigating the role of purposeful goals on novices'
engagement in a programming game. IEEE Visual Languages and Human-Centric Computing.
Lee, M.J. & Ko, A.J. (2011). Personifying programming tool feedback improves novice
programmers' learning. Int’l Computing Education Research Workshop.

Lee, M.J. & Ko, A.J. (2012). Representations of user Feedback in an agile, collocated
software team. Int’l Workshop on Cooperative and Human Aspects of Software Engineering.

.Li, P, Kivett, R. ZhanT., Jeon S., Nagappan, N., Murphy, B., & Ko, A.J. (2011). Characterizing

the differences between pre- and post-release versions of software. Int’l Conf. on Software
Engineering, SEIP.

Patel, K., Bancroft, N., Drucker, S., Fogarty, J., Ko, A., Landay, J.A. (201). Gestalt: Integrated
support for implementation and analysis in machine learning processes. ACM User Interface
Software and Technology.

