| earning to code

why we ftail, how we flourish

Andrew J. Ko, Ph.D.
Code & Cognition Lab
The Information School

A" W UNIVERSITY of WASHINGTON

Me

e Professor for the last ~10 years at UW Seattle
e Ph.D. from Carnegie Mellon’s HCI Institute

e Background in CS, Psychology, and Design

Code is the most powertul, least
usable interface we've invented

« Everyone that wants to code should be able to
e Butthere are immense learning barriers

| spentthe first decade trying to lower these
barriers by creating more usable interactive

developer tools
nimagebyayanglegvenindl [RNGICU———— (|- - - - - | fwbemissng 0 | | | # usermpus
eeeeeeeeee I doo Key Pr
T ooy |
e RIGIEIE X post(text) of i
89 " ocexpini: moy —_—
read write test veritfy debug

Skills > tools

* | spent 3 yearsas CTO

managing ~8 developers at
AnswerDash

* What | saw:
« Tools only amplify skills
« Skills come from learning
* Learning comes from teaching

* | spent most of my time teaching

Millions want to learn to code

Millions want to learn to code

Ada \ e CoforAll. Ef 0 =. Microsoft

///

@, Esn EL
COMPUTlNG AT SCHOOL
C | O | R h
M (CCRATCH

accenture (il
$1.3 billion

Are people learning?

we have (some) evidence

/7% ot Code.org's 500 million K-12

learners complete 0-2 puzzles cwdeors

E ? Minecraft: Hero's Journey _ I've finished my Hour of Code Signin | =

MMIHELRAR

_— The door is locked, but the Agent is here to help! s L33
= Snap a block to the bottom of the block
m = in the workspace to get the Agent to the pressure plate

then press "Run” and use the arrow keys to move out of the

-
‘ \m house to collect the chest
et "

Blocks Workspace: Y Start Over {/> Show Code

/

KX X

move forward | when run

e B

Need help? See these videos and hints

Record enrollment in AP CS, but most
don’t take exam, and 609% who do, fail it
(especially underrepresented

M | NoO rltl eS) College Board

After a year of intro courses, most
undergrads can't accurately predict the
outcome of simple programs, or solve
simple programming problems wcacenetat 200,

Lister et al. 2004 et al. 2013, Seppala et al. 2015

In 2017, 23,000 adults in 95 U.S. coding
bootcamps; 24 report dropout rates of
10-50% coursereport.com

iy ——

e

62% ot employers view applicants to entry-

level developer positions as lacking basic
p rOg rarminm | N 9 kn OWl ed g € Career Advisory Board Survey 2016

So | did some reading.

* Read seminal literature in learning science and
education e.g. How people learn: Brain, mind,
experience, and school

* Read 30 years of computing education research:

* ACM International Computing Education Research
Conference (ICER)

 ACM Transactions on Computing Education (TOCE)
* SIGCSE Technical Symposium (SIGCSE)

12

Why people tail to learn to code

1.
2.
3.
4.

People find computing boring, solitary, unwelcoming
People struggle to learn their first programming language
People struggle to solve programming problems
Teachers struggle to teach these things

Teachers blame learners for failure

People lose contidence and quit

13

My goal

2. People struggle to learn their first programming language

3. People struggle to solve programming problems

* Why are these hard?
* What are effective, equitable, and scalable
ways for people to learn these skills?

14

This talk

 Why learning to program is hard (3 studies)
 Making programs easier to read (1 theory, 3 ideas)

 Making programs easier to write (1 theory, 1 idea)

15

Why is learning to
orogram difticult?

TR ,.,_,.),.wwszﬁm%ﬂ
Y “,.Hw N _w..,

W
K Wﬁ
R

L

% Study 1 — 70 high school teens

Ko, A.J. and Davis, K. (2017). Computing Mentorship in a Software
Boomtown: Relationships to Adolescent Interest and Beliefs. ACM ICER.

| | [] ‘
I S C ‘ l O O ‘ Ko, A.J. et al.(2018). Informal Mentoring of Adolescents about
Computing: Relationships, Roles, Qualities, and Impact. ACM SIGCSE.

« Many teens lacked feedback or support about their
learning from teachers and tfamily:

* He do not spent much time with me to be able to
understand my problem in the class or unable to help
me on it... throughout the AP class | would cried myself
to sleep in silent without letting my older brother know
my struggle... (M, Asian, 17)

18

High school

Ko, A.J. and Davis, K. (2017). Computing Mentorship in a Software
Boomtown: Relationships to Adolescent Interest and Beliefs. ACM ICER.

Ko, A.J. et al. (2018). Informal Mentoring of Adolescents about
Computing: Relationships, Roles, Qualities, and Impact. ACM SIGCSE.

« Some teens had informal computing mentors who

provided encouraging instruction and feedback.

* Associated with stronger interest in learning to code,

independent of gender, socioeconomic status.

e Teens soughtteachers and mentors who:

* Would not judge them for their failures

* Would inspire them to learn

* Had the expertise to guide them

19

Thayer, K. and Ko, A.J. (2017). Barriers Faced by Coding Bootcamp
Students. ACM ICER,

Some bootcamps were inclusive and encouraging,
but many offered no instruction or feedback:

* So they're trying to get you into this mentality of you
have to read all the documentation. They sit back in the
background [to let students read the documentation],
and what annoys me is that I've paid a lot of money so
that | could have somebody there to teach it to me.

21

Thayer, K. and Ko, A.J. (2017). Barriers Faced by Coding Bootcamp
Students. ACM ICER,

Many bootcamps offered an unwelcoming culture
for learners without prior knowledge:

* [t was divided, the class. Those with experience, | think,
they were looking down at [those of us without
experience] because maybe there were certain things
we were supposed to know and we didn't.

22

'
=

code

Study 3 — 30 Coding Tutorials

cademy Catalog

Learn to code interactively, for free.

Sign Up LogIn

Choose a username
Your email address

Choose a password

I'm not a robot

| u t O r I a ‘ S Kim, A and Ko, A.J.(2017). A Pedagogical Analysis of Online
Coding Tutorials. ACM SIGCSE.

e Four learning science principles
1. Connect instruction to prior knowledge
2. Organize declarative knowledge
3. Offer personalized feedback on practice

4. Foster selt-regulation in problem solving

e Ada completed all 30 tutorials across 100+ hours,
judging every lesson against these principles

24

. ‘
| u t O r I a S Kim, A. and Ko, A.J. (2017). A Pedagogical Analysis of Online Coding Tutorials. ACM SIGCSE.

e Most tutorials failed to meet all them:

X 1. No connection to prior knowledge

X 2. No organization of declarative knowledge about
programming languages

X 3. No personalized feedback on program correctness or
errors

x 4. No instruction on how to solve programming
problems.

25

Why is learning to
orogram difficult?

Few of these contexts actually teach
programming. There are many
opportunities to read and write code, but
learners receive little feedback on whether

they are reading or writing correctly.

20

Making programs
easier to read

One theory, three ideas

27

Extant theories about why
understanding programs is hard

 Wrong programming language

» Static typing, syntax, and errors matter, but only a little (e.g.,
Stefik & Siebert 2013)

* Wrong IDE

» Relative to text, drag and drop “blocks” editors reduce
dropout, but don't improve learning (Cooper et al. 2001)

* Wrong biology

* No evidence of “geek gene” or bimodal grade distributions
(Patitsas et al. 2016)

28

Extant theories about why
understanding programs is hard

 Wrong

g language
o Static Y, xr tn le (e.g.,
Stefik &\Fbe 1
* Wrong IDE

» Relative to text, drag #hd drop “blocks” editors reduce

dropoRg? raeg ogty001)

* No evidence of “geek gene” or bimodal grade distributions
(Patitsas et al. 2016)

 Wrong

28

A new definition of PL knowledge

Knowing a PL means:

1. Being able to reliably and accurately predict an arbitrary
program'’s operational semantics without the aid of a
runtime environment. (Reading a program and knowing
what it will do).

2. Knowing how syntax maps onto operational semantics.

Note that I'm excluding knowledge of common design
patterns, architectures, tools, norms, etc. This strictly
concerns the ability to accurately read programs.

29

An example

Knowing a JavaScript if-statement means knowing:

. ° . - \
c Condition is evaluated if(dataIsValid && serviceIsOnline) {
_— submit();
. }
If it's true, all of the else {
statements between the alert(“Bad error message!”);
}

first set of braces are
executed, and everything
between the else braces
are skipped.

Otherwise, the statements in the first
set are skipped, and the statements in
the second set are executed.

30

Knowing a entire PL

 Knowing all ot JavaScript means knowing all of the
semantics for JavaScript's entire grammar

* That's about 90 non-terminals in the grammar, each
with its own semantic nuances

* Most introductory programming courses never
explain any of this:

e In UW'’s CS1 course, the 1st homework is to write a Java
program with function declarations, function calls, string
literals. None of the lectures explain any of this, and, not
surprisingly, most students fail.

31

Four major pedagogies

Learn formal semantics Explain via natural language

2 €R
(EMPTY) — 2" (ASSIGN) R ccvoopes- s sues - resdc - a

RF eempty = R Rbe; =ex= RU{er}

es €R 2€R
- (ASSIGN-FIELD) ———————— (ASSIGN-ARRAY) .
Rt ey.fieldk = ea = RU {1’1} 3) R}—q[o]v =e) ~R1_l{11} \) LA B Languages b
Grammar and types
e R; i 1 p(v); RFe=R'
v € R; pointer type’plz); R R (BINOP1)
RFvoesRU{vae)
In This Article »
Jovascript
v €R'; pointer_type_p(v); RF ¢ ' 5 Rtey =R ;RFea=R" _ Tutorials: _
RFedv=RU{edo} (BINOE2) RFejjeo = R” (SEQ) » completebeginers e o

~ Javascript Guide
Introduction This chapter discusses JavaScript's basic grammar, variable declarations, data types and literals.

Grammar and types

RFe;=R;;RiFeg=Ry; RiFez=Ry; RyURst ey =R’ (IF) Control flow and error handiing [Basics,
RFif (ey) then {ey} else {ea} ey = R

Loops and iteration

Functions JavaScript borrows most of its syntax from Java, but is also influenced by Awk, Perl and Python.
i (Expressions and rators
function type-p(e) pressions and operators JavaScript is case-sensitive and uses the Unicode character set.
{e.args[i] | 0 < i < enumargs A pointer_type_p(e.args[i])} Numbers and dates

U {v | global_p(v)} b e.body = R Text formatting In JavaScript, instructions are called statements and are separated by a semicolon (). Spaces, tabs and newline characters are called
_ A . = (FUNCTION) a whitespace. The source text of JavaScript scripts gets scanned from left to right and is converted into a sequence of input elements

{}Fe=R egular expressions which are tokens, control characters, line terminators, comments or whitespace. ECMAScript also defines certain keywords and

Indexed collections literals and has rules for automatic insertion of semicolons (AS) to end statements. However, it is recommended to always add

Write code Step through execution

cac 3 B i
&« codecademy.com x C w 2] : & codecademy.com X cC w @B

[code]cademy Sas . [codefcademy

Four major pedagogies

Learn formal semantics Explain via natural language

2 €R
(EMPTY) L (ASSIGN) MDN ACLRSBIE rechnologies ~ References & Guides » Feedback + Q signin ©
REeg=e2 ‘R'J{’l} moz:/fal

R

RF €ompts = R

eg ea

(ASSIGN-FIELD)

(ASSIGN-ARRAY)

<Javascript Guide @ Languages

Grammar and types

No syntax mapping; |

Tutorials:
«Frevious Next »
» Complete beginners
~ Javascript Guide
Introduction This chapter discusses JavaScript's basic grammar, variable declarations, data types and literals.

Grammar and types

Control flow and error handiing Basics|

Loops and iteration

Requires learning a notation

{e.args[i] | 0 < i < enumargs A pointer_type_p(e.args[i])} Numbers and dates
U {v | global_p(v)} F e.body = R Text formatting In Javascript, instructions are called statements and are separated by a semicolon (). Spaces, tabs and newline characters are called
N i (FUNCTION) . whitespace. The source text of JavaScript scripts gets scanned from left to right and is converted into a sequence of input elements
{}Fe R A egular expressions which are tokens, control characters, line terminators, comments or whitespace. ECMAScript also defines certain keywords and
Indexed collections literals and has rules for automatic insertion of semicolons (ASI) to end statements. However, it is recommended to always add

Functions JavaScript borrows most of its syntax from Java, but is also influenced by Awk, Perl and Python.

Expressions and operators
P P JavaScript is case-sensitive and uses the Unicode character set.

rite code Step through execution

>odecac D B :
&« codecademy.com x € w @ &« codecademy.com x C w

[code]cademy [code]cademy

eam Arithmetic

& Instruction: publ
public
1

myNumber ¢

Get Help

Four major pedagog

earn formal semantics

e2 €ER
Rt empty = R RFe1=e2= RU{es}

cR _ e
(ASSIGN-FIELD)

No syntax mapping;

(EMPTY) (ASSIGN)

ey €

uires learning a notation

{e.args[i] | 0 < i < enumargs A pointer_type_p(e.args[i])}
U {v | global_p(v)} I e.body = R

0r-=R (FUNCTION)

Write code

&« codecademy.com x| € w B

[code]cademy

Arithmeticjava

publi
publi
)

Get Help

€S

Explain via natural language
-
Ambiguous, weak

MDN web docs| Technologies~ References & Guides~ Feedback ~

syntax mapping

Numbers and dates

Text formatting In JavaScript, instructions are called statements and are separated by a semicolon (;. Spaces, tabs and newline characters are called
whitespace. The source text of JavaScript scripts gets scanned from left to right and is converted into a sequence of input elements
which are tokens, control characters, line terminators, comments or whitespace. ECMAScript also defines certain keywords and
literals and has rules for automatic insertion of semicolons (ASI) to end statements. However, it is recommended to always add

Regular expressions

Indexed collections

Step through execution

& codecademy.com X C v B

[codelcademy

M Learr Arithmetic java

i publi
public
)

Get Help

Four major pedagogies

earn formal semantics Explain via natural language

(EMPTY) (ASSIGN)]x‘i?}: MRSTIE rechnologies = References &Guides = Feedback = Q

RF €ompts = R ;
cR o e2€R
(ASSIGN-FIELD)

No syntax mapping;

o
m

(ASSIGN-ARRAY)

Ambiguous, weak
uires learning a notation

{e.args[i] | 0 < i < enumargs A pointer_type_p(e.args[i])} Numbers and dates
U {v | global_p(v)} F e.body = R extformatting In Javascript, instructions are called statements and are separated by a semicolon (). Spaces, tabs and newline characters are called
A - (FUNCTION) e exressons whitespace. The source text of Javascript scripts gets scanned from left to right and is converted into a sequence of input elements
{ IFe=R g which are tokens, control characters, line terminators, comments or whitespace. ECMAScript also defines certain keywords and
Indexed collections literals and has rules for automatic insertion of semicolons (ASI) to end statements. However, it is recommended to always add

syntax mapping

Write code Step through execution

C: v B
< codecademy.com X [IECETT B /3 codecademy com x & ¢ |

t_:ademy Learn Java

S o s ARMMERCRNe
.)) [Instruction: ¢ thmetic {

infer semantics

Get Help
8. Math; + F 8/12 Get Help

Four major pedagog

earn formal semantics

Ritempg =R OB Rie—asrO; ASSI6N
c€R . ~ es €ER
(ASSIGN-FIELD)

No syntax mapping;

ey €

(ASSIGN-ARRAY)

uires learning a notation

{e.args[i] | 0 < i < enumargs A pointer_type_p(e.args[i])}
U {v | global_p(v)} F e.body = R

(FUNCTION)

Fre=R

Write code

< codecademy com X (& w [2]

cademy

Requires learner to

infer semantics

8. Math: +, -, *, and Get Help

€S

Explain via natural language

IMDN web docs| Technologies~ References & Guides~ Feedback ~

=
Ambiguous, weak
syntax mapping

Numbers and dates

Text formatting In JavaScript, instructions are called statements and are separated by a semicolon (). Spaces, tabs and newline characters are called
whitespace. The source text of JavaScript scripts gets scanned from left to right and is converted into a sequence of input elements
which are tokens, control characters, line terminators, comments or whitespace. ECMAScript also defines certain keywords and
literals and has rules for automatic insertion of semicolons (ASI) to end statements. However, it is recommended to always add

Regular expressions

Indexed collections

Step through execution

& codecademy.com X C v B

x_:ademy Learn Java

D Learr Arithmetic java

Masks semantics within a

line of code

Get Help

How should we teach
syntax semantics?

Teach a “notional machine” dusoulay 1989

1. Show each step of semantics and their explicit
effects on the program counter, call stack, and
memory

2. Map semantics to concrete syntax, creating an
association between syntax and its side effects

33

Three ideas

Gidget PLTutor Tracing Strategies
9
Mike Lee, Ph.D. Greg Nelson Benji Xie
Learners discover Tutor explicitly Learner
semantics through teaches reminded to

debugging semantics follow semantics

34

Gidget......

* Frame coding as a collaboration
between a person and computer

Mike Lee

* Give learner a sequence of

debugging puzzles

e Guide learners’ attention to
contextualized instruction on
syntax and semantics of it's
Pythonic language

35

G | d 9 et helpgidget.org Leeetal. 2014, vivHCC

Mike Lee

G | d 9 et helpgidget.org Leeetal. 2014, vivHCC

Mike Lee

Make sure you always read the goals of
the level on the bottom-left panel first,
and then try running the code at least
once using the buttons below the goals
to see how the starting code works.

\

37

Mike Lee

code
editor

test
case

Make sure you always read the goals of
the level on the bottom-left panel first,
and then try running the code at least
once using the buttons below the goals
to see how the starting code works.

crrev D)

explanation

37

runtime
state

G | d 9 et helpgidget.org Leeetal. 2014, vivHCC

Mike Lee

37 levels teaching 12 semantics, including
formative assessments to verity understanding

G | d 9 et helpgidget.org Leeetal. 2014, vivHCC

Mike Lee

37 levels teaching 12 semantics, including
formative assessments to verity understanding

G | d 9 et helpgidget.org Leeetal. 2014, vivHCC

Mike Lee

level 20 teaches function calls

world

0 1 2 3
0 ; 2
- piglet .I

G | d 9 et helpgidget.org Leeetal. 2014, vivHCC

Mike Lee

level 20 teaches function calls

world

0 1 2 3
0 ; 2
- piglet .I

0 1 2 3 4 5 6

)
-~

All that grabbing & dropping made
me remember a way to save time
writing my programs though...

functicﬁ!
€ Prev Next 2

)
-~

All that grabbing & dropping made
me remember a way to save time
writing my programs though...

functicw!
. € Prev Next 2 |
Function
definition
semantics

= ¢

world

0 1 2 3 4 5 6
o . L ' '
. piglet ..

2 '-:::r . . . '!;--" = :

All that grabbing & dropping made
me remember a way to save time
writing my programs though...
functions!

world
0 1 2 3 4 S 6
0 y p . ;
. piglet ...

All that grabbing & dropping made . .
me remember a way to save time G Id 9 et exp l alns

writing my programs though...
functions!

€ Prev Nexé’ O

syntax and semantics

Mike Lee

The green line
and Gidget's
speech bubble
maps syntax to
semantics

code

Original Code Clear Code

goto /button/
say "Let's click the button to see its functic
/button/:openFence()
function getPiglet() <®
goto /piglet/
set /piglet/:nickname to "wilbur"
set /piglet/:age to 3
grab /piglet/
getBird() <@

getThePiggy() <®
goto /basket/

ensure /piglet/:nickname = "babe"
ensure /piglet/:age = 3
ensure # /piglet/ on /basket/ = 1

One step { One line ‘ To end ‘ Stop!

Don't forget you can click on objects
to see their properties, and you
should try running my code first to
see what happens!

3

€& Prev

(

Mike Lee

The green line
and Gidget's
speech bubble
maps syntax to
semantics

code

Original Code Clear Code

goto /button/
say "Let's click the button to see its functic
/button/:openFence()
function getPiglet() <®
goto /piglet/
set /piglet/:nickname to "wilbur"
set /piglet/:age to 3
grab /piglet/
getBird() <@

getThePiggy() <®
goto /basket/

ensure /piglet/:nickname = "babe"
ensure /piglet/:age = 3
ensure # /piglet/ on /basket/ = 1

One step { One line ‘ To end ‘ Stop!

Don't forget you can click on objects
to see their properties, and you
should try running my code first to
see what happens!

3

€& Prev

(

G | d 9 et helpgidget.org Leeetal. 2014, vivHCC

Mike Lee

code . Original Code l Clear Code world gldget @
. 0 3 L 5 6
goto /button/ .. energy 97
say "Let's click the button to see its function grabbed []
/button/:openFence() .. » "default”
function getPiglet() <@ o -
goto /plglet/ > -. labeled true
set /piglet/:nickname to "wilbur" o s N 1
set /piglet/:age to 3 .. name gldget
grab /piglet/ position (6, 5]
getBird() <@ mm rotation 0
getThePiggy() <@ LI L scale 1
goto /basket/ {?@g . transparency 1
H -
ensure /piglet/:nickname = "babe" 2
ensure /piglet/:age = 3 .)
ensure # /piglet/ on /basket/ = 1 Let's click the button to see its
function name. It has tg_ be exact!
Continue 9

One step ‘ One line ‘ To end ‘ Stop!

code

Original Code 1 Clear Code

goto /button/
say "Let's click the button to see its function
/button/:openFence()
function getPiglet() <@
goto /piglet/
set /piglet/:nickname to "wilbur"
set /piglet/:age to 3
grab /piglet/
getBird() <@

getThePiggy() <@
goto /basket/

ensure /piglet/:nickname = "babe"
ensure /piglet/:age = 3
ensure # /piglet/ on /basket/ = 1

One step } One line } To end } Stop!

G | d 9 et helpgidget.org Leeetal. 2014, vivHCC

97
[]

"default"

true
1

"gidget"

(6, 5]
0
1
]

world gidget
0 1 2 3 4 5 6 (
- grabbed
; : image
EEEEEEE
2
layer
3
position
' ; . scale
3T] e—
= o 5 5 @ 5 de()
. ‘ []
Let's click the button to see its
function name. It has tg_ be exact!
Continue 9

Gidget points
out function
definitions

to /button/
y "Let's click the button to see its function
utton/:openFence()

nction getPiglet() @)

goto /piglet/

set /piglet/:nickname to "wilbur"
set /piglet/:age to 3

grab /piglet/

tBird() <@

tThePiggy() <@
to /basket/

sure /piglet/:nickname = "babe"
sure /piglet/:age = 3
sure # /piglet/ on /basket/ = 1

e step ‘ One line ‘ To end l Stop!

1

N

o
1 o0

) L : .
: =

w

BEEEEE
== 4 (GF
==l -
=]l
= L] [
SN

Let's click the button to see its
function name. It has to be exact!

Ceptinue O

r

energy 97
grabbed []
image "default”
labeled true
layer 1
name "gidget”
position [6, 5]
rotation 0
scale 1
transparency 1
code()
(]

button §
energy 100
grabbed []
image "default"
labeled true
layer 1
name "button”
openGate openGate|()
position [6, 5]
rotation 0
scale 1
transparency 1

code()

to /button/

4 "Let's click the button to see its function|

utton/:openFence()

nction getPiglet() @)

goto /piglet/

set /piglet/:nickname to "wilbur"
set /piglet/:age to 3

grab /piglet/

tBird() <@

tThePiggy() <@
to /basket/

sure /piglet/:nickname = "babe"
sure /piglet/:age = 3
sure # /piglet/ on /basket/ = 1

e step One line Toend Stop!

|

(

Let's click the button to see its
function name. It has to be exact!

Gidget explains
name resolution
semantics

energy 97
grabbed []
image "default”
labeled true
layer 1
name "gidget”
position [6, 5]
rotation 0
scale 1
transparency 1
code()
[

button §
energy 100
grabbed []
image "default"
labeled true
layer 1
name "button”
openGate openGate()
position [6, 5]
rotation 0
scale 1
transparency 1

Mike Lee

code

Original Code] Clear Code

goto /button/
say "Let's click the button to see its function
/button/:openFence()
function getPiglet() <@
goto /piglet/
set /piglet/:nickname to "wilbur"
set /piglet/:age to 3
grab /piglet/
getBird() <@

getThePiggy() <@
goto /basket/

ensure /piglet/:nickname = "babe"
ensure /piglet/:age = 3
ensure # /piglet/ on /basket/ = 1

One step ‘ One line ’ To end ’ Stop!

Whoops! I don't know of any
function called openFence. Did we
define it con'qu_ly? I have to stop
executing this program because of
this error.

i ® Stop

gidget &
energy 94
grabbed []
image "default"
labeled true
layer 1
name "gidget"
position [6, 5]
rotation 0
scale 1
transparency 1
code()
[1

button =
energy 100
grabbed []
image "default"
labeled true
layer 1
name "button”
openGate openGate()
position [6, 5]
rotation 0
scale 1
transparency 1
code0 =

Mike Lee

code

Original Code] Clear Code

goto /button/
say "Let's click the button to see its function
/button/:openFence()
function getPiglet() <@
goto /piglet/
set /piglet/:nickname to "wilbur"
set /piglet/:age to 3
grab /piglet/
getBird() <@

getThePiggy() <@
goto /basket/

ensure /piglet/:nickname = "babe"
ensure /piglet/:age = 3
ensure # /piglet/ on /basket/ = 1

One step ‘ One line ’ To end ’ Stop!

Whoops! I don't know of any
function called openFence. Did we
define it con'qu_ly? I have to stop
executing this program because of
this error.

i ® Stop

gidget &
energy 94
grabbed []
image "default"
labeled true
layer 1
name "gidget"
position [6, 5]
rotation 0
scale 1
transparency 1
code()
[1

button =
energy 100
grabbed []
image "default"
labeled true
layer 1
name "button”
openGate openGate()
position [6, 5]
rotation 0
scale 1
transparency 1
code0 =

G id g et helpgidget.org

Mike Lee

* Four online controlled experiments with over 1,000
adult learners:

* Learning is 2x as fast as Codecademy tutorial, 2x as
much as open-ended creative exploration teea ko 2015

* Assessment levels significantly increase learning
efficiency Lecetal 2013

» Giving compiler a face and using personal pronouns
(I, you, we) draws learner’s attention to semantics,
doubling learning efficiency .z «o201

» Changes attitudes about difficulty of learning to

code from negative to positive in 20 minutes crarers e
al. 2014

46

G id g et helpgidget.org

Mike Lee

* Four online controlled experiments with over 1,000
adult learners:

* Learning is 2x as fast as Codecademy tutorial, 2x as
much as open-ended creative exploration teea ko 2015

* Assessment levels significantly increase learning
efficiency Lecetal 2013

» Giving compiler a face and using personal pronouns
(I, you, we) draws learner’s attention to semantics,
doubling learning efficiency .z «o201

» Changes attitudes about difficulty of learning to

code from negative to positive in 20 minutes crarers e
al. 2014

46

STUDIO

ESRY normal v ERETTE when run

[JEV wing v ENTE]

when hit an obst

VA crash v [

a0 & GImEIRd amount

VA wing v |
CEEEERE normal v |

play soundl
set scene (SRUCEVED

CEESEVE Yellow Bird v

set obstacle

20,000+ have played via word of
mouth, including Chicago Public e

Challenge: Teleport through the portal to collect the
gem.

For your first challenge, there’s a new element in Byte's

.
world. A portal teleports Byte from one place to another,
‘ O O S I I l a I l re I re e S a a re I l with Byte facing the same direction going in and out.
I You'll need to use all the commands you've learned so

far, in the right order, to toggle open the switch, move
through the portal, and collect the gem.

. L]
Don't worry if you don’t get it right the first time. This is
I u I y your chance to experiment!

moveForward ()
moveForward ()
moveForward ()
turnLeft()

moveForward ()

moveForward()

Directly impacted the design of
code.org's CodeStudio and Apple's
Swift Playgrounds, used by 10+ million

| e

learners. 47

http://code.org

STUDIO

ESRY normal v ERETTE when run

[JEV wing v ENTE]

when hit an obst

VA crash v [

a0 & GImEIRd amount

VA wing v |
CEEEERE normal v |

play soundl
set scene (SRUCEVED

CEESEVE Yellow Bird v

set obstacle

20,000+ have played via word of
mouth, including Chicago Public e

Challenge: Teleport through the portal to collect the
gem.

For your first challenge, there’s a new element in Byte's

.
world. A portal teleports Byte from one place to another,
‘ O O S I I l a I l re I re e S a a re I l with Byte facing the same direction going in and out.
I You'll need to use all the commands you've learned so

far, in the right order, to toggle open the switch, move
through the portal, and collect the gem.

. L]
Don't worry if you don’t get it right the first time. This is
I u I y your chance to experiment!

moveForward ()
moveForward ()
moveForward ()
turnLeft()

moveForward ()

moveForward()

Directly impacted the design of
code.org's CodeStudio and Apple's
Swift Playgrounds, used by 10+ million

| e

learners. 47

http://code.org

Three ideas

Gidget PLTutor Tracing Strategies
9 @ 0
A S &
Mike Lee, Ph.D. Greg Nelson Beniji Xie
Learners discover Tutor explicitly Learner
semantics through teaches reminded to

debugging semantics follow semantics

48

Three ideas

PLTutor Tracing Strategies

r A :; L|~‘ ,
L / A
Mike Lee, Ph.D. Greg Nelson Benji Xie
Learners discover Tutor explicitly Learner
semantics through teaches reminded to

debugging semantics follow semantics

49

Greg Nelson, Benjamin Xie, and Andrew J. Ko (2017).
l I t O r Comprehension First: Evaluating a Novel Pedagogy and Tutoring
System for Program Tracing in CS1. ACM ICER.

» Convert operational semantics into
an interactive textbook to be read
before learning to write programs

Greg Nelson

» Covers the entire JavaScript
semantics in about 3 hours of
practice

.
if (10 1= 0){
ol ®
}
if (0 ==10){
.

X = 1000000;

accurately predict the behavior of
any JavaScript program

50

Greg Nelson, Benjamin Xie, and Andrew J. Ko (2017).
l I t O r Comprehension First: Evaluating a Novel Pedagogy and Tutoring
System for Program Tracing in CS1. ACM ICER.

» Convert operational semantics into
an interactive textbook to be read
before learning to write programs

Greg Nelson

» Covers the entire JavaScript
semantics in about 3 hours of
practice

.
if (10 1= 0){
ol ®
}
if (0 ==10){
.

X = 1000000;

accurately predict the behavior of
any JavaScript program

50

Greg Nelson, Benjamin Xie, and Andrew J. Ko (2017).
l l t O r Comprehension First: Evaluating a Novel Pedagogy and Tutoring
System for Program Tracing in CS1. ACM ICER.

Greg Nelson

Each chapter covers a set of semantics through a
series of programs

Programs

Program 1

Greg Nelson, Benjamin Xie, and Andrew J. Ko (2017).
l | t O r Comprehension First: Evaluating a Novel Pedagogy and Tutoring
System for Program Tracing in CS1. ACM ICER.

Lesson explains Program links State explains

purpose of syntax to semantics ~ semantics
semantics

Greg Nelson

= Lesson Program State

Learning step 1 of 180 first frame()

ot m var x = 0; instruction
if (10 > 0){
If Statements /* the computer will execute inside here This is a variable declaration statement It declares
because the condition is true one or more names and can optionally assign them
Now it's time tojuse what you learned about and that leaves true on the stack values.

|
boolean values and operators! we put x = 100000; here

Before this, the computer would execute all Just so you can see some code stack
instructions created from the code. execute inside the if */

x = 1000000; empty
}
If s_tatemer.mts a!low oomputer§ to do some set namespace
of instructions if a condition is true or not. X
var x = 0; {}

They look like this if (0> 10){

/* the computer will NOT execute inside here

if (condition) because the condition is false
{ and that leaves false on the stack */
code goes inside the { }'s N x = 1000000;
} x>
52

Let's step through one to see how it works.

Greg Nelson, Benjamin Xie, and Andrew J. Ko (2017).
l | t O r Comprehension First: Evaluating a Novel Pedagogy and Tutoring
System for Program Tracing in CS1. ACM ICER.

Lesson explains Program links State explains

purpose of syntax to semantics ~ semantics
semantics

Greg Nelson

= Lesson Program State

Learning step 1 of 180 first frame()

ot m var x = 0; instruction
if (10 > 0){
If Statements /* the computer will execute inside here This is a variable declaration statement It declares
because the condition is true one or more names and can optionally assign them
Now it's time tojuse what you learned about and that leaves true on the stack values.

|
boolean values and operators! we put x = 100000; here

Before this, the computer would execute all Just so you can see some code stack
instructions created from the code. execute inside the if */

x = 1000000; empty
}
If s_tatemer.mts a!low oomputer§ to do some set namespace
of instructions if a condition is true or not. X
var x = 0; {}

They look like this if (0> 10){

/* the computer will NOT execute inside here

if (condition) because the condition is false
{ and that leaves false on the stack */
code goes inside the { }'s N x = 1000000;
} x>
52

Let's step through one to see how it works.

PLTutor

purpose of
semantics

= Lesson

Learning step 1 of 180

= e

If statements

[N
Now it's time to use what you learned about
boolean values and operators!

Before this, the computer would execute all
instructions created from the code.

If statements allow computers to do some set
of instructions if a condition is true or not.

They look like this

if (condition)

{

code goes inside the { }'s

}

Let's step through one to see how it works.

53

Greg Nelson, Benjamin Xie, and Andrew J. Ko (2017).
Comprehension First: Evaluating a Novel Pedagogy and Tutoring
System for Program Tracing in CS1. ACM ICER.

o Nelson

Program

var x = 0;
if (10 > 0){
/* the computer will execute inside here

because the condition is true
and that leaves true on the stack

we put x = 100000; here
just so you can see some code
execute inside the if */

x = 1000000;
}
X,
var x = 0;

if (0> 10){
/* the computer will NOT execute inside here
because the condition is false
and that leaves false on the stack */
x = 1000000;

}
X;

var x = 0;
i€ ¢ 10 =89 Y

PLTutor

purpose of
semantics

= Lesson

Learning step 1 of 180

= e

If statements

[N
Now it's time to use what you learned about
boolean values and operators!

Before this, the computer would execute all
instructions created from the code.

If statements allow computers to do some set
of instructions if a condition is true or not.

They look like this

if (condition)

{

code goes inside the { }'s

}

Let's step through one to see how it works.

53

Greg Nelson, Benjamin Xie, and Andrew J. Ko (2017).
Comprehension First: Evaluating a Novel Pedagogy and Tutoring
System for Program Tracing in CS1. ACM ICER.

o Nelson

Program

var x = 0;
if (10 > 0){
/* the computer will execute inside here

because the condition is true
and that leaves true on the stack

we put x = 100000; here
just so you can see some code
execute inside the if */

x = 1000000;
}
X,
var x = 0;

if (0> 10){
/* the computer will NOT execute inside here
because the condition is false
and that leaves false on the stack */
x = 1000000;

}
X;

var x = 0; ‘

i€ ¢ 10 =89 Y

Greg Nelson, Benjamin Xie, and Andrew J. Ko (2017).
l | t O r Comprehension First: Evaluating a Novel Pedagogy and Tutoring
System for Program Tracing in CS1. ACM ICER.

Next moves through both program
execution trace and instruction.

Greg Nelson

0000000000000 0000000090000 00900 000000000000 0000008000000000000020 00000399020 000000CPCCTOIIOGIOIOOTOIIOIPIODIODES

= Lesson Program

Learning step 1 of 180

& var x = 0;
if (10 > 0){
lf Statements /* the computer will execute inside here
because the condition 1s true
Now it's time to use what you learned about and that leaves true on the stack
boolean values and operators!

we put x = 100000, here

Before this, the computer would execute all Jjust so you can see some code
execute iInside the if */

instructions created from the code. o X = 1000000
If statements allow computers to do some set }

Greg Nelson, Benjamin Xie, and Andrew J. Ko (2017).
l | t O r Comprehension First: Evaluating a Novel Pedagogy and Tutoring
System for Program Tracing in CS1. ACM ICER.

Next moves through both program
execution trace and instruction.

Greg Nelson

0000000000000 0000000090000 00900 000000000000 0000008000000000000020 00000399020 000000CPCCTOIIOGIOIOOTOIIOIPIODIODES

= Lesson Program

Learning step 1 of 180

& var x = 0;
if (10 > 0){
lf Statements /* the computer will execute inside here
because the condition 1s true
Now it's time to use what you learned about and that leaves true on the stack
boolean values and operators!

we put x = 100000, here

Before this, the computer would execute all Jjust so you can see some code
execute iInside the if */

instructions created from the code. o X = 1000000 ‘
If statements allow computers to do some set }

Greg Nelson, Benjamin Xie, and Andrew J. Ko (2017).
l | t O r Comprehension First: Evaluating a Novel Pedagogy and Tutoring
System for Program Tracing in CS1. ACM ICER.

State teaches semantics in a runtime context,

Greg Nelson

Lesson generalizes back to purpose

= Lesson Program State
Learning step 7 of 180 first frame()
mm var x = 0; instruction
Care if (10 > 0){ .
fully.step through e c9deandread o /* the computer will execute inside here Before moving to the next statement, we remove the
explanatlons for the instructions, and look at because the condition is true va]uethisexp,mionbﬂonmem.ifany.
the stack. N and that leaves true on the stack
we put x = 100000; here stack
just so you can see some code
execute inside the if */ empty
x = 1000000;
} namespace
x: {
var x = 0; b 0
if (0> 10)
/* the computer will NOT execute inside here }
because the condition is false
and that leaves false on the stack */
x = 1000000;
}
X,

55

PLTutor

Greg Nelson, Benjamin Xie, and Andrew J. Ko (2017).
Comprehension First: Evaluating a Novel Pedagogy and Tutoring
System for Program Tracing in CS1. ACM ICER.

Greg Nelson

State teaches semantics in a runtime context,

Lesson generalizes back to purpose

= Lesson

Learning step 7 of 180

Carefully step through the code and read all the
explanations for the instructions, and look at
the stack. N

Program

var x = 0;

if (10 > 0){
/* the computer will execute inside here
because the condition is true
and that leaves true on the stack

we put x = 100000, here
just so you can see some code
execute inside the if */

x = 1000000;
}
X,
var x = 0;

if (0> 10)
/* the computer will NOT execute inside here
because the condition is false
and that leaves false on the stack */
x = 1000000;
}
X,

55

State

first frame()

instruction

Before moving to the next statement, we remove the
value this expression left on the stack, if any.

stack

empty
namespace
{

Greg Nelson, Benjamin Xie, and Andrew J. Ko (2017).
l | t O r Comprehension First: Evaluating a Novel Pedagogy and Tutoring
System for Program Tracing in CS1. ACM ICER.

Reverse execution allows learner to review
instruction they didn’t understand.

Greg Nelson

= Lesson Program State
Learning step 15 of 180 Sk $rasacy
var x = 0; instruction
W if (10 > 0){

/* the computer will execute inside here Assign the value on top of the stack to x
because the condition is true

and that leaves true on the stack

stack
we put x = 100000, here
just so you can see some code
execute inside the if */ 1000000
X = 1000000;
}
X; namespace
var x = 0;
if (0> 10){ {
/* the computer will NOT execute inside here X 0
because the condition is false
and that leaves false on the stack */ }
x = 1000000;
}
X;
var x = 0;

if (10 !'= 0){
/* the computer will eﬁ@/te inside here
because 10 is not eq. to 0
and that leaves true on the stack */

Greg Nelson, Benjamin Xie, and Andrew J. Ko (2017).
l | t O r Comprehension First: Evaluating a Novel Pedagogy and Tutoring
System for Program Tracing in CS1. ACM ICER.

Reverse execution allows learner to review
instruction they didn’t understand.

Greg Nelson

= Lesson Program State
Learning step 15 of 180 Sk $rasacy
var x = 0; instruction
W if (10 > 0){

/* the computer will execute inside here Assign the value on top of the stack to x
because the condition is true

and that leaves true on the stack

stack
we put x = 100000, here
just so you can see some code
execute inside the if */ 1000000
X = 1000000;
}
X; namespace
var x = 0;
if (0> 10){ {
/* the computer will NOT execute inside here X 0
because the condition is false
and that leaves false on the stack */ }
x = 1000000;
}
X;
var x = 0;

if (10 !'= 0){
/* the computer will eﬁ@/te inside here
because 10 is not eq. to 0
and that leaves true on the stack */

Greg Nelson, Benjamin Xie, and Andrew J. Ko (2017). =3
l | t O r Comprehension First: Evaluating a Novel Pedagogy and Tutoring
System for Program Tracing in CS1. ACM ICER.

Greg Nelson

= Lesson Pro

Lesson explains Learning step 18 of 180
the side effect of Back I —

: A if (
the semantics x has a new value now because the condition ‘
before proceeding 10 > 0 was true. You can see it on the stack.
to further
examples.

}

57

Greg Nelson, Benjamin Xie, and Andrew J. Ko (2017). =3
l | t O r Comprehension First: Evaluating a Novel Pedagogy and Tutoring
System for Program Tracing in CS1. ACM ICER.

Greg Nelson

= Lesson Pro

Lesson explains Learning step 18 of 180

the side effect of Back I —
. A if (

the semantics X has a new value now because the condition :

before proceeding 10 > 0 was true. You can see it on the stack.

to further

examples.

57 '®

Greg Nelson, Benjamin Xie, and Andrew J. Ko (2017).
l | t O r Comprehension First: Evaluating a Novel Pedagogy and Tutoring
System for Program Tracing in CS1. ACM ICER.
Greg Nelson

Assessments embedded in execution trace require
learners to predict side effects of semantics.

= Lesson Program State
var x = 0;
Learning step 29 of 180 if (10 >0){ :
SRR /* the computer will execute inside here first frame()
N because the condition is true . .
g\ and that leaves true on the stack instruction
") 2
What did 0 > 10 evaluate to (leave on the stack)? we put x = 100000; here If the if statement's condition is true, execute the
just io you ’Zant;ee ';0'25 code true statements. Otherwise, skip it.
execute inside the i
true |[10 |[-0][false |
} stack
X,
var x = 0; ?

if (0> 10){

/* the computer will NOT execute inside here
because the condition is false

and that leaves false on the stack */ namespace
x = 1000000;
} {
X, X 0
}
var x = 0;

if (10 != 0){
/* the computer will execute inside here
because 10 is not eqaul to 0

amal had Tamisam doarssmn mm dha anda~l %7/

Greg Nelson, Benjamin Xie, and Andrew J. Ko (2017).
l | t O r Comprehension First: Evaluating a Novel Pedagogy and Tutoring
System for Program Tracing in CS1. ACM ICER.
Greg Nelson

Assessments embedded in execution trace require
learners to predict side effects of semantics.

= Lesson Program State
var x = 0;
Learning step 29 of 180 if (10 >0){ :
SRR /* the computer will execute inside here first frame()
N because the condition is true . .
g\ and that leaves true on the stack instruction
") 2
What did 0 > 10 evaluate to (leave on the stack)? we put x = 100000; here If the if statement's condition is true, execute the
just io you ’Zant;ee ';0'25 code true statements. Otherwise, skip it.
execute inside the i
true |[10 |[-0][false |
} stack
X,
var x = 0; ?

if (0> 10){

/* the computer will NOT execute inside here
because the condition is false

and that leaves false on the stack */ namespace
x = 1000000;
} {
X, X 0
}
var x = 0;

if (10 != 0){
/* the computer will execute inside here
because 10 is not eqaul to 0

amal had Tamisam doarssmn mm dha anda~l %7/

Greg Nelson, Benjamin Xie, and Andrew J. Ko (2017).
l I -t O r Comprehension First: Evaluating a Novel Pedagogy and Tutoring
System for Program Tracing in CS1. ACM ICER.

rrrrrrrrrrrr

Greg Nelson

T * Required complete re-

x = 1000000;

B all compiler and runtime state
to facilitate reversibility and
embedded explanations

e Rec

faci

architecting of language stack

* Must preserve provenance of

esigned grammar to
itate granular explanations

59

Greg Nelson, Benjamin Xie, and Andrew J. Ko (2017).
l I -t O r Comprehension First: Evaluating a Novel Pedagogy and Tutoring
System for Program Tracing in CS1. ACM ICER.

rrrrrrrrrrrr

Greg Nelson

T * Required complete re-

x = 1000000;

B all compiler and runtime state
to facilitate reversibility and
embedded explanations

e Rec

faci

architecting of language stack

* Must preserve provenance of

esigned grammar to
itate granular explanations

59

Greg Nelson, Benjamin Xie, and Andrew J. Ko (2017).
l I -t O r Comprehension First: Evaluating a Novel Pedagogy and Tutoring
System for Program Tracing in CS1. ACM ICER.

s« Compared PLTutor to Codecademy
| ina4-hour controlled experiment
with 40 CS1 students

Greg Nelson

* Measured learning with SCS1, a
validated assessment of CS1
learning

» PLTutor had 60% higher learning
gains, learning gains predicted
midterm scores

60

Greg Nelson, Benjamin Xie, and Andrew J. Ko (2017).
l I -t O r Comprehension First: Evaluating a Novel Pedagogy and Tutoring
System for Program Tracing in CS1. ACM ICER.

s« Compared PLTutor to Codecademy
| ina4-hour controlled experiment
with 40 CS1 students

Greg Nelson

* Measured learning with SCS1, a
validated assessment of CS1
learning

» PLTutor had 60% higher learning
gains, learning gains predicted
midterm scores

60

Three ideas

PLTutor Tracing Strategies

- -
-

r‘i;' :
L / 4
Mike Lee, Ph.D. Greg Nelson Benji Xie
Learners discover Tutor explicitly Learner
semantics through teaches reminded to

debugging semantics follow semantics

61

Three ideas

Gidget PLTutor Tracing Strategies
E’ \& l
Mike Lee, Ph.D. Greg Nelson Benji Xie
Learners discover Tutor explicitly Learner
semantics through teaches reminded to

debugging semantics follow semantics

62

Strategy

STRATEGY: Understanding the Problem;

EEEEEEEEEE

Run the Code (like a computer).

Benjamin Xie, Greg Nelson, and Andrew J. Ko (2017). An
Explicit Strategy to Scaffold Novice Program Tracing.SIGCSE.

e When

Benji Xie

learners have brittle

knowledge of semantics,

they o

ten guess how

programs will execute

* An explicit strategy for
reading programs should

outperform guessing

63

't ra t e Benjamin Xie, Greg Nelson, and Andrew J. Ko (2017). An
Explicit Strategy to Scaffold Novice Program Tracing.SIGCSE.

Benji Xie

STRATEGY: Understanding the Problem; N
Run the Code (like a computer).

UNDERSTAND THE PROBLEM

1. Read question: Understand what you are being asked to do. At the end of the problem
instructions, write a check mark: v

2. Find where the program begins executing. At the start of that line, draw an arrow: —

RUN THE CODE
3. Execute each line according to the rules of Java:
a. From the syntax, determine the rule for each part of the line.
b. Follow the rules.
c. Update memory table(s).
d. Find the code for the next part.

e. Repeat until the program terminates.

64

t ra t e Benjamin Xie, Greg Nelson, and Andrew J. Ko (2017). An
Explicit Strategy to Scaffold Novice Program Tracing.SIGCSE.

STRATEGY: Understanding the Problem;
Run the Code (like a computer).

P L.>Q/ ! V\‘\ W\'&(\\ \/[/ll/\.a,—
d %"\ ‘\' X ‘\

N

At the bottom of the page, write the output produced by the following pro-
gram, as it would appear on the console.

/
1 public class OddMystery { //
2, === public static vy'd main(String [] args) { /
3 int x = 2; ™
4 int y = 3; v~ ! I :
) - T
6 System.out. println(x +y + ”!”) ;/ /
7 ¥
8 compute (y, x); / [; .
9) - s
10 double val = compute(x, y + 1); / » ’
11 : ' , \ .
12 System.out. println(val) ,\/ %/\ M
13 } SSTREETA
15 ‘ x 32
15 public static double compute(int x, int y) {)(-
16 int z = y; . ?

17 Yy = X; (M

18 X = z; ‘

19 ') ,
20 System.out. println ("x” + y + 2z); XQ\L&

21 ~

22 return Math.pow(x, y); o Y i
23 } =+ ' ' 65 6 ‘ O
24

25 }

-t ra t e Benjamin Xie, Greg Nelson, and Andrew J. Ko (2017). An
Explicit Strategy to Scaffold Novice Program Tracing.SIGCSE.

* In a controlled experiment with 15 minutes of
practice, 12 students who learned the strategy
were more systematic than 12 who didn't,
resulting in:

* 15% higher performance on problems in
the lab

» 7% higher on midterm that was mostly
writing focused

STRATEGY: Understanding the Problem;

nnnnnnnnnnnnnnnnnnnnnnnnn

aaa

eeeeeeeeeeeeeeeeeeee

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

* No midterm failures (compared to 25%
failure in control)

66

Making programs
easier to read

Requiring learners to directly observe
operational semantics and map them to
syntax can significantly increase
learning outcomes.

67

Making programs
easler to write

One theory, one idea

68

Program writing

o Little prior work theorizing about what
program writing skills actually are

* Most prior work compares to expert and novices,
showing that novices are unsystematic,
speculative, and ineffective

* Afew papers show that the more developers
"self-regulate” their problem solving, the more

productive they are

69

Schraw, Crippen,, & Hartley (2006). Promoting

°
5 e ‘ -F_ re l | ‘ at I O n self - regulation in science education. Research
in Science Education 36, 1-2, 111 - 139.

e From educational psychology, refers to one’s
ability to reflect on, critique, and control one’s
thoughts and behaviors during problem solving:

* Explicit planning skills

* Explicit monitoring of one’s process

* Explicit monitoring of one’s comprehension
* Reflection on one’s cognition

* Self-explanation of decisions

70

Li, P., Ko, AJ., & Zhu, J. (2015)

Great engineers are
highly self-regulating Ze===

 Interviewed 59 senior developers at Microsoft and
surveyed 1,926 about what makes a great software

engineer:
e Top attributes included:

e Resourceful
e Persistent

 Self-regulating

71

Dastyni’s theory of

program writing

Dastyni Loksa

* Programming involves iteration * Programming requires:
through 6 key activities:

Interpreting problems

Searching for similar problems

Searching for solutions
Evaluating solutions
Implementing solutions

Evaluating implementations

/2

* A knowledge repository of
problems and solutions (in
memory or elsewhere)

» Self-regulation skills to help
a programmer:

e Select strategies for
completing activity

 Deciding when a strategy
s failing or successful

Selt-regulation is

Loksa, D., Ko, A.J.(2016) . The Role
of Self-Regulation in Programming

related to success SuliaE ™ ik

e Observed think aloud of 37 novices in CS1 and
CS2 writing solutions to several programming
problems.

« Most novices engaged in self-regulation, but
infrequently and supertficially

e Self-regulation related to fewer errors, but only for
novices with sufficient prior knowledge to solve
problems

/3

Loksa et al. (2016).
Programming, Problem Solving,

o
‘ 't h 't ? and Self-Awareness: Effects of
a n W e e a C I ° Explicit Guidance. ACM CHI.

Dastyni Loksa

* Taught 48 high schoolers with no prior programming
experience HTML, CSS, JavaScript and React for 1
week, then had them build personal web sites for 1
more week

e Treatment group received:

* Learned Dastyni’s theory of program writing

* Before receiving help, required to practice selt-regulation,
explaining which activity they were doing, what their
strategy was, and whether it was working

74

Loksa et al. (2016).
Programming, Problem Solving,

I and Self-Awareness: Effects of
e S Explicit Guidance. ACM CHI.
o

Dastyni Loksa

More productive Higher programming self-efficacy

140 2
® Expr Init. m Ctrl Init.

120 :
Expr Pres. u Ctrl Pres.
100

80 /
60 -1
—a— Ctrl Expr
40 -2
0 1 2 3 4 5 6 7 8 9
-

Day5 Day6 Day7 Day38 Day 9

More self-defined work No growth mindset erosion
50 2
xpr mei : H——-\-—I—H_._H
25 ‘1)
i —a— Ctrl Expr
-2
0 vl 0 1 2 3 4 5 6 7 8 9

79

Making programs
easler to write

Teaching programming
self-reqgulation promotes
independence, increased
productivity, and higher
self-efficacy.

/6

What's next?

CST mastery

New NSF Cyberlearning

Min Li Benji Xie

* Prior work shows increased learning, but not mastery,
which requires personalized content and feedback

* Human tutors can provide this, but can't scale it

* We're building a tutor that provides infinite
personalized practice by applying program synthesis
and our theories of programming knowledge

* Goal: every student masters CS1 contentin 10 hours

/8

Strategies

NeW NSF SHF Medium Dastyni Loksa Thomas LaToza

» Self-regulation is only useful with good strategies

* Defining 1) what programming strategies are, 2) how
to describe them, 3) which ones exist, 4) when they're
effective, 5) support for learning and executing them.

* Goal: A new science of programming strategies
analogous to other disciplines’ “engineering
handbooks,” which show how to solve problems in a
discipline

79

Robust APl learning

New theory of APl knowledge as domain concepts,
design templates, and APl execution semantics

Techniques to automatically extract this knowledge
from APl implementations

Building a tutor that generates on-demand AP
tutorials using this extracted knowledge.

Goal: rapid, robust APl learning at scale

80

amazon

": == Microsoft

EEEEEEEEEEEEEEEEEEEEEE

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

D E ’J_L # KHANACADEMY
snyc
SCRATCH, CSEd > salesforce
T accenture

Can'tdo it alone...

* Many great faculty contributing to computing
education research from PL, Software Engineering,

and HCI. Join us!

Our doctoral students need tenure-track positions to
continue their work. Hire them!

81

Thanks!

Millions try to learn to code, but fail.
Explicit instruction and feedback on semantics is key.
Learning tech like Gidget and PLTutor are scalable and effective

Pedagogies like tracing strategies and self-regulation
prompting are effective and immediately adoptable

Supported by NSF, Google, Microsoft, Adobe, the
University of Washington.

Google

" BB Microsoft

Thanks to my wonderful doctoral and
undergraduate students, and the hundreds of
participants in our studies!

82

