
Learning to code
why we fail, how we flourish

Andrew J. Ko, Ph.D.
Code & Cognition Lab
The Information School

1

Me
• Professor for the last ~10 years at UW Seattle

• Ph.D. from Carnegie Mellon’s HCI Institute

• Background in CS, Psychology, and Design

2

Code is the most powerful, least
usable interface we’ve invented
• Everyone that wants to code should be able to

• But there are immense learning barriers

• I spent the first decade trying to lower these
barriers by creating more usable interactive
developer tools

3

read debugverifytestwrite

Skills > tools
• I spent 3 years as CTO

managing ~8 developers at
AnswerDash

• What I saw:

• Tools only amplify skills

• Skills come from learning

• Learning comes from teaching

• I spent most of my time teaching

4

Millions want to learn to code

5

Millions want to learn to code

$1.3 billion

5

Are people learning?

6

we have (some) evidence

77% of Code.org's 500 million K-12
learners complete 0-2 puzzles code.org

7

Record enrollment in AP CS, but most
don’t take exam, and 60% who do, fail it
(especially underrepresented
minorities) College Board

8

After a year of intro courses, most
undergrads can’t accurately predict the
outcome of simple programs, or solve
simple programming problems McCracken et al. 2001,
Lister et al. 2004 et al. 2013, Seppälä et al. 2015

9

In 2017, 23,000 adults in 95 U.S. coding
bootcamps; 24 report dropout rates of
10-50% CourseReport.com

10

62% of employers view applicants to entry-
level developer positions as lacking basic
programming knowledge Career Advisory Board Survey 2016

11

So I did some reading.
• Read seminal literature in learning science and

education e.g. How people learn: Brain, mind,
experience, and school

• Read 30 years of computing education research:

• ACM International Computing Education Research
Conference (ICER)

• ACM Transactions on Computing Education (TOCE)

• SIGCSE Technical Symposium (SIGCSE)

12

Why people fail to learn to code
1. People find computing boring, solitary, unwelcoming

2. People struggle to learn their first programming language

3. People struggle to solve programming problems

4. Teachers struggle to teach these things

5. Teachers blame learners for failure

6. People lose confidence and quit

13

1. People find computing boring, solitary, unwelcoming

2. People struggle to learn their first programming language

3. People struggle to solve programming problems

4. Teachers struggle to teach these things

5. Teachers blame learners for failure

6. People lose confidence and quit

My goal

14

• Why are these hard?
• What are effective, equitable, and scalable

ways for people to learn these skills?

This talk

15

• Why learning to program is hard (3 studies)

• Making programs easier to read (1 theory, 3 ideas)

• Making programs easier to write (1 theory, 1 idea)

Why is learning to
program difficult?

16

Study 1 — 70 high school teens

High school
Ko, A.J. and Davis, K. (2017). Computing Mentorship in a Software
Boomtown: Relationships to Adolescent Interest and Beliefs. ACM ICER.

Ko, A.J. et al. (2018). Informal Mentoring of Adolescents about
Computing: Relationships, Roles, Qualities, and Impact. ACM SIGCSE.

18

• Many teens lacked feedback or support about their
learning from teachers and family:

• He do not spent much time with me to be able to
understand my problem in the class or unable to help
me on it... throughout the AP class I would cried myself
to sleep in silent without letting my older brother know
my struggle... (M, Asian, 17)

High school

19

• Some teens had informal computing mentors who
provided encouraging instruction and feedback.

• Associated with stronger interest in learning to code,
independent of gender, socioeconomic status.

• Teens sought teachers and mentors who:

• Would not judge them for their failures

• Would inspire them to learn

• Had the expertise to guide them

Ko, A.J. and Davis, K. (2017). Computing Mentorship in a Software
Boomtown: Relationships to Adolescent Interest and Beliefs. ACM ICER.

Ko, A.J. et al. (2018). Informal Mentoring of Adolescents about
Computing: Relationships, Roles, Qualities, and Impact. ACM SIGCSE.

Study 2 — 26 Bootcamps attendees

Bootcamps
• Some bootcamps were inclusive and encouraging,

but many offered no instruction or feedback:

• So they’re trying to get you into this mentality of you
have to read all the documentation. They sit back in the
background [to let students read the documentation],
and what annoys me is that I’ve paid a lot of money so
that I could have somebody there to teach it to me.

Thayer, K. and Ko, A.J. (2017). Barriers Faced by Coding Bootcamp
Students. ACM ICER.

21

Bootcamps
• Many bootcamps offered an unwelcoming culture

for learners without prior knowledge:

• It was divided, the class. Those with experience, I think,
they were looking down at [those of us without
experience] because maybe there were certain things
we were supposed to know and we didn’t.

Thayer, K. and Ko, A.J. (2017). Barriers Faced by Coding Bootcamp
Students. ACM ICER.

22

Study 3 — 30 Coding Tutorials

Tutorials
• Four learning science principles

1. Connect instruction to prior knowledge

2. Organize declarative knowledge

3. Offer personalized feedback on practice

4. Foster self-regulation in problem solving

• Ada completed all 30 tutorials across 100+ hours,
judging every lesson against these principles

Kim, A. and Ko, A.J. (2017). A Pedagogical Analysis of Online
Coding Tutorials. ACM SIGCSE.

24

Tutorials
• Most tutorials failed to meet all them:

1. No connection to prior knowledge

2. No organization of declarative knowledge about
programming languages

3. No personalized feedback on program correctness or
errors

4. No instruction on how to solve programming
problems.

Kim, A. and Ko, A.J. (2017). A Pedagogical Analysis of Online Coding Tutorials. ACM SIGCSE.

25

✘

✘

✘

✘

Why is learning to
program difficult?

26

Few of these contexts actually teach
programming. There are many
opportunities to read and write code, but
learners receive little feedback on whether
they are reading or writing correctly.

27

One theory, three ideas

Making programs
easier to read

Extant theories about why
understanding programs is hard
• Wrong programming language

• Static typing, syntax, and errors matter, but only a little (e.g.,
Stefik & Siebert 2013)

• Wrong IDE

• Relative to text, drag and drop “blocks” editors reduce
dropout, but don’t improve learning (Cooper et al. 2001)

• Wrong biology

• No evidence of “geek gene” or bimodal grade distributions
(Patitsas et al. 2016)

28

Extant theories about why
understanding programs is hard
• Wrong programming language

• Static typing, syntax, and errors matter, but only a little (e.g.,
Stefik & Siebert 2013)

• Wrong IDE

• Relative to text, drag and drop “blocks” editors reduce
dropout, but don’t improve learning (Cooper et al. 2001)

• Wrong biology

• No evidence of “geek gene” or bimodal grade distributions
(Patitsas et al. 2016)

28

Wrong
pedagogy

A new definition of PL knowledge

Knowing a PL means:

1. Being able to reliably and accurately predict an arbitrary
program’s operational semantics without the aid of a
runtime environment. (Reading a program and knowing
what it will do).

2. Knowing how syntax maps onto operational semantics.

Note that I’m excluding knowledge of common design
patterns, architectures, tools, norms, etc. This strictly
concerns the ability to accurately read programs.

29

An example
Knowing a JavaScript if-statement means knowing:

if(dataIsValid	&&	serviceIsOnline)	{	
submit();	

}	
else	{	
	alert(“Bad	error	message!”);	
}

1 Condition is evaluated

2 If it’s true, all of the
statements between the
first set of braces are
executed, and everything
between the else braces
are skipped.

3 Otherwise, the statements in the first
set are skipped, and the statements in
the second set are executed.

30

Knowing a entire PL
• Knowing all of JavaScript means knowing all of the

semantics for JavaScript’s entire grammar

• That’s about 90 non-terminals in the grammar, each
with its own semantic nuances

• Most introductory programming courses never
explain any of this:

• In UW’s CS1 course, the 1st homework is to write a Java
program with function declarations, function calls, string
literals. None of the lectures explain any of this, and, not
surprisingly, most students fail.

31

Four major pedagogies
Learn formal semantics Explain via natural language

Write code Step through execution

32

Four major pedagogies
Learn formal semantics Explain via natural language

Write code

No syntax mapping;
Requires learning a notation

Step through execution

32

Four major pedagogies
Learn formal semantics Explain via natural language

Write code

No syntax mapping;
Requires learning a notation

Ambiguous, weak
syntax mapping

Step through execution

32

Four major pedagogies
Learn formal semantics Explain via natural language

Write code

No syntax mapping;
Requires learning a notation

Ambiguous, weak
syntax mapping

Requires learner to
infer semantics

Step through execution

32

Four major pedagogies
Learn formal semantics Explain via natural language

Write code

No syntax mapping;
Requires learning a notation

Ambiguous, weak
syntax mapping

Requires learner to
infer semantics

Step through execution

Masks semantics within a
line of code

32

How should we teach
syntax semantics?
Teach a “notional machine” du Boulay 1989

1. Show each step of semantics and their explicit
effects on the program counter, call stack, and
memory

2. Map semantics to concrete syntax, creating an
association between syntax and its side effects

33

Three ideas
PLTutor Tracing StrategiesGidget

Mike Lee, Ph.D. Greg Nelson Benji Xie

Learners discover
semantics through

debugging

Tutor explicitly
teaches

semantics

Learner
reminded to

follow semantics

34

Gidget
• Frame coding as a collaboration

between a person and computer

• Give learner a sequence of
debugging puzzles

• Guide learners’ attention to
contextualized instruction on
syntax and semantics of it’s
Pythonic language

helpgidget.org
Mike Lee

35

Gidget helpgidget.org
Mike Lee

Lee et al. 2014, VL/HCC

36

Gidget helpgidget.org
Mike Lee

Lee et al. 2014, VL/HCC

36

Gidget helpgidget.org
Mike Lee

Lee et al. 2014, VL/HCC

37

Gidget helpgidget.org
Mike Lee

Lee et al. 2014, VL/HCC

37

code
editor

runtime
state

explanation
test

case

output

Gidget helpgidget.org
Mike Lee

Lee et al. 2014, VL/HCC

38

37 levels teaching 12 semantics, including
formative assessments to verify understanding

Gidget helpgidget.org
Mike Lee

Lee et al. 2014, VL/HCC

38

37 levels teaching 12 semantics, including
formative assessments to verify understanding

level 20 teaches function calls

Gidget helpgidget.org
Mike Lee

Lee et al. 2014, VL/HCC

39

level 20 teaches function calls

Gidget helpgidget.org
Mike Lee

Lee et al. 2014, VL/HCC

39

Gidget helpgidget.org
Mike Lee

Lee et al. 2014, VL/HCC

40

Gidget helpgidget.org
Mike Lee

Lee et al. 2014, VL/HCC

40

Function
definition
semantics

Gidget helpgidget.org
Mike Lee

Lee et al. 2014, VL/HCC

41

Gidget helpgidget.org
Mike Lee

Lee et al. 2014, VL/HCC

41

Gidget explains
syntax and semantics

Gidget helpgidget.org
Mike Lee

Lee et al. 2014, VL/HCC

42

The green line
and Gidget’s

speech bubble
maps syntax to

semantics

Gidget helpgidget.org
Mike Lee

Lee et al. 2014, VL/HCC

42

The green line
and Gidget’s

speech bubble
maps syntax to

semantics

Gidget helpgidget.org
Mike Lee

Lee et al. 2014, VL/HCC

43

Gidget helpgidget.org
Mike Lee

Lee et al. 2014, VL/HCC

43

Gidget points
out function
definitions

Gidget helpgidget.org
Mike Lee

Lee et al. 2014, VL/HCC

44

Gidget helpgidget.org
Mike Lee

Lee et al. 2014, VL/HCC

44

Gidget explains
name resolution
semantics

Gidget helpgidget.org
Mike Lee

Lee et al. 2014, VL/HCC

45

Gidget helpgidget.org
Mike Lee

Lee et al. 2014, VL/HCC

45

Gidget
• Four online controlled experiments with over 1,000

adult learners:

• Learning is 2x as fast as Codecademy tutorial, 2x as
much as open-ended creative exploration Lee & Ko 2015

• Assessment levels significantly increase learning
efficiency Lee et al. 2013

• Giving compiler a face and using personal pronouns
(I, you, we) draws learner’s attention to semantics,
doubling learning efficiency Lee & Ko 2011

• Changes attitudes about difficulty of learning to
code from negative to positive in 20 minutes Charters et
al. 2014

Mike Lee
helpgidget.org

46

Gidget
• Four online controlled experiments with over 1,000

adult learners:

• Learning is 2x as fast as Codecademy tutorial, 2x as
much as open-ended creative exploration Lee & Ko 2015

• Assessment levels significantly increase learning
efficiency Lee et al. 2013

• Giving compiler a face and using personal pronouns
(I, you, we) draws learner’s attention to semantics,
doubling learning efficiency Lee & Ko 2011

• Changes attitudes about difficulty of learning to
code from negative to positive in 20 minutes Charters et
al. 2014

Mike Lee
helpgidget.org

46

Gidget

20,000+ have played via word of
mouth, including Chicago Public
Schools, many retirees (apparently
including my mom)

Directly impacted the design of
code.org's CodeStudio and Apple’s
Swift Playgrounds, used by 10+ million
learners.

Mike Lee
helpgidget.org Lee et al. 2014, VL/HCC

47

http://code.org

Gidget

20,000+ have played via word of
mouth, including Chicago Public
Schools, many retirees (apparently
including my mom)

Directly impacted the design of
code.org's CodeStudio and Apple’s
Swift Playgrounds, used by 10+ million
learners.

Mike Lee
helpgidget.org Lee et al. 2014, VL/HCC

47

http://code.org

Three ideas
PLTutor Tracing StrategiesGidget

Mike Lee, Ph.D. Greg Nelson Benji Xie

Learners discover
semantics through

debugging

Tutor explicitly
teaches

semantics

Learner
reminded to

follow semantics

48

Three ideas
PLTutor Tracing StrategiesGidget

Mike Lee, Ph.D. Greg Nelson Benji Xie

Learners discover
semantics through

debugging

Tutor explicitly
teaches

semantics

Learner
reminded to

follow semantics

49

PLTutor
• Convert operational semantics into

an interactive textbook to be read
before learning to write programs

• Covers the entire JavaScript
semantics in about 3 hours of
practice

• Learner should be able to
accurately predict the behavior of
any JavaScript program

Greg Nelson

Greg Nelson, Benjamin Xie, and Andrew J. Ko (2017).
Comprehension First: Evaluating a Novel Pedagogy and Tutoring
System for Program Tracing in CS1. ACM ICER.

50

PLTutor
• Convert operational semantics into

an interactive textbook to be read
before learning to write programs

• Covers the entire JavaScript
semantics in about 3 hours of
practice

• Learner should be able to
accurately predict the behavior of
any JavaScript program

Greg Nelson

Greg Nelson, Benjamin Xie, and Andrew J. Ko (2017).
Comprehension First: Evaluating a Novel Pedagogy and Tutoring
System for Program Tracing in CS1. ACM ICER.

50

PLTutor
Greg Nelson

Greg Nelson, Benjamin Xie, and Andrew J. Ko (2017).
Comprehension First: Evaluating a Novel Pedagogy and Tutoring
System for Program Tracing in CS1. ACM ICER.

51

Each chapter covers a set of semantics through a
series of programs

PLTutor
Greg Nelson

Greg Nelson, Benjamin Xie, and Andrew J. Ko (2017).
Comprehension First: Evaluating a Novel Pedagogy and Tutoring
System for Program Tracing in CS1. ACM ICER.

52

Program links
syntax to semantics

Lesson explains
purpose of
semantics

State explains
semantics

PLTutor
Greg Nelson

Greg Nelson, Benjamin Xie, and Andrew J. Ko (2017).
Comprehension First: Evaluating a Novel Pedagogy and Tutoring
System for Program Tracing in CS1. ACM ICER.

52

Program links
syntax to semantics

Lesson explains
purpose of
semantics

State explains
semantics

PLTutor
Greg Nelson

Greg Nelson, Benjamin Xie, and Andrew J. Ko (2017).
Comprehension First: Evaluating a Novel Pedagogy and Tutoring
System for Program Tracing in CS1. ACM ICER.

53

purpose of
semantics

PLTutor
Greg Nelson

Greg Nelson, Benjamin Xie, and Andrew J. Ko (2017).
Comprehension First: Evaluating a Novel Pedagogy and Tutoring
System for Program Tracing in CS1. ACM ICER.

53

purpose of
semantics

PLTutor
Greg Nelson

Greg Nelson, Benjamin Xie, and Andrew J. Ko (2017).
Comprehension First: Evaluating a Novel Pedagogy and Tutoring
System for Program Tracing in CS1. ACM ICER.

54

Next moves through both program
execution trace and instruction.

PLTutor
Greg Nelson

Greg Nelson, Benjamin Xie, and Andrew J. Ko (2017).
Comprehension First: Evaluating a Novel Pedagogy and Tutoring
System for Program Tracing in CS1. ACM ICER.

54

Next moves through both program
execution trace and instruction.

PLTutor
Greg Nelson

Greg Nelson, Benjamin Xie, and Andrew J. Ko (2017).
Comprehension First: Evaluating a Novel Pedagogy and Tutoring
System for Program Tracing in CS1. ACM ICER.

55

State teaches semantics in a runtime context,
Lesson generalizes back to purpose

PLTutor
Greg Nelson

Greg Nelson, Benjamin Xie, and Andrew J. Ko (2017).
Comprehension First: Evaluating a Novel Pedagogy and Tutoring
System for Program Tracing in CS1. ACM ICER.

55

State teaches semantics in a runtime context,
Lesson generalizes back to purpose

PLTutor
Greg Nelson

Greg Nelson, Benjamin Xie, and Andrew J. Ko (2017).
Comprehension First: Evaluating a Novel Pedagogy and Tutoring
System for Program Tracing in CS1. ACM ICER.

56

Reverse execution allows learner to review
instruction they didn’t understand.

PLTutor
Greg Nelson

Greg Nelson, Benjamin Xie, and Andrew J. Ko (2017).
Comprehension First: Evaluating a Novel Pedagogy and Tutoring
System for Program Tracing in CS1. ACM ICER.

56

Reverse execution allows learner to review
instruction they didn’t understand.

PLTutor
Greg Nelson

Greg Nelson, Benjamin Xie, and Andrew J. Ko (2017).
Comprehension First: Evaluating a Novel Pedagogy and Tutoring
System for Program Tracing in CS1. ACM ICER.

57

Lesson explains
the side effect of
the semantics
before proceeding
to further
examples.

PLTutor
Greg Nelson

Greg Nelson, Benjamin Xie, and Andrew J. Ko (2017).
Comprehension First: Evaluating a Novel Pedagogy and Tutoring
System for Program Tracing in CS1. ACM ICER.

57

Lesson explains
the side effect of
the semantics
before proceeding
to further
examples.

PLTutor
Greg Nelson

Greg Nelson, Benjamin Xie, and Andrew J. Ko (2017).
Comprehension First: Evaluating a Novel Pedagogy and Tutoring
System for Program Tracing in CS1. ACM ICER.

58

Assessments embedded in execution trace require
learners to predict side effects of semantics.

PLTutor
Greg Nelson

Greg Nelson, Benjamin Xie, and Andrew J. Ko (2017).
Comprehension First: Evaluating a Novel Pedagogy and Tutoring
System for Program Tracing in CS1. ACM ICER.

58

Assessments embedded in execution trace require
learners to predict side effects of semantics.

PLTutor
Greg Nelson

Greg Nelson, Benjamin Xie, and Andrew J. Ko (2017).
Comprehension First: Evaluating a Novel Pedagogy and Tutoring
System for Program Tracing in CS1. ACM ICER.

59

• Required complete re-
architecting of language stack

• Must preserve provenance of
all compiler and runtime state
to facilitate reversibility and
embedded explanations

• Redesigned grammar to
facilitate granular explanations

PLTutor
Greg Nelson

Greg Nelson, Benjamin Xie, and Andrew J. Ko (2017).
Comprehension First: Evaluating a Novel Pedagogy and Tutoring
System for Program Tracing in CS1. ACM ICER.

59

• Required complete re-
architecting of language stack

• Must preserve provenance of
all compiler and runtime state
to facilitate reversibility and
embedded explanations

• Redesigned grammar to
facilitate granular explanations

PLTutor
Greg Nelson

• Compared PLTutor to Codecademy
in a 4-hour controlled experiment
with 40 CS1 students

• Measured learning with SCS1, a
validated assessment of CS1
learning

• PLTutor had 60% higher learning
gains, learning gains predicted
midterm scores

Greg Nelson, Benjamin Xie, and Andrew J. Ko (2017).
Comprehension First: Evaluating a Novel Pedagogy and Tutoring
System for Program Tracing in CS1. ACM ICER.

60

PLTutor
Greg Nelson

• Compared PLTutor to Codecademy
in a 4-hour controlled experiment
with 40 CS1 students

• Measured learning with SCS1, a
validated assessment of CS1
learning

• PLTutor had 60% higher learning
gains, learning gains predicted
midterm scores

Greg Nelson, Benjamin Xie, and Andrew J. Ko (2017).
Comprehension First: Evaluating a Novel Pedagogy and Tutoring
System for Program Tracing in CS1. ACM ICER.

60

Three ideas
PLTutor Tracing StrategiesGidget

Mike Lee, Ph.D. Greg Nelson Benji Xie

Learners discover
semantics through

debugging

Tutor explicitly
teaches

semantics

Learner
reminded to

follow semantics

61

Three ideas
PLTutor Tracing StrategiesGidget

Mike Lee, Ph.D. Greg Nelson Benji Xie

Learners discover
semantics through

debugging

Tutor explicitly
teaches

semantics

Learner
reminded to

follow semantics

62

Strategy
Benji Xie

STRATEGY:​ ​Understanding ​ ​the ​ ​Problem;
​ ​​ ​Run ​ ​the ​ ​Code ​ ​(like ​ ​a ​ ​computer).

UNDERSTAND​ ​THE​ ​PROBLEM

1. Read ​ ​question:​ ​Understand ​ ​what​ ​you ​ ​are ​ ​being ​ ​asked ​ ​to ​ ​do.​ ​At​ ​the ​ ​end ​ ​of​ ​the​ ​problem
instructions,​ ​write ​ ​a ​ ​check​ ​mark:​ ​✔

2. Find​ ​where ​ ​the ​ ​program​ ​begins ​ ​executing​.​ ​At​ ​the ​ ​start​ ​of​ ​that​ ​line,​ ​draw​ ​an ​ ​arrow:​ ​​→
RUN​ ​THE​ ​CODE

3. Execute ​ ​each ​ ​line ​ ​according ​ ​to ​ ​the ​ ​rules​ ​of​ ​Java:

a. From​ ​the ​ ​syntax,​ ​determine ​ ​the ​ ​rule ​ ​for​ ​each ​ ​part​ ​of​ ​the ​ ​line.

b. Follow​ ​the ​ ​rules.

c. Update ​ ​memory​ ​table(s).

d. Find ​ ​the ​ ​code ​ ​for​ ​the ​ ​next​ ​part.

e. Repeat​ ​until ​ ​the ​ ​program​ ​terminates.

Benjamin Xie, Greg Nelson, and Andrew J. Ko (2017). An
Explicit Strategy to Scaffold Novice Program Tracing.SIGCSE.

• When learners have brittle
knowledge of semantics,
they often guess how
programs will execute

• An explicit strategy for
reading programs should
outperform guessing

63

Strategy
Benji Xie

STRATEGY:​ ​Understanding ​ ​the ​ ​Problem;
​ ​​ ​Run ​ ​the ​ ​Code ​ ​(like ​ ​a ​ ​computer).

UNDERSTAND​ ​THE​ ​PROBLEM

1. Read ​ ​question:​ ​Understand ​ ​what​ ​you ​ ​are ​ ​being ​ ​asked ​ ​to ​ ​do.​ ​At​ ​the ​ ​end ​ ​of​ ​the ​ ​problem
instructions,​ ​write ​ ​a ​ ​check​ ​mark:​ ​✔

2. Find​ ​where ​ ​the ​ ​program​ ​begins ​ ​executing​.​ ​At​ ​the ​ ​start​ ​of​ ​that​ ​line,​ ​draw​ ​an ​ ​arrow:​ ​​→
RUN​ ​THE​ ​CODE

3. Execute ​ ​each ​ ​line ​ ​according ​ ​to ​ ​the ​ ​rules​ ​of​ ​Java:

a. From​ ​the ​ ​syntax,​ ​determine ​ ​the ​ ​rule ​ ​for​ ​each ​ ​part​ ​of​ ​the ​ ​line.

b. Follow​ ​the ​ ​rules.

c. Update ​ ​memory​ ​table(s).

d. Find ​ ​the ​ ​code ​ ​for​ ​the ​ ​next​ ​part.

e. Repeat​ ​until ​ ​the ​ ​program​ ​terminates.

64

Benjamin Xie, Greg Nelson, and Andrew J. Ko (2017). An
Explicit Strategy to Scaffold Novice Program Tracing.SIGCSE.

Strategy
Benji Xie

STRATEGY:​ ​Understanding ​ ​the ​ ​Problem;
​ ​​ ​Run ​ ​the ​ ​Code ​ ​(like ​ ​a ​ ​computer).

UNDERSTAND​ ​THE​ ​PROBLEM

1. Read ​ ​question:​ ​Understand ​ ​what​ ​you ​ ​are ​ ​being ​ ​asked ​ ​to ​ ​do.​ ​At​ ​the ​ ​end ​ ​of​ ​the ​ ​problem
instructions,​ ​write ​ ​a ​ ​check​ ​mark:​ ​✔

2. Find​ ​where ​ ​the ​ ​program​ ​begins ​ ​executing​.​ ​At​ ​the ​ ​start​ ​of​ ​that​ ​line,​ ​draw​ ​an ​ ​arrow:​ ​​→
RUN​ ​THE​ ​CODE

3. Execute ​ ​each ​ ​line ​ ​according ​ ​to ​ ​the ​ ​rules​ ​of​ ​Java:

a. From​ ​the ​ ​syntax,​ ​determine ​ ​the ​ ​rule ​ ​for​ ​each ​ ​part​ ​of​ ​the ​ ​line.

b. Follow​ ​the ​ ​rules.

c. Update ​ ​memory​ ​table(s).

d. Find ​ ​the ​ ​code ​ ​for​ ​the ​ ​next​ ​part.

e. Repeat​ ​until ​ ​the ​ ​program​ ​terminates.

65

Benjamin Xie, Greg Nelson, and Andrew J. Ko (2017). An
Explicit Strategy to Scaffold Novice Program Tracing.SIGCSE.

Strategy
• In a controlled experiment with 15 minutes of

practice, 12 students who learned the strategy
were more systematic than 12 who didn’t,
resulting in:

• 15% higher performance on problems in
the lab

• 7% higher on midterm that was mostly
writing focused

• No midterm failures (compared to 25%
failure in control)

Benji Xie

STRATEGY:​ ​Understanding ​ ​the ​ ​Problem;
​ ​​ ​Run ​ ​the ​ ​Code ​ ​(like ​ ​a ​ ​computer).

UNDERSTAND​ ​THE​ ​PROBLEM

1. Read​ ​question:​ ​Understand​ ​what​ ​you​ ​are​ ​being​ ​asked ​ ​to ​ ​do.​ ​At​ ​the ​ ​end ​ ​of​ ​the​ ​problem
instructions,​ ​write ​ ​a ​ ​check​ ​mark:​ ​✔

2. Find​ ​where ​ ​the​ ​program​ ​begins​ ​executing​.​ ​At​ ​the​ ​start​ ​of​ ​that​ ​line,​ ​draw​ ​an​ ​arrow:​ ​​→
RUN​ ​THE​ ​CODE

3. Execute ​ ​each​ ​line​ ​according​ ​to​ ​the​ ​rules​ ​of​ ​Java:

a. From​ ​the​ ​syntax,​ ​determine​ ​the ​ ​rule ​ ​for​ ​each ​ ​part​ ​of​ ​the​ ​line.

b. Follow​ ​the ​ ​rules.

c. Update​ ​memory​ ​table(s).

d. Find​ ​the ​ ​code​ ​for​ ​the​ ​next​ ​part.

e. Repeat​ ​until ​ ​the​ ​program​ ​terminates.

66

Benjamin Xie, Greg Nelson, and Andrew J. Ko (2017). An
Explicit Strategy to Scaffold Novice Program Tracing.SIGCSE.

67

Requiring learners to directly observe
operational semantics and map them to
syntax can significantly increase
learning outcomes.

Making programs
easier to read

Making programs
easier to write

68

One theory, one idea

Program writing
• Little prior work theorizing about what

program writing skills actually are

• Most prior work compares to expert and novices,
showing that novices are unsystematic,
speculative, and ineffective

• A few papers show that the more developers
“self-regulate” their problem solving, the more
productive they are

69

Self-regulation
• From educational psychology, refers to one’s

ability to reflect on, critique, and control one’s
thoughts and behaviors during problem solving:

• Explicit planning skills

• Explicit monitoring of one’s process

• Explicit monitoring of one’s comprehension

• Reflection on one’s cognition

• Self-explanation of decisions

Schraw, Crippen,, & Hartley (2006). Promoting
self - regulation in science education. Research
in Science Education 36, 1-2, 111 - 139.

70

Great engineers are
highly self-regulating
• Interviewed 59 senior developers at Microsoft and

surveyed 1,926 about what makes a great software
engineer:

• Top attributes included:

• Resourceful

• Persistent

• Self-regulating

Paul Li

71

Li, P., Ko, A.J., & Zhu, J. (2015)
What Makes a Great Software
Engineer? ICSE.

Dastyni’s theory of
program writing
• Programming involves iteration

through 6 key activities:

• Interpreting problems

• Searching for similar problems

• Searching for solutions

• Evaluating solutions

• Implementing solutions

• Evaluating implementations

• Programming requires:

• A knowledge repository of
problems and solutions (in
memory or elsewhere)

• Self-regulation skills to help
a programmer:

• Select strategies for
completing activity

• Deciding when a strategy
is failing or successful

Dastyni Loksa

72

Self-regulation is
related to success
• Observed think aloud of 37 novices in CS1 and

CS2 writing solutions to several programming
problems.

• Most novices engaged in self-regulation, but
infrequently and superficially

• Self-regulation related to fewer errors, but only for
novices with sufficient prior knowledge to solve
problems

Dastyni Loksa

73

Loksa, D., Ko, A.J. (2016) . The Role
of Self-Regulation in Programming
Problem Solving Process and
Success. ACM ICER.

Can we teach it?
• Taught 48 high schoolers with no prior programming

experience HTML, CSS, JavaScript and React for 1
week, then had them build personal web sites for 1
more week

• Treatment group received:

• Learned Dastyni’s theory of program writing

• Before receiving help, required to practice self-regulation,
explaining which activity they were doing, what their
strategy was, and whether it was working

74

Loksa et al. (2016) .
Programming, Problem Solving,
and Self-Awareness: Effects of
Explicit Guidance. ACM CHI.

Dastyni Loksa

Yes!
Dastyni Loksa

More productive

More self-defined work

Higher programming self-efficacy

No growth mindset erosion

75

Loksa et al. (2016) .
Programming, Problem Solving,
and Self-Awareness: Effects of
Explicit Guidance. ACM CHI.

76

Teaching programming
self-regulation promotes
independence, increased
productivity, and higher
self-efficacy.

Making programs
easier to write

What’s next?

77

CS1 mastery
New NSF Cyberlearning

• Prior work shows increased learning, but not mastery,
which requires personalized content and feedback

• Human tutors can provide this, but can’t scale it

• We’re building a tutor that provides infinite
personalized practice by applying program synthesis
and our theories of programming knowledge

• Goal: every student masters CS1 content in 10 hours

Benji Xie

78

Min Li

Strategies
New NSF SHF Medium

• Self-regulation is only useful with good strategies

• Defining 1) what programming strategies are, 2) how
to describe them, 3) which ones exist, 4) when they’re
effective, 5) support for learning and executing them.

• Goal: A new science of programming strategies
analogous to other disciplines’ “engineering
handbooks,” which show how to solve problems in a
discipline

Thomas LaToza

79

Dastyni Loksa

Robust API learning

• New theory of API knowledge as domain concepts,
design templates, and API execution semantics

• Techniques to automatically extract this knowledge
from API implementations

• Building a tutor that generates on-demand API
tutorials using this extracted knowledge.

• Goal: rapid, robust API learning at scale

Kyle Thayer

80

Mike Ernst

Can’t do it alone…
• Many great faculty contributing to computing

education research from PL, Software Engineering,
and HCI. Join us!

• Our doctoral students need tenure-track positions to
continue their work. Hire them!

81

Millions try to learn to code, but fail.

Explicit instruction and feedback on semantics is key.

Learning tech like Gidget and PLTutor are scalable and effective

Pedagogies like tracing strategies and self-regulation
prompting are effective and immediately adoptable

Thanks!

Supported by NSF, Google, Microsoft, Adobe, the
University of Washington.

Thanks to my wonderful doctoral and
undergraduate students, and the hundreds of
participants in our studies!

82

