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Control Theory: focuses on modeling systems and designing inputs to adjust behavior—e.g., stabilize, track
a trajectory, etc.

Classical control (developed largely pre-1960s) largely adopts an input-output approach:

System
input

controller

reference output

�

Key theoretical tool : Fourier/Laplace transform (i.e. Frequency domain analysis—root locus, frequency re-
sponse)
Return to di↵erential equations beginning in the ’60s to address:

• numerical simulation

• many inputs/outputs

• ill-defined inputs/outputs

• non-linearities

• optimality

Modern control theory (⇠1950’s), i.e. state-space approach: Overcame some limitations of classical
control enabling control of fighter jets, e.g. (related “state space” approach to ODE’s is over 100 years old;
control theorist just adopted it)

• System/model state is defined to capture all relevant info about past

• State often denoted by x 2 Rn, where n is state-space dimension.

What is the state for the above examples?

• engine speed/velocity

• position and yaw/pitch/roll and velocities (aircraft and quadrotor)

• disk speed/velocity

• species population, food supply, predator population, etc.

• temperature along cooling line
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3 Dynamical Systems (non-comprehensive) Taxonomy

(This is not comprehensive as there are other types of systems combining various aspects in the diagram;
however, this picture give a bit of a sense of broad categories of dynamical systems)

dynamical systems

mathematical models

continuous time discrete time discrete state

non-linear

linear

time-
varying

time-
invariant

time-
varying

time-
invariant

non-linear

linear

time-
varying

time-
invariant

time-
varying

time-
invariant

This course:
given linear di↵erential or di↵erence equations, conduct rigorous analysis and design.

4 Finite Dimensional Systems as Models

How to describe a dynamical system? Some options:

• Database/look-up table containing all inputs and resulting outputs. (What if output depends on input
history? What if desired input is not in table?)

• Function/routine in computer code

• Set of mathematical equations

As indicated in our diagram, we will study continuous-time and discrete-time finite-dimensional systems
described by ordinary di↵erential equations or di↵erence equations.

So, in continuous time this might look like. . .
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Continuous-Time: (t 2 R+ := [0,1))

ẋ = f(t, x, u), x 2 Rn, u 2 Rm

y = g(t, x, u), y 2 Rp

We have the following nomenclature:

• x is the state,

• u is the (control) input,

• y is the output (observation)

Discrete-Time: (k 2 N = {0, 1, 2, . . .})

x[k + 1] = f(k, x, u), x 2 Rn, u 2 Rm

y[k] = g(k, x, u), y 2 Rp

What about apparently more exotic systems with higher order derivatives?
For instance, consider

z(n) = f(t, z, z(1), z(2), . . . , z(n�1))

where z(n) indicates the n–th derivative of the function z(t). For simplicity, assume z 2 R. Define new state
variables

x1 = z, x2 = z(1), . . . , xn = z(n�1)

Then, we have

ẋ1 = x2

ẋ2 = x3

...
...

ẋn = f(t, x1, x2, . . . , xn)

Thus, without loss of generality (w.l.o.g), we study first-order di↵erential equations.

Example Systems: Vibrating Springs
We consider the motion of an object with mass at the end of a spring that is either vertical (as in Figure 1) or
horizontal on a level surface (as in Figure 2). Hooke’s Law says that if the spring is stretched (or compressed)
z units from its natural length, then it exerts a force that is proportional to z—that is,

restoring force = �kx

where k is a positive constant called the spring constant. If we ignore any external resisting forces (due to
air resistance or friction) then, by Newton’s Second Law (force equals mass times acceleration), we have

mẍ = �kx or mẍ+ kx = 0

Let x1 = z and x2 = ż. Then, ẋ1 = ż = x2 and ẋ2 = z̈ = � k
mz = � k

mx1. Hence,

ẋ1 = x2

ẋ2 = � k

m
x1
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mz

0
equilibrium

position
m

Figure 1: Vertical Pull

m

z0

Figure 2: Horizontal Pull

In this course, we will focus on (finite-dimensional) linear time-varying (LTV) systems. So what do
these look like notationally:

Continuous Time:

ẋ = A(t)x+B(t)u, x 2 Rn, u 2 Rm

y = C(t)x+D(t)u, y 2 Rp

where

• t 2 R: time

• x(t) 2 Rn: state (vector)

• u(t) 2 Rm: input or control

• y(t) 2 Rp: output

• A(t) 2 Rn⇥n: dynamics (matrix)

• B(t) 2 Rn⇥m: input matrix

• C(t) 2 Rp⇥n: output or sensor matrix

• D(t) 2 Rp⇥m: Feedthrough matrix

Equations are often written as

ẋ = Ax+Bu

y = Cx+Du

• A CT LDS is a first order vector di↵erential equation

• also called state equations or m-input, n-state, p-output LDS
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Discrete Time:

x[k + 1] = A[k]x[k] +B[k]u[k], x 2 Rn, u 2 Rm

y[k] = C[k]x[k] +D[k]u[k], y 2 Rp

Finally, we will further specialize our results to linear time-invariant (LTI) systems.

Continuous Time LTI:

ẋ = Ax+Bu, x 2 Rn, u 2 Rm

y = Cx+Du, y 2 Rp

where A 2 Rn⇥n, B 2 Rn⇥m, C 2 Rp⇥n, and D 2 Rp⇥m are static matrices.

Discrete Time LTI:

x[k + 1] = Ax[k] +Bu[k], x 2 Rn, u 2 Rm

y[k] = Cx[k] +Du[k], y 2 Rp

Some other points:

• most linear systems encountered are time-invariant: A,B,C,D are constant as above—i.e. don’t depend
on t

• when there is no input u (hence, no B or D) system is called autonomous
• very often there is no feedthrough—i.e. D = 0
• when u(t) and y(t) are scalar, the system is called single-input, single-output (SISO); when input & output

signal dimensions are more than one, MIMO

History Lesson:

• parts of LDS theory can be traced to 19th century
• builds on classical circuits & systems (1920s on) (transfer functions . . . ) but with more emphasis on linear

algebra
• first engineering application: aerospace, 1960s
• transitioned from specialized topic to ubiquitous in 1980s (just like digital signal processing, information

theory, . . . )

Many dynamical systems are nonlinear, yet

• most techniques for nonlinear systems are based on linear methods; e.g., linearization to determine stability
or to construct extended Kalman Filters. . .

• methods for linear systems often work unreasonably well, in practice, for nonlinear systems
• if you don’t understand linear dynamical systems you certainly can’t understand nonlinear dynamical

systems
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Lecture 2: Introduction to Linear Dynamical Systems and ODE Review

Lecturer: L.J. Ratli↵

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications,
meaning you should take your own notes in class and review the provided references as opposed to taking
these notes as your sole resource. I provide the lecture notes to you as a courtesy; it is not required that I
do this. They may be distributed outside this class only with the permission of the Instructor.

1 General Systems Models

A continuous time finite dimensional dynamical system is specified by a systems of equations of the form

ẋi(t) = fi(t, x1(t), . . . , xn(t), u1(t), . . . , um(t)), i = 1, . . . , n

yi(t) = gi(t, x1(t), . . . , xn(t), u1(t), . . . , um(t)), i = 1, . . . , p

where ui, i = 1, . . . ,m denote the inputs and yi, i = 1, . . . , p denotes the outputs (responses), xi, i = 1, . . . ,m
denote the state variables, and t denotes time.

A complete description of such systems will usually also require1 a set of initial conditions xi(t0), i = 1, . . . , n
where t0 is the initial time.

In vector notation, we write the above as

ẋ = f(t, x(t), u(t)), x 2 Rn
, u 2 Rm

y = g(t, x, u), y 2 Rp

The discrete time counter part is given by

x(k + 1) = f(k, x(k), u(k)), x 2 Rn
, u 2 Rm

y(k) = g(t, x(k), u(k)), y 2 Rp

Sometimes we write x(k) = xk.

2 Linear Dynamical System Representation

We study dynamical systems of the form

ẋ(t) = A(t)x(t) +B(t)u(t) (state DE)

y(t) = C(t)x(t) +D(t)u(t) (read-out eqn.)

where as usual x(t) 2 Rn, u(t) 2 Rm, and y(t) 2 Rp. A(·), B(·), C(·), D(·) are matrix-valued functions on
R+, assumed to be piecewise continuous. We are going to start with continuous time.

2.1 A brief review of analysis

1The exception being if other su�cient data are given such as boundary conditions.

1
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Definition 2.1 (Continuity) Let W ⇢ R denote an open interval and consider a function f : W ! R.
The function f is said to be continuous at the point t0 2 U if

lim
t!t0

f(t) = f(t0)

exists. That is, for every " > 0, there exists �(t0, ") > 0 such that

|f(t)� f(t0)| < "

whenever |t � t0| < �(t0, ") and t 2 W . If f is continuous at every point in W , then we just say f is a
continuous function or we say f is continuous on W .

Note that � depends on the choice of t0 and " in the above definition. If at each t0 2 W , it is true that there
is a � > 0 independent of t0 (i.e., � = �(")), such that |f(t) � f(t0)| < " whenever |t � t0| < � and t 2 W ,
then we say f is uniformly continuous on W .

We denote by C(W,R) the space of real-valued continuous functions on W .

Definition 2.2 (Piecewise Continuity.) A function or curve is piecewise continuous if it is continuous
on all but a finite number of points in any compact (closed and bounded in R) interval.

For a function f : W ! R : t 7! z, let f (0) ⌘ f and f
(k) ⌘ @

k
f/@t

k. For W ⇢ R an open set, given r 2 N
and W an open set we will use the notation

C
r(W,R) = {f : W ! R| f (j) exists on W and f

(j) 2 C(W,R), j = 0, 1, . . . , r}

for the C
r-functions. For W ⇢ Rn with non-empty interior, we can define C(W,R) and C

r(W,R) similarly.
Indeed,

C
r(W,R) =

(
f : W ! R| f (j) exists on W and f

(j) =
@
j
f

(@xi1
1 · · · @xin

n
2 C(W,R),

X

`

i` = j, j = 0, 1, . . . , r

)

Let W be a subset of Rn with non-empty interior and let f : W ! Rm. Then f = (f1, . . . , fm)> where
fi : W ! R. We say that f 2 C(W,Rm) if fi 2 C(W,R) for each i and that for some r, f 2 C

r(W,Rm) if
fi 2 C

r(W,R) for each i.

2.2 Back to systems theory

The linear time invariant counter part is given by

ẋ(t) = Ax(t) +Bu(t) (state DE)

y(t) = Cx(t) +Du(t) (read-out eqn.)

Throughout the course I will present most things in continuous time and then either I will show you the
analogs in discrete time, or you will read on your own about discrete time (and learn through homework
examples). The notation we will use for discrete-time, finite dimensional dynamical systems is as follows:

x(k + 1) = A(k)x(k) +B(k)u(k),

y(k) = C(k)x(k) +D(k)u(k)

This type of system characterization is called state-space description or internal description of finite-dimensional
systems. Another way of describing continuous-time and discrete-time finite-dimensional dynamical systems
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involves operators that establish a relationship between the system inputs and outputs. Such characterization
is called input–output description or external description of a system.

The input function u(·) 2 U where

U = {u(·)| u : R+ ! Rm
, u(·) is piecewise continuous} = PC(R+,Rm)

Let define the state transition map and the response map:

x(t) = s(t, t0, x0, u)

y(t) = ⇢(t, t0, x0, u)

We now study the state transition map s(t, t0, x0, u) as the unique solution to the state DE given by

ẋ(t) = A(t)x(t) +B(t)u(t)

for some initial condition (t0, x0) 2 R+ ⇥ Rn, x(t0) = x0 and u(·) 2 U . Under these conditions (u.t.c.), the
above reduces to

ẋ(t) = f(x(t), t), t 2 R, x(t0) = x0

where the right-hand side is a given function

f : Rn ⇥ R+ ! Rn : (x, t) 7! f(x, t) = A(t)x(t) +B(t)u(t).

3 Solutions to ODEs: The Practice

I will not cover this in class since it should be a review for you. Please read through on your own.

Reference: A good reference for basic ODEs is Kreyszig, ’Advanced Engineering Mathematics’. Chapter
1 is basic ODE stu↵. It has loads of examples.

Let’s just review how to solve a simple ordinary di↵erential equation. The kinds of ODEs we will deal with
in this class largely fall in the class of so-called separable equations of the form

dx = f(x)g(t)dt

which are solved by
Z

1

f(x)
dx =

Z
g(t) dt+ C

Example 3.1 Consider the following ODE:

(t2 � 1)
dx

dt
+ 2x = 0
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We can solve this using the above technique. Indeed,

dx

dt
(t2 � 1) = �2x =) dx(t2 � 1) = �2xdt

=)
Z

� 1

2x
dx =

Z
1

t2 � 1
dt

=) �1

2
ln |x| = ln

����
t+ 1

t� 1

����+ C

=) |x| = exp

✓
ln

����
t+ 1

t� 1

����

◆
exp(C)

=) x = k

✓
t+ 1

t� 1

◆

Definition 3.1 (Linear ODE) A first order ODE is linear if it can be written as

x
0 + p(t)x = r(t) (1)

and it is homogeneous if r(t) = 0.

Let us find a formula for the general solution of a linear ODE on some interval I and assuming p and r are
continuous (we will get to the formal requirements for existence and uniqueness next). For the homogeneous
equation

x
0 + p(t)x = 0

this is very simple. Indeed, separating variables we have

dx

x
= �p(t)dt =) ln |x| = �

Z
p(t) dt+ c

⇤

and by taking the exponential of both sides we get

x(t) = c exp(�
Z

p(t) dt)

where c = ± exp(c⇤) when x ? 0.

Now, we solve the non-homogeneous equation given this form of solution. It turns out that the general form
ODE has an integrating factor depending only on x. First, let us recall integrating factors and the notion of
exactness.

Definition 3.2 (Exactness.) A first-order di↵erential equation of the form

P (t, x)dt+Q(t, x)dx = 0

is called an exact di↵erential equation if the di↵erential form

P (t, x)dt+Q(t, x)dx

is exact—that is, there exists some function h such that

dh =
@h

@t
dt+

@h

@x
dx

with @h
@t = P (t, x) and @h

@x = Q(t, x).
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Fact 3.1 A necessary and su�cient condition for exactness is that

@P

@x
=

@
2
h

@x@t
,
@Q

@t
=

@
2
h

@t@x

since for su�ciently smooth functions—here we just need h 2 C
2(Rn ⇥ R,R)—the second-order mixed

partial derivatives are equal. Equality of second derivatives is the Schwarz’s theorem (or Clairaut’s
theorem on equality of mixed partials).

The niceness of exactness comes from the fact that if the ODE is exact then

dh = 0

can be integrated to directly get the general solution

h(t, x) = c

We can reduce an ODE to an exact form if there exists a so-called integrating factor.

Definition 3.3 (Integrating Factor.) If we have an ODE

P (t, x)dt+Q(t, x)dx = 0 (2)

and there exists a function F—which in general will be a function of both x and t—such that

FPdt+ FQdx = 0

is exact, then F is an integrating factor.

Then due to exactness, we have that
@

@x
(FP ) =

@

@t
FQ

and by the product rule
FxP + FPx = FtQ+ FQt

If we get lucky and the integrating factor only depends on one variable, say t, then Fx ⌘ 0 and Ft = F
0 =

dF/dt so that
FPx = F

0
Q+ FQt

Dividing by FQ, we get that
1

F

dF

dt
=

1

Q

✓
@P

@x
� @Q

@t

◆
(3)

It turns out that if (5) is such that the right-hand side of the above depends only on t, then (5) has an
integrating factor F = F (t) which is obtained by integrating the above and taking exponentials of both sides
to get

F (t) = exp

✓Z
R(x) dx

◆

where

R(x) =
1

Q

✓
@P

@x
� @Q

@t

◆

Now, coming back to our problem, we first write (1) as

(px� r)dt+ dx = 0 () Pdt+Qdx = 0, P = px� r, Q = 1

Hence (3) becomes
1

F

dF

dt
= p(t)
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Since this depends only on t, the ODE has integrating factor F (t) which we obtain as

F (t) = exp

✓Z
p(t) dt

◆

Multiplying our ODE by this F , we get

exp

✓Z
p(t) dt

◆
(x0 + px) =

✓
exp

✓Z
p(t) dt

◆
x

◆0
= exp

✓Z
p(t) dt

◆
r

Integrating we get

exp

✓Z
p(t) dt

◆
x =

Z
exp

✓Z
p(t) dt

◆
rdt+ c

Let h =
R
p(t) dt and divide on both sides by exp(h) to get

x(t) = exp(�h)

✓Z
exp(h)r dt+ c

◆

Example 3.2 Consider the following ODE:

dx

dt
+ 3

x

t
=

e
t

t3

It is of the form
dx

dt
+ Py = Q

so the integrating factor is

exp

✓Z
P dt

◆
= exp

✓Z
3

t
dt

◆
= exp(3 ln t) = exp(ln t3) = t

3

Multiplying by the integrating factor we get

t
3 dx

dt
+ 3t2x = e

t

Now, we integrate to get
t
3
x = e

t + c

where c is some constant (eventually we will see this is related to the initial condition). Thus,

x =
e
t + c

t3

4 Solutions to ODEs: The Theory

Before getting into the specifics of linear systems, we will review existence and uniqueness of solutions to
general systems. Consider the general autonomous ordinary di↵erential equation (ODE) given by

ẋ = f(x, t)

The function f must satisfy two assumptions.

(A1) Let D be a set in R+ which contains at most a finite number of points per unit interval. D is
the set of possible discontinuity points; it may be empty. For each fixed, x 2 Rn, the function
t 2 R+\D ! f(x, t) 2 Rn is continuous and for any ⌧ 2 D, the left-hand and right-hand limits
f(x, ⌧�) and f(x, ⌧+), respectively, are finite vectors in Rn.
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(A2) There is a piecewise continuous function k(·) : R+ ! R+ such that

kf(⇠, t)� f(⇠0, t)k  k(t)k⇠ � ⇠
0k 8 t 2 R+, 8⇠, ⇠0 2 Rn

This is called a global Lipschitz condition because it must hold for all ⇠ and ⇠0.

Often times it is easy to characterize whether or not a given function satisfies (A2) by checking an auxiliary
condition.

Proposition 4.1 Let f : R ! R be continuous and di↵erentiable. Then

f Lipschitz () 9K, s.t. 8x 2 R, |f 0(x)|  K

To prove this, we need the mean value theorem.

Theorem 4.1 (Mean Value Theorem.) If a function f is continuous on the closed interval [a, b], and
di↵erentiable on the open interval (a, b), then there exists a point c in (a, b) such that

f
0(c) =

f(b)� f(a)

b� a

Proof. ((=). Suppose the derivative is bounded by some K. By the mean value theorem, we have that for
x, y 2 R, there exists c 2 R such that

f(x)� f(y) = (x� y)f 0(c)

so that
|f(x)� f(y)| = |(x� y)f 0(c)|  K|x� y|

Hence, f is Lipschtiz.

(=)). Suppose f is K-Lipschitz so that |f(x) � f(y)|  K|x � y| for all x, y and hence, in particular,
|f(x+ h)� f(x)|  K|h| for all x and h. Then, taking the limit we have that

f
0(x) = lim

h!0

����
f(x+ h)� f(x)

h

����  K

Alternative argument:

f Lipschitz =) |f(x)� f(y)|  K|x� y|, 8x, y =) lim
x!y

����
f(x)� f(y)

x� y

����  K

Note: Lipschitz functions do not have to be di↵erentiable. They have to be almost everywhere di↵erentiable
(except on a set of measure zero).

Proposition 4.2 Given R > 0, if there is a PC function k(·) s.t.

kD1f(x, t)k  k(t), 8x 2 BR(0), 8t 2 R+

then the Lipschitz condition in (A2) holds for all ⇠, ⇠0 2 BR(0), t 2 R+

Examples.

1. The function
f(x) =

p
x2 + 1
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defined for all real numbers is Lipschitz continuous with the Lipschitz constant K = 1, because it is
everywhere di↵erentiable and the absolute value of the derivative is bounded above by 1. Indeed,

f
0(x) = x(x2 + 1)�1/2

so that
|f 0(x)| = |x(x2 + 1)�1/2|  |x||(x2 + 1)�1/2|

Claim:
|x|

|(x2 + 1)1/2|
 1

This is true because
|x| = |(x2)1/2|  |(x2 + 1)1/2|

2. The functions sin(x) and cos(x) are Lipschitz with constant K = 1 since their derivatives are bounded by
1.

3. Practice2. is the function sin(x2)? what about
p
x? (hint: consider the derivatives)

5 Proof of FTO

Theorem 1 (Fundamental Theorem of Existence and Uniqueness.). Consider

ẋ(t) = f(x, t)

where initial condition (t0, x0) is such that x(t0) = x0. Suppose f satisfies (A1) and (A2). Then,

a. For each (t0, x0) 2 R+ ⇥ Rn there exists a continuous function � : R+ ! Rn such that

�(t0) = x0

and
�̇(t) = f(�(t), t), 8t 2 R+\D

b. This function is unique. The function � is called the solution through (t0, x0) of the di↵erential equation.

Note that if the Lipschitz condition does not hold, it may be that the solution cannot be continued beyond
a certain time. e.g., consider

⇠̇(t) = ⇠
2(t), ⇠(0) =

1

c
, c 6= 0

where ⇠ : R+ ! R. This di↵erential equation has the solution

⇠(t) =
1

c� t

on t 2 (�1, c). As t ! c, k⇠(t)k ! 1. This is called finite escape time at c.

We need the following notion of a Cauchy sequence—this is a stronger notion of convergence.

Definition 2 (Cauchy sequence.). A sequence (vi)1i=1 in (V, F, k · k) is said to be a Cauchy sequence in V if
and only if for any " > 0, 9 N" 2 N such that for any pair m,n > N",

kvm � vnk < " 8p 2 N
2Throughout the notes as with standard textbooks, I will place practice problems that you can consider solving on your own

or that might show up in your homework. It worth mentioning that most of these problems have solutions which can be found
in the references on the main page of canvas. Further, they are designed so that with a little critical thinking, you should be
able to solve them on your own. If you cannot, then it is likely that you have not quite internalized the material that proceeds
them. You are welcome to ask myself of Andrew (TA) if you need help, but please try on your own first.
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And, we need the notion of a Banach space.

Definition 3. Banach Space. A Banach space X is a normed linear space that is complete with respect to
that norm—that is, every Cauchy sequence {xn} in X converges in X.

Proof sketch for existence. Construct a sequence of continuous functions

xm+1(t) = x0 +

Z t

t0

f(xm(⌧), ⌧) d⌧

where x0(t0) = x0 and m = 0, 1, 2, . . .. The idea is to show that the sequence of continuous functions
{xm(·)}10 converges to (i) a continuous function � : R+ ! Rn which is (ii) a solution of ẋ = f(x, t),
x(t0) = x0.

To show (i), we show that {xm(·)}10 is a Cauchy sequence in a Banach space (C([t1, t2],Rn),R, k ·k1), where
t0 2 [t1, t2].

To show [(ii)—i.e. that �(·) is a solution of the di↵erential equation—recall that

xm+1(t) = x0 +

Z t

t0

f(xm(⌧), ⌧) d⌧

By the above argument, m ! 1, xm(·) ! �(·) on [t1, t2]. Hence, it su�ces to show that

Z t

t0

f(xm(⌧), ⌧) d⌧ !
Z t

t0

f(�(⌧), ⌧) d⌧, as m ! 1

To prove uniqueness, we need the so called Bellman-Gronwall Lemma.

Lemma 4 (Bellman-Gronwall). Let u(·), k(·) be real-valued, piecewise continuous functions on R+ and
assume u(·), k(·) > 0 on R+. Suppose c1 > 0, t0 2 R+. If

u(t)  c1 +

Z t

t0

k(⌧)u(⌧) d⌧

then

u(t)  c1 exp

✓Z t

t0

k(⌧) d⌧

◆

Proof. Without loss of generality], assume t > t0. Let U(t) = c1 +
R t
t0
k(⌧)u(⌧) d⌧ . Thus,

u(t)  U(t)

Multiply both sides of

u(t)  c1 +

Z t

t0

k(⌧)u(⌧) d⌧

by the non-negative function

k(t) exp

✓
�
Z t

t0

k(⌧) d⌧

◆

resulting in
d

dt

✓
U(t) exp

✓
�
Z t

t0

k(⌧) d⌧

◆◆
 0
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and thus

u(t)  U(t)  c1 exp

✓
�
Z t

t0

k(⌧) d⌧

◆

Proof of uniqueness sketch: Invoke Bellman-Grownwall.

Let’s consider an example.

Example. Consider

ẋ(t) = A(t)x(t) +B(t)u(t)

x(t0) = x0

Show the solution is unique.

Proof. Assume �(t), (t) are two solutions so that �(t0) =  (t0) = x0 and

�̇(t) = A(t)�(t) +B(t)u(t)

 ̇(t) = A(t) (t) +B(t)u(t)

Then

�(t)�  (t) =

Z t

t0

(A(⌧)�(⌧)�A(⌧) (⌧)) d⌧

so that

k�(t)�  (t)k  kA(t)k1,[t0,t]

Z t

t0

k�(⌧)�  (⌧)k d⌧

By Bellman-Gronwall,

k�(t)�  (t)k  c1 + kA(t)k1,[t0,t]

Z t

t0

k�(⌧)�  (⌧)k d⌧

implies
k�(t)�  (t)k  c1 exp

�
kA(t)k1,[t0,t](t� t0)

�

This is true for all c1 � 0, so set c1 = 0. . .

6 Solutions to Linear Systems

Recall

ẋ(t) = A(t)x(t) +B(t)u(t) (state DE)

y(t) = C(t)x(t) +D(t)u(t) (read-out eqn.)

with initial data (t0, x0) and the assumptions on A(·), B(·), C(·), D(·), u(·) all being PC:

• A(t) 2 Rn⇥n

• B(t) 2 Rn⇥m

• C(t) 2 Rp⇥n

• D(t) 2 Rp⇥m
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The input function u(·) 2 U , where U is the set of piecewise continuous functions from R+ ! Rm.

This system satisfies the assumptions of our existence and uniqueness theorem. Indeed,

(A1) For all fixed x 2 Rn, the function t 2 R+\D ! f(x, t) 2 Rn is continuous where D contains all the
points of discontinuity of A(·), B(·), C(·), D(·), u(·)

(A2) There is a piecewise continuous function k(·) = kA(·)k such that

kf(⇠, t)� f(⇠0, t)k = kA(t)(⇠ � ⇠
0)k  k(t)k⇠ � ⇠

0k 8t 2 R+, 8⇠, ⇠0 2 Rn

Hence, by the above theorem, the di↵erential equation has a unique continuous solution x : R+ ! Rn which
is clearly defined by the parameters (t0, x0, u) 2 R+ ⇥Rn ⇥U . Therefore, recalling the state transition map
s we have the following theorem.

Theorem 5. (Existence of the state transition map.) Under the assumptions and notation above, for every
triple (t0, x0, u) 2 R+ ⇥ Rn ⇥ U , the state transition map

x(·) = s(·, t0, x0, u) : R+ ! Rn

is a continuous map well-defined as the unique solution of the state di↵erential equation

ẋ(t) = A(t)x(t) +B(t)u(t)

with (t0, x0) such that x(t0) = x0 and u(·) 2 U .

Remark : Since the state transition function being well-defined, so is the response map

y(t) = ⇢(t, t0, x0, u)

It follows that the state transition function is di↵erentiable at every t 2 R+\D. Moreover, with the state
transition function being well-defined, so is the response map

y(t) = ⇢(t, t0, x0, u)

as the composition of the state transition map and the output function g.

7 Zero-Input and Zero-State Response

The state transition function of a linear system is equal to its zero-input state transition function and its
zero-state state transition map:

s(t, t0, x0, u) = ⇠(t, t0, x0, 0)| {z }
zero-input state trans. func.

+ s(t, t0, 0, u)| {z }
zero-state state trans. func.

⇢(t, t0, x0, u) = ⇢(t, t0, x0, 0)| {z }
zero-input respons

+ ⇢(t, t0, 0, u)| {z }
zero-state response

Due to the fact that the state transition map and the response map are linear, they have the property that
for fixed (t, t0) 2 R+ ⇥ R+ the maps

s(t, t0, ·, 0) : Rn ! Rn : x0 7! ⇠(t, t0, x0, 0)

and
⇢(t, t0, ·, 0) : Rn ! Rp : x0 7! ⇢(t, t0, x0, 0)
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are linear.

Hence by the Matrix Representation Theorem, they are representable by matrices. Therefore there exists a
matrix �(t, t0) 2 Rn⇥n such that

⇠(t, t0, x0, 0) = �(t, t0)x0, 8x0 2 Rn

and
⇢(t, t0, x0, 0) = C(t)�(t, t0)x0, 8x0 2 Rn

7.1 State Transition Matrix

(State transition matrix.) �(t, t0) is called the state transition matrix.

Consider the matrix di↵erential equation

Ẋ = A(t)X, X(·) 2 Rn⇥n

Let X(t0) = X0.

The state transition matrix �(t, t0) is defined to be the solution of the above matrix di↵erential equation
starting from �(t0, t0) = I. That is,

@

@t
�(t, t0) = A(t)�(t, t0)

and �(t0, t0) = I.

Definition 6. (LTI State transition matrix.) The state transition matrix for

ẋ = Ax, x 2 Rn
, A 2 Rn⇥n

is the matrix exponential eAt defined to be

e
At = I +

At

1!
+

A
2
t
2

2!
+ · · ·

where I is the n⇥ n identity matrix.

Proof. It is easy to verify that
�(t, 0) = e

At and �(t, t0) = e
A(t�t0)

by checking that
x(t) = e

A(t�t0)x0

satisfies the di↵erential equation
ẋ = Ax, x(t0) = x0

Indeed, by the fact that �(t, t0) satisfies the ODE (by definition) we know that

@

@t
�(t, t0) = A�(t, t0)

and
@

@t
exp(A(t� t0))x0 = A exp(A(t� t0))x0

In addition, �(t0, t0) = I and exp(A(t0 � t0)) = I. Hence, �(t, t0) and exp(A(t� t0)) satisfy the same ODE
so they are equal.

Hence, the matrix exponential is our friend and we need computational approaches for expressing this little
monster.
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7.2 Properties of the Matrix Exponential

First, we note that the matrix exponential has several important properties.

1. e
0 = I

2. e
A(t+s) = e

At
e
As

3. e
(A+B)t = e

At
e
Bt () AB = BA

4. (eAt)�1 = e
�At

5. d
dte

At = Ae
At = e

At ·A
6. Let z(t) 2 Rn⇥n. Then the solution to

ż(t) = Az(t)

with z(0) = I is
z(t) = e

At

Recall that

exp(x) =
1X

k=0

x
k

k!

This is also true for the matrix exponential—i.e.

exp(At) =
1X

k=0

(At)k

k!

Fact. Note also that Cayley-Hamilton implies that the matrix exponential is expressible as a polynomial
of order n� 1!

Using the series representation of eAt to compute e
At is di�cult unless, e.g., the matrix A is nilpotent in

which case the series yields a closed form solution—i.e., A nilpotent matrix is such that Ak = 0 for some k.

Example. Consider

A =


0 1
0 0

�

Then

A
2 =


0 0
0 0

�

so that

e
At = I +At =


1 t

0 1

�

Hence we need an alternative method to compute it. Methods of computation include (see 510 notes, lecture
10):

1. Summation expression for the function exp(·).
2. Laplace transform

3. Diagonalization or Jordan form combined with functions of matrices.

8 Properties of State Transition Function

Proposition 7. The following properties hold:

1. The solution of ẋ = A(t)x, s(t, t0, x0, 0) is given by

s(t, t0, x0, 0) = �(t, t0)x0 (4)
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2. For all t, t0, t1 2 R+,
�(t, t0) = �(t, t1)�(t1, t0)

3. The inverse of the state transition matrix is

(�(t, t0))
�1 = �(t0, t)

4. The determinant is give by

det �(t, t0) = exp

✓Z t

t0

trace(A(⌧)) d⌧

◆

Proof. Call the left-hand side of (4) LHS, and the right-hand side RHS.

1. Check first that the LHS of (4) and the RHS are equal at t0:

LHS(t0) = s(t0, t0, x0) = x0 and RHS(t0) = �(t0, t0)x0 = Ix0 = x0

Now, we check they satisfy the same di↵erential equation:

d

dt
LHS(t) = A(t)LHS(t) and

d

dt
RHS(t) = A(t)RHS(t)

so that s(t, t0, x0) = �(t, t0)x0.
2. Again we use the same trick of checking the initial condition and the di↵erential equation (and invoke

the existence and uniqueness theorem).

RHS(t1) = LHS(t1)

d

dt
RHS(t) = A(t)RHS(t)

d

dt
LHS(t) = A(t)LHS(t)

Hence, LHS ⌘ RHS.
3. First, �(t, s) = �(s, ⌧)�(⌧, t) for any t, s, ⌧ since the following diagram commutes:

X X

X

�(t,s)

�(s,⌧)

�(t,⌧)

Indeed, consider the unique solution to
⇢

ẋ(�) = A(�)x(�)
x(s) = a

Then, x(t) = �(t, s)a, x(t) = �(t, ⌧)x(⌧) and x(⌧) = �(⌧, s)a, and hence

�(t, ⌧)�(⌧, s)a = �(t, s)a

that is
(�(t, ⌧)�(⌧, s)� �(t, s))a = 0

since this must hold for all a 2 Rn, the claim holds.

We claim that �(t, s) is invertible and that its inverse is given by �(s, t). Indeed, from �(t, s) =
�(s, ⌧)�(⌧, t) we have that

I = �(t, s)�(s, t)

Thus, �(t, t0) is invertible for all t. Hence,

�(t0, t0) = I = �(t0, t)�(t, t0) =) �(t, t0)
�1 = �(t0, t)

4. This is called the Jacobi-Liouville equation. We will take this one as given.
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t
0 t

0 + dt
0 tt0

u(·)

Figure 1: Input

9 Solving Linear ODE via �(t, t0)

First, let us consider a heuristic derivation of the zero-state transition. (page 35 of C& D) Consider the
input in Fig. 1.

Then,

x(t0) = �(t0, t0)x0

and

x(t0 + dt
0) = x(t0) + [A(t0)x(t0) +B(t0)u(t0)]dt0

x(t) = �(t, t0 + dt
0)x(t0 + dt

0)

= �(t, t0 + dt
0)[x(t0) +A(t0)x(t0)dt0 +B(t0)u(t0)dt0]

= �(t, t0 + dt
0)[I +A(t0)dt0]x(t0) + �(t, t0 + dt

0)B(t0)u(t0)dt0

' �(t, t0 + dt
0)�(t0 + dt

0
, t

0)�(t0, t0)x0 + �(t, t0 + dt
0)B(t0)u(t0)dt0

Hence,

x(t) ' �(t, t0)x0 + �(t, t0)B(t0)u(t0)dt0

Theorem 8 (Solution of Linear System).

x(t) = �(t, t0)x0 +

Z t

t0

�(t, t0)B(t0)u(t0) dt0 (5)

Proof idea: We will use the trick that checks the equality by showing the left and right hand sides of (5)
satisfy the same ODE. That is, at t0, they have the same value (initial condition) and the derivative of
the left and right hand sides is the same. The key here is that since we have the existence and uniqueness
theorem, we know then that the solution of the ODE is unique, so that means any two expressions that
satisfy it have to be equal.

Proof. We will use the same trick as before where we check the initial condition and the di↵erential equation
and invoke the existence/uniqueness theorem for solutions to ODEs.

d

dt
LHS(t) = A(t)LHS(t) +B(t)u(t)

LHS(t0) = x0

RHS(t0) = x0
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d

dt
RHS(t) =

d

dt
(�(t, t0)x0)

+
d

dt

✓Z t

t0

�(t, t0)B(t0)u(t0) dt0
◆

= A(t)�(t, t0)x0 +
d

dt
(t)�(t, t)B(t)u(t)

�
⇢
⇢
⇢⇢>

0
d

dt
(t0)�(t, t0)B(t0)u(t0) +

Z t

t0

d

dt
(�(t, t0)B(t0)u(t0)) dt0

so that

d

dt
RHS(t) = A(t)�(t, t0)x0 +B(t)u(t)

+A(t)

Z t

t0

�(t, t0)B(t0)u(t0) dt0

= A(t)RHS(t) +B(t)u(t)

Thus LHS and RHS has the same initial condition and satisfy the same ODE

Thus, we have that the state transition function is given by

s(t, t0, x0, u[t0,t]) = �(t, t0)x0 +

Z t

t0

�(t, t0)B(t0)u(t0) dt0

By definition, we have that it satisfies the state transition axiom. Check that it satisfies the semi-group
property:

s(t, t0, s(t1, t0, x0, u[t0,t1]), u[t0,t]) = �(t, t1)
h
�(t1, t0)x0

+

Z t

t1

�(t, t0)B(t0)u(t0) dt0

= �(t, t0)x0 +

Z t1

t0

�(t, t0)B(t0)u(t0) dt0

+

Z t

t1

�(t, t0)B(t0)u(t0) dt0

= �(t, t0)x0 +

Z t

t0

�(t, t0)B(t0)u(t0) dt0

= s(t, t0, x0, u[t0,t])

10 Solutions to LTI Systems with Inputs

ẋ = Ax+Bu

y = Cx+Du

where
A 2 Rn⇥n

, B 2 Rn⇥m
, C 2 Rp⇥n

, D 2 Rp⇥m

Taking the Laplace transform, we have

(sI �A)x̂(s) = x0 +Bû(s)

ŷ(s) = Cx̂(s) +Dû(s)
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so that

x̂(s) = (sI �A)�1
x0 + (sI �A)�1

Bû(s)

ŷ(s) = C(sI �A)�1
x0 +

�
C(sI �A)�1

B +D
�
û(s)

Note that
H(s) = C(sI �A)�1

B +D

is what is normally referred to as the transfer function. It is a map from input to output.

Claim 1. The solution x(t) to

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cs(t) +Du(t)

with x(t0) = x0 and where x 2 Rn and

A 2 Rn⇥n
, B 2 Rn⇥m

, C 2 Rp⇥n
, D 2 Rp⇥m

is

x(t) = e
A(t�t0)x0 +

Z t

t0

e
A(t�⌧)

Bu(⌧) d⌧ (6)

and the output is
y(t) = Cx(t) +Du(t)

Proof. All we need to do is the usual trick of checking that it satisfies the di↵erential equation and initial
condition (then invoke the existence/uniqueness theorem). Indeed,

ẋ =
d

dt

⇣
e
A(t�t0)x0

⌘
+

d

dt

✓Z t

t0

e
A(t�⌧)

Bu(⌧) d⌧

◆

= Ae
A(t�t0)x0 +A(0)Bu(t) +

Z t

t0

Ae
A(t�⌧)

Bu(⌧) d⌧

= Ax(t) +Bu(t)

Now for the initial condition,

x(t0) = e
A(0)

x0 +
⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠:0Z t0

t0

e
A(t0�⌧)

Bu(⌧) d⌧ = x0
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1 Lyapunov Stability

You may recall from an undergrad controls or signals class input-output stability. In our study of stability,
we will start with state related stability concepts (stability in the sense of Lyapunov).

Intuition. Let’s consider the following examples.
a. Continuous Time. Recall that the solution to

ẋ = ��x

is
x(t) = x0e

��t,

and if � > 0 solution decays to zero, otherwise it blows up. This � is an ‘eigenvalue’ for this scalar
system, and its sign can be used to characterize a notion of stability.

b. Discrete Time. Recall that the solution to

xk+1 = µxk

is
xk = µkx0

and if |µ| < 1, then the solution decays to zero and otherwise, it blows up.
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1.1 Continuous Time

Recall that for a given linear system

ẋ(t) = A(t)x(t) +B(t)u(t), y(t) = C(t)x(t) +D(t)u(t)

the zero input response is given by
x(t) = �(t, t0)x0

where �(t, t0) is the state transition matrix and x(t0) = x0. Note that

x0 = 0 =) x(t) = 0 8t

The points xe = 0 is called the equilibrium point.

The following are characterizations of stability à la Lyapunov.

Definition 1 ((Marginally) Stable Equilibrium). Consider the equilibrium point xe = 0.

xe is stable () 8 x0 2 Rn, 8t0 2 Rn, t 7! x(t) = �(t, t0)x0 is bounded 8 t � t0.

Note: the e↵ect of initial conditions does not grow unbounded with time (but it may grow temporarily
during a transient phase).

Definition 2 (Asymptotic Stability). Consider the equilibrium point xe = 0.

xe = 0 is asymptotically stable () x0 = 0 is stable and x(t) = �(t, t0)x0 �! 0 as t ! 1.

Note: the e↵ect of initial conditions eventually disappears with time.

Definition 3 (Exponential Stability). Consider the equilibrium point xe = 0.

xe = 0 is exponentially stable () 9M,↵ > 0 : kx(t0)k  M exp(�↵(t� t0))kx0k

We say an equilibrium point or the system is unstable if it is not marginally stable in the sense of Lyapunov.
For such systems, the e↵ect of initial conditions (may) grow over time (depending on the specific initial
conditions and the value of C(t)).

Theorem 4 (Asymptotic Stability of Linear CT Systems). x0 = 0 is asymptotically stable () �(t, 0) ! 0
as t ! 1.

Proof. ((=)
x(t) = �(t, t0)x0 = �(t, 0)�(0, t0)x0

since �(t, 0) ! 0 as t ! 1 then k�(t, 0)k ! 0 as t ! 1 and

kx(t)k  k�(t, 0)kk�(0, t0)kkx0k

thus x(t) ! 0 as t ! 1.
(=)) By contradiction; assume that t ! �(t, 0) does not tend to zero as t ! 1, i.e. 9 i, j such that

�ij(t, 0) 6! 0 as t ! 1

choose

x0 =

2

666666664

0
· · ·
0
1
0
· · ·
0

3

777777775
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with 1 in the j–th spot. Thus,
xi(t) = �ij(t, 0) 6! 0 as t ! 1

contradicting the asymptotic stability of 0.

A stability concept that is equivalent to exponential stability for LTV systems is uniform asymptotic stability.

Definition 5. We say that the zero solution of ẋ = A(t)x(t) on t � 0 is uniformly asymptotically stable if
and only if

a. t 7! �(t, t0) is bounded on t � t0 uniformly in t0 2 R+, i.e.,

9 k < 1 : 8t0 2 R+, k�(t, t0)k  k, 8t � t0

b. t 7! �(t, t0) tends to zero as t ! 1 uniformly in t0 2 R+, i.e.,

8" > 0, 9T (") > 0 : 8t0 2 R+, k�(t, t0)k  ", 8t � t0 + T (") (⇤)

In the LTI case, i.e. ẋ = Ax,

asymptotic stability () exponential stability

Indeed, �(t, t0) = exp(A(t � t0)) depends only on the elapsed time t � t0, so that the zero solution of
ẋ = Ax is asymptotically stable i↵ the zero solution is uniformly asymptotically stable i↵ the zero solution
is exponentially stable.

To see that in the LTV case that

A(·) uniformly asymptotically stable () A(·) exponentially stable

consider the following proof.

( a. and b. hold with k = m and T (") > 0 such that exp(�↵T ("))  "m�1

) Given any T > 0, we have that

8t � t0, 9! n 2 N, 9! s 2 [0, T ) : t� t0 = nT + s

Let t0 2 R+ be arbitrary but fixed and for b., pick some T (") > 0 for " = 1/2. Then, by (⇤), k�(s+ t0 +
T, t0)k  1/2 for all s � 0. Since

�(s+ t0 + 2T, t0) = �(s+ t0 + 2T, t0 + T )�(t0 + T, t0)

=) k�(s+ t0 + 2T, t0)k  k�(s+ t0 + 2T, t0 + T )kk�(t0 + T, t0)k  2�2,

we have that (by induction),

8s � 0, 8n = 1, 2, . . . , k�(s+ t0 + nT, t0)k  2�n (⇤⇤)

Pick ↵ > 0 s.t. exp(↵T ) = 2. Then,

8s 2 [0, T ), 1  2 exp(�↵s) =) 8s 2 [0, T ), 2�n  2 exp(�↵(s+ nT ))

Combining this with the upper bound on the norm of the state transition matrix in (⇤⇤), we have that

8s 2 [0, T ), 8n = 1, 2, . . . , k�(s+ t0 + nT, t0)k  2 exp(�↵(s+ nT ))

Now, using a. and the fact that 1  2 exp(�↵s), we have that

8s 2 [0, T ), k�(s+ t0, t0)k  k  2k exp(�↵s)

so that
8t � t0, k�(t, t0)k  2k exp(�↵(t� t0))
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1.2 Discrete Time

Consider
xk+1 = Akxk +Bkuk, yk = Ckxk +Dkuk

The zero state is again the equilibrium for this system—i.e., xe = 0.

Discrete Time: Solutions. First, let us recall the solution form for the discrete time case. While I will not
cover this in detail (please see Chapter 2d [C&D]), we note that there is an equivalent “fundamental theorem
of odes” for linear di↵erence equations and we can define completely analogous state transition functions
and response maps which are linear and hence, have corresponding matrix representations. Indeed, the state
transition matrix �(·, ·) : N+ ⇥ N+ ! Rn⇥n is defined as follows:

8 k0, �(k + 1, k0) = Ak�(k, k0), k = k0, k0 + 1, . . . , �(k0, k0) = I

Note: It is only when Ak is non-singular for all k 2 N, that �(k + 1, k0) = Ak�(k, k0) can be solved for
�(k, k0) in terms of �(k + 1, k0).

It turns out that
�(k, k0) = Ak�1Ak�2 · · ·Ak0

Practice Problem. show this by induction.

The DT state transition matrix also has analogous properties as those for its continuous time counter part.
Indeed,

�(k, k0) = �(k, k1)�(k1, k0), 8k0  k1  k

The solution and output can then be characterized by

xk = �(k, k0)x0 +
k�1X

`=k0

�(k, `+ 1)B`u`

yk = Ck�(k, k0)x0 + Ck

 
k�1X

`=k0

�(k, `+ 1)B`u`

!
+Dkuk

Asymptotic stability can be characterized informally by the statement that every solution of xk+1 = Akxk

tends to zero as k ! 1.

Definition 6 (Asymptotic Stability). Consider xk ⌘ 0 (i.e., the zero solution of xk+1 = Akxk). The zero
solution is asymptotically stable i↵ for all x0 2 Rn, for all k0 2 N,

a. k 7! xk = �(k, k0)x0 is bounded on k � k0
b. k 7! xk = �(k, k0)x0 ! 0 as k ! 1.

Note: any solution xk on any [k0, k] is a finite set and hence, b. =) a. Due to linearity, we get the following
theorem.

Theorem 7 (Asymptotic Stability of Linear DT Systems). Let det(Ak) 6= 0 for all k 2 N. The zero solution
of xk+1 = Akxk on k � 0 is asymptotically stable i↵ �(k, 0) ! 0 as k ! 1.

Practice Problem. Try to prove this theorem by following the same proof structure as Theorem 4. Hint:
not that since det(Ak) 6= 0, 8k � k0 � 0, �(k, k0) = �(k, 0)�(0, k0).

Analogous to the continuous time case, exponential stability is a property of the system xk+1 = Akxk which
if possessed, guarantees that every solution of the system is bounded by a decaying exponential depending
on the elapsed time k � k0. Indeed, we have the following formal definition.
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Definition 8 (Exponential Stability (DT)). The zero solution of xk+1 = Akxk on k � 0 is exponentially
stable i↵ 9 ⇢ 2 [0, 1) and m > 0 such that for all k0 2 N,

k�(k, k0)k  m⇢k�k0 , 8 k � k0

where the matrix norm is arbitrary (recall that finite dimensional norms are equivalent).

Notes:

• The constants ⇢ 2 [0, 1) and m > 0 are fixed, meaning that they are independent of k0. Further, the
constant ↵ � 0 such that ⇢ = exp(�↵) is the exponential decay rate.

• An equivalent statement: the zero solution is exponentially stable i↵

9⇢ 2 [0, 1), m > 0 : 8(x0, k0) 2 Rn ⇥ N, kxkk  mkx0k⇢k�k0 , 8k � k0

We say that the zero solution is uniformly asymptotically stable i↵

a. k 7! xk = �(k, k0)x0 on k � k0 is uniformly bounded (bound is independent of k0)

b. k 7! xk = �(k, k0)x0 ! 0 uniformly as k ! 1.

Theorem 9 (Equivalence of Asymptotic and Exponenital Stability).

A(·) is uniformly asymptotically stable () A(·) is exponentially stable

Practice Problem. Prove this theorem. Hint: use the same method as in the CT case. In the necessity
direction use a. and b. with 2" = 1 and pick ⇢ 2 [0, 1) such that 2⇢K > 1 so that k�(k, k0)k  2`⇢k�k0

for all k � k0.

2 LTI: Spectral Conditions

In the case of LTI systems, we can reduce the stability characterization to spectral conditions.

Recall (Lecture 10/11, 510) from last quarter that we have the following result about representing any analytic
function1 as a sum of polynomials.

Let A 2 Cn⇥n and let �(A) denote the spectrum of A (containing distinct eigenvalues of A) with p = |�(A)|.
The minimal polynomial of A is given as above by

 A(�) =
pY

i=1

(�� �i)
mi

Fact. (Functions of a matrix.) Let f(s) be any function of s analytic on the spectrum of A and q(s) be a
polynomial such that

f (k)(�`) = q(k)(�`)

for 0  k  m` � 1 and 1  `  p. Then
f(A) = q(A)

1An analytic function is a function that is locally given by a convergent power series—i.e., f is real analytic on an open set
U in the real line if for any x0 2 U one can write

f(x) =
P1

n=0 an(x� x0)n

where an 2 R for each n and the series is convergent to f(x) for xin a neighborhood of x0.
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where p is the number of distinct roots of the characteristic polynomial �A(s) and

mk = min{µ � 1 : N ((A� �kI)
µ) = N ((A� �kI)

µ+1)}

i.e., mk is the ascent of A� I�k.

In fact, if m =
Pp

i=1 mi then
q(s) = a1s

m�1 + a2s
m�2 + · · ·+ amsp

where a1, a2, . . . , an are functions of

(f(�1), f
(1)(�1), f

(2)(�1), . . . , f
(m1)(�1), f(�2), . . .)

and hence

f(A) = a1A
m�1 + · · ·+ amA0 =

pX

`=1

m`�1X

k=0

qk,`(A)f (k)(�`)

where qk,`’s are polynomials independent of f .

This leads to the following theorem.

Theorem. (General Form of f(A).) Let A 2 Cn⇥n have a minimal polynomial  A given by

 A(s) =
pY

k=1

(s� �k)
mk

Let the domain � contain �(A), then for any analytic function f : � ! C. we have

f(A) =
pX

k=1

mk�1X

`=0

f (`)(�k)qk,`(A)

where qk,`’s are polynomials independent of f .

Recalling our derivation of functions of matrices from 510, we can show that

exp(tA) =
pX

k=1

mk�1X

`=0

t` exp(�kt)pk`(A)

This gives rise to the following stability condition:

Proposition 10 (Continuous Time). Consider the di↵erential equation ẋ = Ax, x(0) = x0. From the above
expression:

{exp(At) ! 0 as t ! 1} () {8�k 2 �(A), Re(�k) < 0}

and

{t 7! exp(At) is bounded on R+} ()
⇢

8�k 2 �(A), Re(�k) < 0 &
mk = 1 when Re(�k) = 0

�

We have a similar situation for discrete time systems:

8 ⌫ 2 N, A⌫ =
pX

k=1

mk�1X

`=1

⌫(⌫ � 1) · · · (⌫ � `+ 1)�⌫�`
k pk`(A)

The above gives rise to the following stability condition:



Lecture 3: Introduction to Stability 7

Proposition 11 (Discrete Time). Consider the discrete time system x(k + 1) = Ax(k), k 2 N, with
x(0) = x0. Then for k 2 N, x(k) = Akx0. From the above equation, we have that

�
Ak ! 0 as k ! 1

 
() {8 �i 2 �(A), |�i| < 1}

and
�
k ! Ak is bounded on N+

 
()

⇢
8�i 2 �(A), |�i|  1 &
mi = 1 when |�i| = 1

�

LTI: Asymptotic Stability is Equivalent to Exponential Stability. Coming back to the CT case,
we will show that asymptotic stability is equivalent to exponentially stable using the function of matrix
expansion.

Let’s prove the claim in Proposition 10:

ẋ = Ax is exponentially stable () �(A) ⇢ C�
�

Proof. The state transition matrix for an LTI system is

�(t, t0) = exp(A(t� t0))

And from above we know that

exp(At) =
pX

k=1

⇡k(t) exp(�kt), {�k}p1 = �(A)

where ⇡k are some matrix polynomials in t. Hence, by taking matrix norms, we have that

k exp(At)k 
pX

k=1

k⇡k(t)k exp(Re(�k)t) 
pX

k=1

pk(t) exp(Re(�k)t)  p(t) exp(�µt)

where pk(t) are polynomials such that k⇡k(t)k  pk(t), p(t) =
Pp

k=1 pk(t) � 0 and

µ = �max{Re(�) : � 2 �(A)}

Since a polynomial is growing slower than any growing exponential we have

8" > 0, 9 m(") > 0 : 0  |p(t)|  m exp("t), 8t � 0

Hence combing this with the above bound on k exp(At)k, we have that

8" > 0 9 m(") > 0 : k exp(At)k  m exp(�(µ� ")t) 8t � 0

Then, if �(A) ⇢ C�
�, by the above µ > 0. Hence picking " 2 (0, µ) we have that

k�(t, t0)k  m exp(�↵(t� t0))

with ↵ = µ � " > 0. On the other hand if �(A) is not included in C�
�, then by the polynomial expansion

for exp(At), exp(At) does not tend to the zero matrix as t ! 1 and the zero solution is not exponentially
stable.
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Figure 1: Left: Forward Euler; Right: Backward Euler.

2.1 Application to numerical integration of ẋ = Ax

Suppose we are given ẋ = Ax, x(0) = x0, A 2 Cn⇥n, x 2 Cn. Call t 7! x(t) the exact solution
x(t) = exp(At)x0. Note that t 7! x(t) is analytic in t. Call (⇠0, ⇠1, . . .) the sequence of computed val-
ues.

Forward Euler Method.
For small h > 0, we have for any tk 2 R+,

x(tk + h) = x(tk) + hẋ(tk) + O(h2)

= x(tk) + hAx(tk) + O(h2)

In other words, we have approximately

x(tk + h) ' (I + hA)x(tk)

So if we perform repeatedly this step starting at t0 = 0, we have the computed sequence {⇠i}10 by

⇠m = (I + hA)mx0, m = 0, 1, 2, . . .

From the spectral mapping theorem and the above equation for ⇠m we have the following.

Example. Consider
ẋ(t) = �x(t)

with � 2 C. Then the equation is stable if Re(�)  0. In this case the system is exponentially decaying

lim
t!1

x(t) = 0

When is the numerically solution xi also decaying, limi!1 xi = 0?

xi+1 = xi + h�xi () xi+1 = (1 + h�)i+1x0

The solution is decaying (stable) if |1 + h�|  1
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Fact. Suppose �(A) ⇢ C�
� (equiv., the origin is exponentially stable). Let h0 be the largest positive h such

that
max

i
|1 + h�i| = 1

Under these conditions,

1. {⇠m}10 ! 0 exponentially for all ⇠0 i↵ h 2 (0, h0).

2. if h > h0, then for almost all x0, the sequence of computed values {⇠k}10 is such that {k⇠m}10 grows
exponentially.

Interpretation. Thus even if �(A) ⇢ C�
� (and hence the exact solution x(t) ! 0 exponentially), for h > h0,

for almost all x0, the sequence of computed vectors {k⇠mk}10 blows up. It is for this reason that in practice
we often prefer the backward Euler method.

Backward Euler:
For small h > 0, we have that for any tk 2 R,

x(tk) = x(tk + h)� hẋ(tk + h) + O(h2)

= x(tk + h)� hAx(tk + h) + O(h2)

Thus we have approximately
x(tk + h) ' (I � hA)�1x(tk)

So if we perform repeatedly this step, starting from t0 = 0, we get the computed sequence {⇠i}10 given by

⇠m = (I � hA)�mx0, m = 0, 1, 2, . . .

Now, the spectrum of (I � hA)�1 is {(1� h�i)�1}�i=1. Hence by the above expression for ⇠m, we have

⇠m ! 0 as m ! 1
() 8�i 2 �(A), |(1� h�i)

�1| < 1

() 8�i 2 �(A), |1� h�i| > 1

Note that if Re(�i) < 0, then |1� h�i| > 1, since h > 0. Thus we have shown the following result.

Example. Consider
ẋ(t) = �x(t)

with � 2 C. Then the equation is stable if Re(�)  0. In this case the system is exponentially decaying

lim
t!1

x(t) = 0

When is the numerically solution xi also decaying, limi!1 xi = 0?

xi+1 = xi + h�xi+1 () xi+1 =

✓
1

1� h�

◆i+1

x0

The solution is decaying (stable) if |1 + h�| � 1.

Fact. If �(A) ⇢ C�
�, then for all h > 0, for all x0 2 Cn, the computed sequence {⇠m}10 obtained via

backward Euler goes to zero exponentially.

This is very important in practice, because if h is unfortunately chosen too large the computed sequence
may lose accuracy but at least it will never blow up!
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Lecture 4: Lyapunov Stability and Lyapunov Equation
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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications,
meaning you should take your own notes in class and review the provided references as opposed to taking
these notes as your sole resource. I provide the lecture notes to you as a courtesy; it is not required that I
do this. They may be distributed outside this class only with the permission of the Instructor.

References. Chapter 8 [JH]; Chapter 7/7d, [C&D]. review your notes on norms including (induced)
matrix norms.

1 Lyapunov Theory

Last time we talked about internal or Lyapunov stability. Our focus was on linear dynamical systems but
this is an important concept for nonlinear systems as well.

Consider the nonlinear system
ẋ = f(x) (1)

and its linearization around xe

ẋ = Df(xe)x (2)

Reminder:

Definition 1. An equilibrium point xe of (1) is stable if for all " > 0,

9 � > 0 : 8 x 2 B�(xe), t � 0, �t(x) 2 B"(x0)

An equilibrium point xe is asymptotically stable if it is stable and if

9 � > 0 : 8x 2 B�(xe), lim
t!1

�t(x) = xe

Definition 2. Let f 2 C
1(Rn

,R), V 2 C
1(Rn

,R) and �t the flow of (1). Then for x 2 Rn, the derivative
of the function V (x) along trajectories (the solution) �t(x) is

V̇ (x) =
d

dt
V (�t(x)) =

@V (�t)

@�t

d

dt
�t(x) = DV (x)f(x)

The existence of a Lyapunov function is an alternative way to prove stability. For a dynamical system,
ẋ = f(x) with x = 0 as an equilibrium point, a scalar function V : Rn ! R is a Lyapunov function if it is
C

1, locally positive definite, and V̇  0. Positive definite means

V (z) � 0,

all sublevel sets are bounded (i.e. V (z) ! 1 as z ! 1), and

V (z) = 0 () z = 0

Theorem 3. Let W be an open subset of Rn containing xe. Suppose that f 2 C
1(Rn

,R) and that f(xe) = 0.
Suppose further that there exists a real valued function V 2 C

1 such that V (xe) = 0 and V (x) > 0 when
x 6= xe. Then

1
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Figure 1: Example: Lyapunov Function; Level sets V (x) = 1, V (x) = 2, and V (x) = 3 for a Lyapunov
function V ; thus if a state trajectory enters one of these sets, it has to stay inside it since V̇ (x)  0.

a.
V̇ (x)  0 8x 2 W =) xe is stable

b.
V̇ (x) < 0 8x 2 W\{xe} =) xe is asy. stable

c.
V̇ (x) > 0 8x 2 W\{xe} =) xe is unstable

2 Stability of Linearized Systems

Consider a general non-linear system
ẋ = f(x), x 2 Rn

with an equilibrium point xe such that f(xe) = 0. Recall that the local linearization around xe is given by

�ẋ = A�x

with �x = x� xe and

A =
@f(xe)

@x

Theorem 4. Suppose that f 2 C
2(Rn

,R). If the linearized system is exponentially stable, then there exists
a ball B ⇢ Rn around xe and constants c,� > 0 such that for every solution x(t) to the nonlinear system
that starts at x(t0) 2 B, we have

kx(t)� xek  ce
�(t�t0)kx(t0)� xek

This means that the properties of the linearized system are preserved in the nonlinear system.

Conversely, instability is also a property that is preserved.

Theorem 5. Suppose that f 2 C
2(Rn

,R). If the linearized system is unstable, then there are solutions
that start arbitrarily close to xe but do not converge to this point as t ! 1.

Note: marginal stability is not a transferable property.
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Example 6. The two systems

ẋ = ±x
3

(one for “+” one for “�”) have the same local linearization �ẋ = 0 around xe = 0 which is only marginally
stable. However ẋ = �x

3 is such that x always converges to zero, while for ẋ = x
3, x always diverges away

from the equilibrium point.

Let’s consider the inverted pendulum. I encourage you to play around with this in Python as well.

The inverted pendulum has dynamics

m`
2
✓̈ = mg` sin ✓ � b✓̇ + ⌧

Let u = ⌧ be the input and let y = ✓ the observed quantity. The local linearization of this system around
the equilibrium point for which ✓ = ⇡ is given by

�ẋ = A�x+Bu, �y = C�x

with

A =


0 1
� g

` � b
m`2

�
, B =


0
1

�
, C =

⇥
1 0

⇤

The eigenvalues of A are given by

det(�I �A) = �

✓
�+

b

m`2

◆
+

g

`
() � = � b

2m`2
±
r

b

2m`2
� g

`

So, the linearized system is exponentially stable since the �’s have negative real part.

What about for the equilibrium xe = 0? The eigenvalues in this case are

� = � b

2m`2
±
r

b

2m`2
+

g

`

so that

� b

2m`2
+

r
b

2m`2
+

g

`
> 0 =) unstable

3 Lyapunov Stability

For linear systems, it turns out that Lyapunov functions take the form z
>
Pz for some positive definite

matrix.

Recall the definition of a positive definite matrix.

Definition 7. Positive Definite Matrix A symmetric matrix Q 2 Rn⇥n is positive definite if

x
>
Qx � 0, 8 x 2 Rn

/{0}

Proposition 8. Consider a symmetric matrix Q. The following are equivalent:

a. Q is positive definite

b. �(Q) ⇢ R+ (i.e., the eigenvalues of Q are all strictly positive)

c. The determinants of all upper left submatrices of Q are positive

d. There exists an n⇥ n non-singular real matrix H such that Q = H
>
H.
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For a positive definite matrix Q, we also have that

0 < �min(Q)kxk2  x
>
Qx  �max(Q)kxk2, 8x 6= 0

The Lyapunov stability theorem provides an alternative condition to check whether or not the continuous-
time homogeneous LTI system

ẋ = Ax (3)

is asymptotically stable.

The equation

A
>
P + PA+Q = 0

is called the Lyapunov equation. Here, P,Q 2 Rn⇥n are symmetric matrices. For a linear system ẋ = Ax,
if

V (z) = x
>
Pz

then

V̇ (z) = (Az)>Pz + z
>
P (Az) = �z

>
Qz

That is, if z>Pz is the (generalized) energy, then z
>
Qz is the associated (generalized) dissipation.

If P > 0, then the sublevel sets1 of this function are ellipsoids and bounded. Further, V (z) = z
>
Pz =

0 () z = 0.

If P > 0, Q � 0, then all the trajectories of ẋ = Ax are bounded (i.e., Re(�i)  0 and if Re(�i) = 0, then �i

corresponds to a Jordan block of size one). Further, the ellipsoids {z| z>Pz  a} are invariant sets.

Theorem 9. The following conditions are equivalent:

a. The system (3) is asymptotically (equiv. exponentially) stable

b. All the eigenvalues of A have strictly negative real parts

c. For every symmetric positive definite matrix Q, there exists a unique solution P to the following
Lyapunov equation

A
>
P + PA = �Q

Moreover, P is symmetric and positive-definite.

d. There exists a symmetric positive-definite matrix P for which the following Lyapunov matrix inequality
holds:

A
>
P + PA < 0

Proof. Proof Sketch. We have already seen that 1 and 2 are equivalent. To show that 2 implies 3, we need
to show that

P =

Z 1

0
e
A>t

Qe
At

dt

is the unique solution to A
>
P +PA = �Q. This can be done by showing that 1. the integral is well-defined

(i.e. finite), 2. P as defined solves A
>
P + PA = �Q, 3. P as defined is symmetric and positive definite,

and lastly, 4. no other matrix solves the equation. Indeed,

1. This follows from exponential stability—i.e.

keA
>t
Qe

Atk ! 0

exponentially fast as t ! 1. Hence, the integral is absolutely convergent.

1i.e., {x|V (x) < a}
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2. We simply need to compute by direct verification

A
>
P + PA =

Z 1

0
A

>
e
A>t

Qe
At + e

A>t
Qe

At
A dt

But,
d

dt

⇣
e
A>t

Qe
At
⌘
= A

>
e
A>t

Qe
At + e

A>t
Qe

At
A

so that

A
>
P + PA =

Z 1

0

d

dt

⇣
e
A>t

Qe
At
⌘

dt

=
⇣
e
A>t

Qe
At
⌘ ���

1

t=0

=
⇣
lim
t!1

e
A>t

Qe
At
⌘
� e

A>0
Qe

A0

And, the right-hand side is equal to �Q since limt!1 e
At = 0 (by asymptotic stability) and e

A0 = I.

3. this follows by direct computation. Symmetry easily follows:

P
T =

Z 1

0
(eA

>t
Qe

At)> dt =

Z 1

0

�
e
At
�>

Q
>
⇣
e
A>t

⌘>
dt =

Z 1

0
e
A>t

Qe
At

dt = P

To check positive definiteness, pick an arbitrary vector z and compute:

z
>
Pz =

Z 1

0
z
>
e
A>t

Qe
At
z dt =

Z 1

0
w(t)>Qw(t) dt

where w(t) = e
At
z. Since Q is positive definite, we get that z>Pz � 0. Moreover

z
>
Pz = 0 =)

Z 1

0
w(t)>Qw(t) dt = 0

which only happens if w(t) = e
At
z = 0 for all t � 0, from which one concludes that z = 0, because e

At is
non-singular (recall all state transition matrices are!). Thus P is positive definite.

4. prove by contradiction. assume there is some P̄ that solves it:

A
>
P + PA = �Q, and A

>
P̄ + P̄A = �Q

Then
A

>(P � P̄ ) + (P � P̄ )A = 0

Multiplying by e
A>t and e

At on the left and right, respectively, we conclude that

e
A>t

A
>(P � P̄ )eAt + e

A>t(P � P̄ )Ae
At = 0, 8 t � 0

Yet,
d

dt

⇣
e
A>t(P � P̄ )eAt

⌘
= e

A>t
A

>(P � P̄ )eAt + e
A>t(P � P̄ )Ae

At = 0

implying that eA
>t(P � P̄ )eAt must be constant. But,because of stability, this quantity must converge to

zero as t ! 1, so it must be always zero. Since e
At is nonsingular, this is possible only if P = P̄ .

The implication that condition 3. =) condition 4 follows immediately, because if we select Q = �I in
condition 3., then the matrix P that solves the Lyapunov equation also satisfies A>

P + PA < 0.

Now to complete the proof we need to show that condition 4. implies condition 2. Let P be a symmetric
positive-definite matrix for which

A
>
P + PA < 0 (4)
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holds and define
Q = �(A>

P + PA)

Consider an arbitrary solution to the LTI system and define the scalar time-dependent map

v(t) = x
>(t)Px(t) � 0

Taking derivatives, we have

v̇ = ẋ
>
Px+ x

>
Pẋ = x

>(A>
P + PA)x = �x

>
Qx  0

Thus, v(t) is nonincreasing and we conclude that

v(t) = x
>(t)Px(t)  v(0) = x

>(0)Px(0)

But since v = x
>
Px � �min(P )kxk2 we have that

kxk2  x
>(t)Px(t)

�min(P )
=

v(t)

�min(P )
 v(0)

�min(P )

which means that the system is stable. To verify that it is actually exponentially stable, we go back to the
derivative of v, and using the facts that x>

Qx � �min(Q)kxk2 and v = x
>
Px  �max(P )kxk2, we get that

v̇ = �x
>
Qx  ��min(Q)kxk2  � �min(Q)

�max(P )
v, 8 t � 0

To finish we need a comparison lemma. Comparison results are commonly used analysis tools in control
theory and hence, it is worth think a bit about them to better understand their utility.

Lemma 10 (Comparison Lemma). Let v(t) be a di↵erentiable scalar signal. For some constant µ 2 R,

v̇  µv(t), 8t � t0 =) v(t)  e
µ(t�t0)v(t0), 8t � t0

Applying this lemma, we get that

v(t)  e
��(t�t0)v(t0), 8t � 0, � = � �min(Q)

�max(P )

which shows that v(t) converges to zero exponentially fast and so does kx(t)k.

There are discrete time versions of the above results. Indeed, consider

xk+1 = Axk

then we have a similar theorem.

Theorem 11. The following four conditions are equivalent:

1. The DT LTI system is asymptotically (exponentially) stable.

2. All the eigenvalues of A have magnitude strictly smaller than 1.

3. For every symmetric positive definite Q, there exists a unique solution P to the following Stein equation
(aka the discrete-time Lyapunov equation):

A
>
PA� P = �Q

Moreover, P is symmetric and positive-definite.

4. There exists a symmetric positive-definite matrix P for which the following Lyapunov matrix inequality
holds:

A
>
PA� P < 0
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4 The Lyapunov Operator

The Lypunov operator is defined by
L(P ) = A

>
P + PA

Recall that we showed last quarter that the eigenvalues of this operator are (�i + �j) where �i,�j are
eigenvalues of A. Hence, we have the following result.

Proposition 12. L is non-singular if and only if A and �A share no common eigenvalues.

As a consequence of this proposition, we have the following facts.

Fact. If A is stable, then the Lyapunov operator is non-singular. If A has imaginary eigenvalues, then
the Lyapunov operator is singular (since they have to come in complex conjugate pairs). Thus if A is
stable, for any Q there is exactly one solution P of Lyapunov equation A

>
P + PA+Q = 0.

If A is stable, and P is a unique solution of A>
P + PA+Q = 0, then

V (z) = z
>
Pz = z

>
✓Z 1

0
e
tA>

Qe
tA

dt

◆
z =

Z 1

0
x(t)>Qx(t) dt

The interpretation of this is that V (z) is a cost-to-go from point z given no input.

As in the above proof, if A is stable and Q > 0, then for each t

e
tA>

Qe
tA

> 0

so that

P =

Z 1

0
e
tA>

Qe
tA

dt > 0

This means that if A is stable, we can choose any positive definite quadratic form z
>
Qz as the dissipation,

i.e. �V̇ = z
>
Qz. Then, we can solve a set of linear equations to find the unique quadratic function form

V (z) = z
>
Pz. And, V will be positive definite so it is a Lyapunov function that proves A is stable.

That is, a linear system is stable i↵ there is a quadratic Lyapunov function that proves it.

5 Other applications of Lyapunov functions

We can use the Lyapunov equation to assess state feedback. Consider

ẋ = Ax+Bu, y = Cx, u = Kx, x(0) = x0

and suppose the closed loop dynamics ẋ = (A + BK)x are stable. Then to evaluate quadratic integral
performance measures

Ju =

Z 1

0
u(t)>u(t) dt, Jy =

Z 1

0
y(t)>y(t) dt

we can solve Lyapunov equations

(A+BK)>Pu + Pu(A+BK) +K
>
K = 0

and
(A+BK)>Py + Py(A+BK) + C

>
C = 0

so that we have
Ju = x

>
0 Pux0, Jy = x

>
0 Pyx0
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do this. They may be distributed outside this class only with the permission of the Instructor.

References. Chapter 11 and 15 [JH]; Chapter 8/8d, [C&D].

1 Controllability

Let D = (U ,X ,Y, s, ⇢) be a dynamical system. Let t0 < t1. The input u[t0,t1](·) steers x0 at t0 to x1 at t1 if

x1 = s(t1, t0, x0, u[t0,t1])

Definition 1 (Controllable). The system representation D is controllable on [t0, t1] if for all (x0, x1) 2 X ,
there exists u[t0,t1] 2 U which steers x0 at t0 to x1 at t1.

Proposition 2. D is controllable on [t0, t1] () for all x0 2 X , the map

s(t1, t0, x0, u[t0,t1](·)) : U ! X

is surjective, that is it maps U onto X .

1.1 Memoryless Feedback and Controllability

Consider two memoryless maps

Fs :X ! U (memoryless state feedback)

Fo :Y ! U (memoryless output feedback)

Applying Fs and Fo to our dynamical system D = (U ,X ,Y, s, r) (where s: state transition map, r: read out
map ) we get resulting systems Ds and Do, respectively, which are depicted in Figures 1 and 2, respectively.

Thus, for all t, we have
u(t) = v(t)� Fs(x(t))

and
u(t) = v(t)� Fo(y(t))

Assumption. (well-posedness) For Ds and Do, assume that for all (x0, t0), for all exogenous inputs v(·)
there is one and only one state response x(·) and one output response y(·).

Example 3. (of a system violating well-posedness). Consider A = 0, B = 0, C = 0, and D = 1 (SISO linear
system). Consider u = v + y. The closed loop system is ill-posed. Roughly speaking, well-posedness calls
for some delay around the feedback loop.

1
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v D y

Fs(·)

+ u

x

�

Figure 1: System Ds with memoryless state feedback

v D y

Fo(·)

+ u

�

Figure 2: System Do with memoryless state feedback

Theorem 4. Let Ds,Do be well-posed. Then

D is controllable on [t0, t1]

() Ds is controllable on [t0, t1] (1)

() Do is controllable on [t0, t1] (2)

Remark. Roughly speaking: nonlinear memoryless state-feedback and output-feedback do not a↵ect
controllability. Moreover, the memoryless assumption is crucial: it allows us to use the same state space
for D, Ds and Do.

Proof. (1) (=)) By assumption D is controllable on [t0, t1]. Consider arbitrary (x0, t0) and (x1, t1). Since
D is controllable on [t0, t1], 9ũ[t0,t1](·) steering x0 at t0 to x1 at t1. The state space of D is identical to Ds

since Fs is memoryless. Apply to Ds the exogenous input defined

ṽ(t) = ũ(t) + Fs(x(t))

= ũ(t) + Fs(s(t, t0, x0, ũ[t0,t]))

Then ṽ(t) steers x0 at t0 to x1 at t1 by the well-posedness assumption.

((=) By controllability of Ds, for all x0, x1 2 X , 9 ṽ[t0,t1] that steers (x0, t0) to (x1, t1) on Ds. Since D and
Ds have the same state space, by the well-posedness assumption, ṽ will produce a unique input ũ of D which
steers x0 at t0 to x1 at t1.

(2) follows similarly.

Key Take-Away. Roughly speaking, nonlinear memoryless state-feedback and output-feedback do not
a↵ect controllability. The memeoryless assumption is crucial since it allows for us to use the same state
space for D,Ds,Do.

2 Observability

Definition 5 (Observable). The dynamical system D is called observable on [t0, t1] if and only if, given,
D, for all inputs u[t0,t1] and for all corresponding outputs y[t0,t1] 2 Y the state x0 at time t0 is uniquely
determined.
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Of course, once x0 is calculated, from u[t0,t1] and the state transition map s we can calculate the state
trajectory x(·); indeed,

x(t) = s(t, t0, x0, u[t0,t1]), 8 t 2 [t0, t1]

Fact. D is observable on [t0, t1] () for each fixed u[t0,t1] the partial response map

x0 7! y[t0,t1] = ⇢(·, t0, x0, u[t0,t1])

is injective , that is the partial response map is a one to one map from X to Y.

2.1 Memoryless Feedback and Feedforward, and observability

We consider a given dynamical system D, a map Fo : Y ! U and a map Ff : U ! Y. We use Fo to apply to
D a memoryless output feedback and Ff to apply to D a memoryless feedforward. Call the resulting system
Do and Df , resp. (see Figs. 3 and 4).

Then for Df ,

⌘(t) = y(t) + Ff (u(t))

For Do, we make the uniqueness (well-posedness) Assumption 1.1.

v D y

Fo(·)

+ u

�

Figure 3: System Do with memoryless output feedback

v D y

Ff (·)

+

+

Figure 4: System Df with memoryless feedforward

Theorem 6. For the system Df and the system Do satisfying Assumption 1.1, we have

D is observable on [t0, t1]

() Do is observable on [t0, t1] (1)

() Df is observable on [t0, t1] (2)

Remark. Memoryless state feedback may a↵ect observability. For example, for a linear time-invariant
system representation R = [A,B,C,D], there may exist a linear state feedback Fs such that for some
states x0 and for some inputs u(·), the state trajectory remains, for all t, in the nullspace of C.
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3 Controllability & Observability of LTV Systems

Reference: [C&D] 8.2,8.3,8.4; [JH] Chapter 11, 15

Consider a LTV system

ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t)

Then for an input u(t) defined on the interval [t0, t], the solution is given by

x(t) = s(t, t0, x0, u[t0,t]) = �(t, t0)x0 +

Z t

t0

�(t, ⌧)B(⌧)u(⌧) d⌧

3.1 Controllability and Reachability of LTV

Definition 7 (Controllable). The dynamical system is controllable on [t0, t1] i↵ 8(x0, t0) and 8(x1, t1), there
exists u(·) that steers (x0, t0) to (x1, t1)—i.e., x(t1) = s(t1, t0, x0, u) = x1.

Writing out x(t1) using the above expression for the solution, we can define the so-called reachbility map:

x1 = x(t1) = s(t1, t0, x0, u[t0,t1]) = �(t1, t0)x0 +

Z t1

t0

�(t1, ⌧)B(⌧)u(⌧) d⌧

= �(t1, t0)x0 + Lru

where the reachability map Lr,[t0,t1] : PC([t0, t1]) ! Cn is defined by

Lr,[t0,t1](u(·)) =

Z t1

t0

�(t1, ⌧)B(⌧)u(⌧) d⌧

Note we will drop the dependence on [t0, t1] when clear from context.

Then the expression for x1 shows that there will be an input u[t0,t1] that transfers an arbitrary (x0, t0) to an
arbitrary (x1, t1) if and only if the map Lr : PC([t0, t1]) ! Cn is surjective.

Fact. Indeed,

(A(·), B(·)) is controllable on [t0, t1] () Lr,[t0,t1](u(·)) is surjective.

The map Lr,[t0,t1] determines the set of states that can be reached from the origin at some time t = t1.
In short, the study of the range of Lr is central to the study of controllability.

Sometimes we do not want to specify t1 in which case we say that the pair (A(·), B(·)) is controllable at to
i↵ for some t1 > t0, the pair is controllable on [t0, t1].

Given that the state transition matrix �(t, t0) is non-singular for all (t, t0), it is easy to prove the following
result.

Theorem 8. The pair (A(·), B(·)) is completely controllable (CC) on [t0, t1]

() 8 x0 2 Rn, 9u[t0,t1] that steers (x0, t0) to (0, t1) (steering to origin)

() 8x1 2 Rn, 9u[t0,t1] that steers (0, t0) to (x1, t1) (reaching from origin)
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Proof.
x1 = �(t1, t0)x0 + Lru

since x0 can be zero and x1 arbitrary, a necessary condition for CC is that R(Lr) = Cn. But this is su�cient
too because if R(Lr) = Cn, given x1 at t1 and x0 at t0, 9 u[t0,t1] such that

x1 � �(t1, t0)x0 = Lru

Both implications follow.

Given (A(·), B(·)), we say that the state x0 is controllable to zero on [t0, t1] i↵ 9u[t0,t1] that steers (x0, t0) to
(0, t1). Analogously, we say that the state x1 is reachable from the origin on [t0, t1] i↵ 9u[t0,t1] that steers
(0, t0) to (x1, t1).

Remark. The essence of the reduction theorem (5) is that, for linear system representations, controlla-
bility on [t0, t1], controllability to zero on [t0, t1] of all states, and reachability on [t0, t1] of all states are
equivalent. The reader should construct a one-dimensional nonlinear example to show that this is not so
for nonlinear systems.

Definition 9 (Reachable Subspace). Given two times t1 > t0 � 0, the reachable or controllable from the
origin on [t0, t1] subspace R(Lr) consists of all states x1 for which there exists an input u : [t0, t1] ! Cm

that transfers the state from x(t0) = 0 to x(t1) = x1—i.e.,

R(Lr) =

⇢
x1 2 Cn : 9u(·), x1 =

Z t1

t0

�(t1, ⌧)B(⌧)u(⌧) d⌧

�

Theorem 10 (Controllability in terms of Reachability). Let (A(·), B(·)) be given and be piecewise contin-
uous. Then,

(A(·), B(·)) controllable on [t0, t1] () R(Lr) = Cn (1)

() R(LrL
⇤
r) = Cn (2)

() det(Wr(t0, t1)) 6= 0 (3)

where Wr is the reachability grammian

Wr(t0, t1) =

Z t1

t0

�(t1, ⌧)B(⌧)B(⌧)⇤�(t1, ⌧)
⇤ d⌧

Further, the set of reachable states on [t0, t1] is the subspace R(Lr) which is equal to R(Wr(t0, t1)).

Proof. To show the equivalence in (1), note that the left-hand side is equivalent to Lr being surjective which
is by definition equivalent to R(Lr) = Cn. To show the equivalence between (1) and (2), note that this is
simply Finite Rank Operator Lemma (FROL) applied to A = Lr viewed as a map from the Hilbert space
Lm
2 ([t0, t1]) into Cn (Note that I expect you to be able to argue this without invoking FROL). To show that

(2) is equivalent to (3), note that LrL
⇤
r : Cn

! Cn, LrL
⇤
r is surjective i↵ it is a bijection so using its matrix

representation,

Wr(t0, t1) =

Z t1

t0

�(t1, ⌧)B(⌧)B(⌧)⇤�(t1, ⌧)
⇤ d⌧,

we get that (2) is equivalent to (3).

The fact that the set of reachable states on [t0, t1] is the subspace R(Lr) follows directly from the expression
for x1 = s(t1, t0, x0, u) with x0 = 0.

Note that by definition, Wr(t0, t1) is the integral of a semi-definite Hermitian matrix so that 8z 2 Cn,
z⇤Wt(t0, t1)z � 0.
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Practice Problem. Show that t1 7! Wt(t0, t1) solves the linear matrix di↵erential equation

Ẋ(t) = A(t)X(t) +X(t)A⇤(t) +B(t)B(t)⇤

with X(t0) = 0.

The equivalence between controllability and reachability as described in Theorem 10 let’s us define an
ostensibly equivalent controllability map:

Lc : u[t0,t1] 7!

Z t1

t0

�(t0, ⌧)B(⌧)u(⌧) d⌧

Note: Lc surjective () 9 u[t0,t1] that steers arbitrary (x0, t0) to arbitrary (x1, t1).

Definition 11 (Controllable Subspace). Given two times t1 > t0 � 0, the reachable or controllable to the
origin on [t0, t1] subspace R(Lc) consists of all states x0 for which there exists an input u : [t0, t1] ! Cm

that transfers the state from x(t0) = x0 to x(t1) = 0—i.e.,

R(Lc) = {x0 2 Cn : 9u(·), 0 = �(t1, t0)x0 +

Z t1

t0

�(t1, ⌧)B(⌧)u(⌧) d⌧}

Note that

0 = �(t1, t0)x0 +

Z t1

t0

�(t1, ⌧)B(⌧)u(⌧) d⌧ () x0 =

Z t1

t0

�(t0, ⌧)B(⌧)v(⌧) d⌧, u(·) = �v(·)

This in turn gives us an analogous theorem to the reachability theorem above.

Theorem 12. Let (A(·), B(·)) be given and be piecewise continuous. Then,

(A(·), B(·)) controllable on [t0, t1] () R(Lc) = Cn (4)

() R(LcL
⇤
c) = Cn (5)

() det(Wc(t0, t1)) 6= 0 (6)

where Wc is the reachability grammian

Wc(t0, t1) =

Z t1

t0

�(t0, ⌧)B(⌧)B(⌧)⇤�(t0, ⌧)
⇤ d⌧

Further, the set of reachable states on [t0, t1] is the subspace R(Lc) which is equal to R(Wc(t0, t1)).

Practice Problem. Show that given t1 > t0,

R(Lr) = �(t1, t0)R(Lc)

and derive a matrix di↵erential equation that t 7! Wc(t, t1) solves.

One interesting application is to the problem of finding the minimum cost control. Consider the cost of
control to be the given by the L2-norm of u(·):

hu, ui =

Z t1

t0

u(t)⇤u(t) dt = kuk22

Then if (A(·), B(·)) is controllable on [t0, t1], then for all x0, x1 2 Cn, the input ũ : [t0, t1] ! Cm defined by

ũ(t) = B(t)⇤�(t1, t)
⇤Wr(t0, t1)

�1(x1 � �(t1, t0)x0)
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steers (x0, t0) to (x1, t1). Note this is *one* such control that gets the job done. There are potentially
infinitely many others, since controllability is about ’surjectivity’ of a particular linear map. To better
understand this, the condition

x1 = s(t1, t0, x0, u) = �(t1, t0)x0 +

Z t1

t0

�(t1, ⌧)B(⌧)u(⌧) d⌧

imposes n independent constraints on an infinitely dimensional space (i.e., the space where u(·) lies is an
infinite dimensional space). What this implies is that the set of controls that satisfy the above “constraint”
forms a linear variety (or a�ne subspace) of codimension n. Indeed, any u = ũ+ v with v 2 N (Lr) also gets
the job done.

Further, geometrically, ũ is the least-cost L2-solution i↵ kũk2 is the minimum distance between the origin
and the linear variety ũ+N (Lr). Recall from last quarter that this means that ũ is the least cost L2 solution
i↵ ũ is orthogonal to the variety ũ+N (Lr) which is, in turn, equivalent to ũ ? N (Lr).

Now, we get to use our friend FROL once again! By FROL, this means that

ũ is the least cost solution () ũ 2 R(L⇤
r) () ũ = L

⇤
r⇠, ⇠ 2 Cn

And, the minimal cost for going for reaching (x1, t1) from (0, t0) is given by

kuk22 = x⇤
1Wr(t0, t1)

�1x1

This can easily be checked by the following reasoning:

u[t0,t1] transfers (x0, t0) to (x1, t1) () x1 � �(t1, t0)x0 = Lru

Since ũ = L
⇤
r⇠, we have that

⇠ = (LrL
⇤
r)

�1(x1 � �(t1, t0)x0) =) ũ = L
⇤
r⇠ = L

⇤
r(LrL

⇤
r)

�1(x1 � �(t1, t0)x0)

Practice Problem. How is this connected to the minimum energy Ju from Lecture 4?

Recall again from 510 (in particular, exam 1), that for diagonalizable PSD Hermitian matrices, one can
select an orthonormal eigenbasis. Hence, since Wr(t0, t1) is a PSD Hermitian matrix, we can expand it as

Wr(t0, t1) =
nX

i=1

�iviv
⇤
i

where (�i, vi) are eigenpairs for Wr and the vi are orthonormal. Recall that

hu, ui =

Z t1

t0

u(t)⇤u(t) dt = kuk22

(L2 norm), so that for a unit cost kuk2 = 1, we can reach any of the points v1/
p
�i, i = 1, . . . , n. Moreover,

from (0, t0) we can reach any point on the ellipsoid whose semixes are vi/
p
�i. Hence, if we order the

eigevalues

�1 � �2 � · · · � �n > 0

then the direction vn is the most expensive to reach and the direction v1 is teh cheapest, so that the
eigenvalues of Wr measure the e↵ectiveness of the actuators in the task of reaching states. Furthermore,
thinking along these lines was the origin for reachability computation in linear systems theory.
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3.2 Observability of LTV

Consider A(·), C(·). Recall

y(t) = ⇢(t, t0, x0, u[t0,t1]) = C(t1)�(t1, t0)x0 +

Z t1

t0

C(t1)�(t1, ⌧)B(⌧)u(⌧) d⌧

Let L0 : Rn
! Y[t0,t1] be defined by

Lox0 = C(·)�(·, t0)x0

(that is, Lox0 is an operator in PC([t0, t1])) such that

(Lox0)(t) = y(t)�

Z t

t0

C(t)�(t, ⌧)B(⌧)u(⌧) d⌧

Definition 13. The state x0 is unobservable on [t0, t1] i↵ its zero input response is zero on [t0, t1].

Hence,
x0 is unobservable on [t0, t1] () x0 2 N (Lo)

Theorem 14. Given (A(·), C(·)) (piecewise continuous on R+), the following are equivalent:

(A(·), C(·)) is completely observable (CO) on [t0, t1] () N (Lo) = {0}

() N (L⇤
oLo) = {0}

() det(Wo(t0, t1)) 6= 0

where

Wo(t0, t1) =

Z t1

t0

�(⌧, t0)
⇤C(⌧)⇤C(⌧)�(⌧, t0) d⌧

Lo

L
⇤
o

Cn Y[t0,t1]

Figure 5: Graphic of Observability Map Operation

The proof of this result follows directly from the definitions of the observability map and FROL. Note: you
should know how to argue the results of FROL in the context of the observability map.

Analogous to the results we had for controllability, a consequence of the above theorem is the following.

Corollary 15. Suppose that (A(·), C(·)) is observable on [t0, t1]. Then we have the following results:

a. Let y be the zero-input response due to x0 so that

hy, yi = x⇤
0Wo(t0, t1)x0

b. Given y[t0,t1], x0 is restricted by

x0 = (L⇤
oLo)

�1
L
⇤
oy = Wo(t0, t1)

�1

Z t1

t0

�(⌧, t0)
⇤C(⌧)⇤y(⌧) d⌧
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And as in the case of the controllability map, we can characterize observability in terms of the eigenstructure
of Wo. Indeed, let �n > 0 be the smallest eigenvalue of the positive definite Hermitian matrix Wo(t0, t1)
and en its corresponding normalized eigenvector. Then for x0 = en, kx0k2 = 1 and its zero-input response
is such that hy, yi = �n. So, if �n << 1, some states are barely observable in case of noisy observations.

Practice Problem. Show that t0 7! Wo(t0, t1) is the solution to the linear matrix di↵erential equation

Ẋ(t) = �A(t)⇤X(t)�X(t)A(t)� C(t)⇤C(t), X(t1) = 0

Example 16. Consider two systems connected in parallel.

+ y

(A1, B1, C1)

(A2, B2, C2)

u

y1 = C1x1

y2 = C2x2

The overall system has state-space model

ẋ =


A1 0
0 A2

�
x+


B1

B2

�
u, y =

⇥
C1 C2

⇤
x

The output is

y(t) = C1e
A1tx1(0) + C2e

A2tx2(t) +

Z t

0
(C1e

A1(t�⌧)B1 + C2e
A2(t�⌧)B2)u(⌧) d⌧

When A = A1 = A2 and C1 = C2 = C, this reduces to

y(t) = CeAt(x1(0) + x2(0)) +

Z t

0
CeA(t�⌧)(B1 +B2)u(⌧) d⌧

This example demonstrates that simply knowing the input and output of the system, we cannot necessarily
distinguish between initial states for which x1(0) + x2(0) is the same value.

Theorem 17. Given t1, t0 with t1 > t0 � 0, the unobservable subspace is such that

UO(t0, t1) = kerWo(t0, t1)

Proof. For every x0 2 Rn, we have that

x>
0 Wo(t0, t1)x0 =

Z t1

t0

x>
0 �(⌧, t0)

>C(⌧)>C(⌧)�(⌧, t0)x0 d⌧ =

Z t1

t0

kC(⌧)�(⌧, t0)x0k
2 d⌧

so that
x0 2 kerWo(t0, t1) =) C(⌧)�(⌧, t)x0 = 0, 8⌧ 2 [t0, t1] =) x0 2 UO(t0, t1)

On the other hand,

x0 2 UO(t0, t1) =) C(⌧)�(⌧, t0)x0 = 0, 8⌧ 2 [t0, t1] =) x0 2 ker(Wo(t0, t1))

where we have used the fact that
x>Wx = 0 =) Wx = 0

for W PSD.
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Remark. The key to giving constructive tests for controllability and observability is to give conditions
under which R(Lc) = Rn and N (Lo) = {0}.

4 Duality

The controllability and observability theorems we have stated so far are intimately related. Consider the
system

ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t) +D(t)u(t)

Recalling our knowledge about computing adjoints, we can write the dual representation as

� ˙̃x(t) = A⇤(t)x̃(t) + C⇤(t)ũ(t)

ỹ(t) = B⇤(t)x̃(t) +D⇤(t)ũ(t)

where here x̃(t) 2 Cn, ũ(t) 2 Cp, ỹ(t) 2 Cm. The state transition matrix is

 (t, ⌧) = �(⌧, t)⇤

The minus sign on the dynamics essentially captures that the dual runs in reverse time. If we take the dual
of the dual, we get

(A(·),�B(·),�C(·), D(·))

so that the original system is equal to the dual of the dual modulo a sign change for the state. And thus

(L⇤
r)

⇤ = �Lr, (L⇤
c)

⇤ = �Lc, (L⇤
o)

⇤ = �Lo

It turns out that controllability to zero on [t0, t1] is the dual of unobservability on [t0, t1] and vice versa.

Theorem 18. The subspace of all states of (A(·), B(·), C(·), D(·)) that are controllable to zero (unobservable)
on [t0, t1] is the orthogonal complement of the subspace of all states of its dual that are unobservable
(controllable to zero, resp.) on [t0, t1]. That is,

R(Lc) = N (L⇤
o)

?, N (Lo) = R(L⇤
c)

?

Corollary 19. The system (A(·), B(·), C(·), D(·)) is controllable (observable) on [t0, t1] i↵ its dual is ob-
servable (controllable, resp.) on [t0, t1].

5 Discrete Time Controllability and Reachability

Remark. The fundamental di↵erence between CT and DT is that DT controllability to zero does not
necessarily imply reachability from zero.

Definition 20. We say that the pair (A(·), B(·)) is controllable on [k0, k1] i↵ for all (x0, k0) and for all
(x1, k1) there exists a control sequence u[k0,k1�1] = (u(k0), . . . , u(k1 � 1)) that transfers the (x0, t0) to the
(x1, t1).
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Given the system (A(·), B(·)), we know that u[k0,k1�1] transfers x0 to x1 i↵

x1 = s(k1, k0, x0, u0) = �(k1, k0)x0 +
k1�1X

`=k0

�(k1, `+ 1)B(`)u(`)

This expression, in turn, shows that there will be such an input taking arbitrary x0 to arbitrary x1 if and
only if the linear map

Lr(k0, k1) : Ud(k0, k1 � 1) ! Cn : u[k0,k1�1] !

k1�1X

`=k0

�(k1, `+ 1)B(`)u(`)

is surjective. This map is the reachability map and since it is linear, we can invoke the matrix representation
theorem to note that it has a matrix representation Lr given by

Lr(k0, k1) =
⇥
B(k1 � 1) �(k1, k1 � 1)B(k1 � 2) · · · �(k1, k0 + 1)B(k0)

⇤

Unlike the CT case,
�(k1, k0) = A(k1 � 1)A(k1 � 2) · · ·A(k0)

has an inverse �(k0, k1) = (�(k1, k0))�1 i↵ det(A(k)) 6= 0 for all k 2 [k0, k1 � 1]. Because of this fact, we
have the following result.
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Theorem 21. The following implications hold:

(A(·), B(·)) is controllable on [k0, k1]

() 8x1 2 Cn, 9u[k0,k1�1] that steers (0, k0) to (x1, k1) (reachable)

=) 8x0 2 Cn, 9u[k0,k1�1] that steers (x0, k0) to (0, k1) (controllable to zero)

where the last statement is actually an equivalence if det(A(k)) 6= 0 for all k 2 [k0, k1 � 1].

Example 22. Show that the constant pair (A, b) with

A =

2

4
0 1 0
0 0 1
0 0 0

3

5 , b = e2

is not controllable on [0, 3] yet every state x0 is driven to zero at k = 3. Indeed, this matrix A is nilpotent
with k = 3 and hence with the zero control input every state goes to zero. On the other hand there are
clearly states x1 which are not reachable by any control.
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The goal today is to reduce the more complicated and abstract conditions for controllability/observability
of LTV systems to the LTI case, and generate several tests for controllability and observability.

1 The Basics for Controllability and Observability of LTI Systems

Consider an LTI system defined by

ẋ = Ax+Bu

y = Cx+Du

with x 2 Rn.

Recall from Lecture 5/6 that

Wr(t0, t1) =

Z t1

t0

�(t1, ⌧)B(⌧)B⇤(⌧)�⇤(t1, ⌧) d⌧

=

Z t1

t0

eA(t1�⌧)BB⇤eA
⇤(t1�⌧) d⌧

=

Z t1�t0

0
eAtBB⇤eA

⇤t dt

Similarly,

Wc(t0, t1) =

Z t1�t0

0
e�AtBB⇤e�A⇤t dt

The so-called controllability matrix is given by

C =
⇥
B AB A2B · · · An�1B

⇤
2 Cn⇥nm

Analogously, the observability matrix is given by

O =

2

6664

C
CA
...

CAn�1

3

7775
2 Cnp⇥n

We can derive “tests” based on these two matrices in order to check observability and controllability prop-
erties of the above LTI system.

1
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1.1 Observability and Controllability Tests for LTI

Theorem 1. The following are equivalent:

The LTI system is CC on some [0,�] (1)

() rank
�⇥
B AB · · · An�1B

⇤�
= n (2)

() rank
�⇥
sI �A B

⇤�
= n, 8 s 2 C (3)

Proof. [(1)=) (2)]. We know that if a system is CC then the Gramian Wr is positive definite—indeed, by its
construction its positive semi-definite and if it were to actually be zero at for some vector x (i.e. xTWrx = 0)
then this means it drops rank which can be true if rank(Wr) = n:

Wr[t0, t1] =

Z t1

t0

eA(t1�⌧)BB⇤eA
⇤(t1�⌧) d⌧

=

Z t1�t0

0
eA⌧BB⇤eA

⇤⌧ d⌧

=

Z �

0
eA⌧BB⇤eA

⇤⌧ d⌧ > 0

Now, suppose (2) is false. That is, 9 v 2 Rn such that

v>
⇥
B AB · · · An�1B

⇤
= 0>nm

=) v>B = 0>m, vTAB = 0>m, . . . , v>An�1B = 0>m
=) v>f(A)B = 0>m (by Cayley Hamilton)

=) v>eAtB = 0>m

Hence
v>Wrv = 0

which contradicts the positive definiteness of Wr.
Can you think of an alternative proof—e.g., by contrapositive?

[(2) =) (1)]. Assume (2) and suppose that (1) is false. Then 9 v 6= 0 such that

vT
 Z �

0
eA⌧BB⇤eA

⇤⌧ d⌧

!
v = 0

=)

Z �

0
kB⇤eA

⇤⌧vk2 d⌧ = 0

=) B⇤eA
⇤⌧v ⌘ 0, 8 ⌧ 2 (0,�)

That is,

B⇤v = 0, at t = 0

B⇤A⇤v = 0, derivative at t = 0
...

...

B⇤(An�1)⇤v = 0, n� 1–th derivative at t = 0

Thus,
v>
⇥
B AB · · · An�1B

⇤
= 0>nm

which contradicts (2).
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[(2) =) (3)]. Suppose (2) holds and that (3) is false. Then, 9 � 2 �(A) such that

v>
⇥
�I �A B

⇤
= 0>n+m

That is,

�v> = v>A and v>B = 0>m

Hence,

v>AB = �v>B = 0>m
v>A2B = �v>AB = 0>m

...
...

v>An�1B = �v>An�1B = 0>m

so that

v>
⇥
B AB · · · An�1B

⇤
= 0>nm

contradicting (2).

[(3) =) (2)]. Suppose (3) holds and (2) does not. Consider R(C). Since (2) does not hold, R(C) ( Rn.
Note that R(C) is an A–invariant subspace containing R(B). Let V1 be any subspace of Rn such that

R(C)� V1 = Rn

Then, by the second representation theorem, there exists a representation of A,B w.r.t. R(C), V1 given by

Ã =


Ã11 Ã12

0 Ã22

�
, B̃ =


B̃1

0

�
(1)

Thus, 9 T 2 Rn⇥n such that

T�1AT = Ã and T�1B = B̃

Now

rank
⇥
sI �A B

⇤
= rank

⇥
sI � Ã B̃

⇤

since
⇥
sI � Ã B̃

⇤
= T�1

⇥
sI �A B

⇤ T 0
0 I

�

Further,

rank
⇥
sI � Ã B̃

⇤
= rank


sI � Ã11 �Ã12 B̃1

0 sI � Ã22 0

�

But this has rank less than n for all s 2 �(Ã22), contradicting (3).

Example 2. The equations of motion of a satellite, linearized around a steady-state solution, are given by
ẋ = Ax+ Bu, where x1 and x2 denote the perturbations in the radius and the radial velocity, respectively,
x3 and x4 denote the perturbations in the angle and the angular velocity, and

A =

2

664

0 1 0 0
3!2 0 0 2!
0 0 0 1
0 �2! 0 1

3

775 , B =

2

664

0 0
1 0
0 0
0 1

3

775

The input is a radial thruster u1 combined with a tangential thruster u2.
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a. is the system controllable? Yes, this is easy to check by just computing

rank(C) = rank
�⇥
B AB

⇤�
= rank

0

BB@

2

664

0 0 1 0
1 0 0 2
0 0 0 1
0 1 �2 1

3

775

1

CCA = 4

That is we did not need to consider higher powers of A.

b. What is the thrusters individually fail?

If u2 fails we have

rank(C) = rank
�⇥
B2 AB2 A2B2

⇤�
= rank

0

BB@

2

664

0 1 0 �1
1 0 �1 �4
0 0 �2 �2
0 �2 �2 0

3

775

1

CCA = 3

so its not controllable.

If u1 fails we have

rank(C) = rank
�⇥
B2 AB2 A2B2

⇤�
= rank

0

BB@

2

664

0 0 2 2
0 2 2 0
0 1 1 �3
1 1 �3 �7

3

775

1

CCA = 4

Fact. Some facts:
1. Since the controllability matrix does not depend on time, if the LTI system is CC for some � > 0 then

it is CC for all � > 0. Because of this fact, we often say that the pair (A,B) is controllable.

2. Controllability test can be done by just examining A and B without computing the grammian. The
matrix-rank test is attractive in that it enumerates the vectors in the controllability subspace. However,
numerically, since it involves powers of A, numerical stability needs to be considered.

3. The PBH test involves simply checking the condition at the eigenvalues. It is because for (sI � A,B)
to have rank less than n, s must be an eigenvalue.

4. The range space of the controllability matrix is of special interests. It is called the controllable subspace
and is the set of all states that can be reached from zero-initial condition. This is A–invariant.

5. Using the basis for the controllable subspace as part of the basis for Rn, the controllability property
can be easily seen in the transformed representation in (1).

1.2 LTI Observability

The dual of the controllability theorem for LTI gives a similar theorem for observability.

Theorem 1.1 The following are equivalent:

The LTI system is CO on some [0,�] (1)

() rank

0

BBB@

2

6664

C
CA
...

CAn�1

3

7775

1

CCCA
= n (2)

() rank

✓
sI �A

C

�◆
= n, 8 s 2 C (3)
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The proof is very similar to the one for controllability. (see C& D for details and alternate proof for
controllability using observability proof). This being said, it is perhaps instructive to see the proof sketch
for the equivalence of (3) with (2).

Proof. Instead of considering the range space of the controllability matrix, we consider the NULL space of
the observability matrix. Its null space is also A-invariant. Hence if the observability matrix is not full rank,
then using basis for its null space as the last k basis vectors of Rn, the system can be represented as

ż =


Ã11 0
Ã21 Ã22

�
z +


B̃1

B̃2

�
u

y =
⇥
C̃ 0

⇤
z

where

C =
⇥
C̃ 0

⇤
T�1, and A = T


Ã11 0
Ã21 Ã22

�
T

and the dim of Ã22 is non-zero (and is the dim of the null space of the observability matrix).

Fact. Some facts:
1. Observability of a LTI system does not depend on the time interval. So, theoretically speaking, if

observing the output and input for an arbitrary amount of time will be su�cient to figure out x0. In
reality, when more data is available, one can do more averaging to eliminate e↵ects of noise (e.g. using
the Least squares Kalman Filter approach).

2. The subspace of particular interest is the null space of the controllability matrix. An initial state lying
in this set will generate identically 0 zero-input response. This subspace is called the unobservable
subspace.

3. Using the basis of the unobservable subspace as part of the basis of Rn, the observability property can
be easily seen.

Remark. An easy extension to the proofs of the above theorems is that

R(Wc[0,�]) = R(Lc) = R(C) ⇢ Rn

N (Wo[0,�]) = N (Lo) = N (O) ⇢ Rn

2 Lyapunov Tests for Controllability/Observability

Recall for LTV systems the following facts.

Fact. The function t1 7! Wr(t0, t1) is teh solution of the linear matrix equation

Ẋ(t) = A(t)X(t) +X(t)A⇤(t) +B(t)B⇤(t)

with X(t0) = 0.

Fact. The map t0 7! Wo(t0, t1) is the solution to the linear matrix equation

Ẋ(t) = �A⇤(t)X(t)�X(t)A(t)� C⇤(t)C(t)

with X(t1) = 0.

For LTI, this gives rise to the Lyapunov tests for controllability (resp. observability). The utility of this is
in the synthesis of feedback controllers that stablilize the system. You have a homework on this.
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Consider
ẋ = Ax+Bu, (x+ = Ax+Bu, DT)

Proposition 2.1 Assume that A is a stability matrix (i.e. �(A) ⇢ C�
�). The LTI system is controllable

if and only if there is a unique positive-definite solution W to the following Lyapunov equation

AW +WA> = �BB>, (AWA>
�W = �BB>, DT)

Moreover, the unique solution is

W =

Z 1

0
eA⌧BB>eA

>⌧ d⌧

resp. in DT case

W =
1X

t=0

A⌧BB>(A>)⌧

3 Stabilizing via Feedback

Proposition 3.1 For real A,B, for any monoic real polynomial ⇡ of degree n, there exists F 2 Rm⇥n

such that
�A+BF = ⇡

if and only if the pair (A,B) is controllable.

The interpretation of the above proposition is through the idea of constant state feedback. Suppose that the
state variables are available, (from, say, measurements), that we calculate Fx for a given F 2 Rm⇥n and
that we feedback Fx to the input: the resulting feedback system is, with u = 0,

x = (A+BF )x

Thus the proposition asserts that the pair (A,B) is controllable () we can always choose F so that the
closed-loop characteristic polynomial �A+BF has as roots a list of n preassigned points in C; of course, these
n points must be located symmetrically with respect to the real axis because the polynomial �A+BF has
real coe�cients.

Key Take Away: This is to say that given any unstable A with (A,B) controllable we can always stabilize
it by constant state feedback.

3.1 Controllable Canonical Form

Consider a SISO LTI system that is CC. We claim that there exists a similarity transformation that converts
the system to the form

ẋ =

2

666666664

0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

. . .
. . .

. . .
. . .

...
...

...
. . .

. . .
. . . 0

0 0 · · · 0 0 1
�an �an�1 �an�2 �an�3 · · · �a1

3

777777775

x+

2

666664

0
0
...
0
1

3

777775
u

Indeed, since the system is CC, C has rank n and is invertible so that

C
�1 =


C̃

q

�
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where q is the last row of the matrix inverse. That is,

C
�1 =


C̃

q

� ⇥
b Ab · · · An�1b

⇤
= I

so that

qAi�1b =

⇢
0, i = 1, . . . , n� 1
1, i = n

Then by Cayley-Hamilton we have that
2

6664

qb
qAb
...

qAn�1b

3

7775
=

2

6664

0
...
0
1

3

7775
= B̄

and
2

666664

qA
qA2

...
qAn�1

qAn

3

777775
=

2

6664

qA
...

qAn�1

�q
Pn

i=1 an�i+1Ai�1

3

7775

=

2

666666664

0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

. . .
. . .

. . .
. . .

...
...

...
. . .

. . .
. . . 0

0 0 · · · 0 0 1
�an �an�1 �an�2 �an�3 · · · �a1

3

777777775

2

666664

q
qA
...

qAn�2

qAn�1

3

777775

= ĀT

where

T =

2

6664

q
qA
...

qAn�1

3

7775

Hence, A = T�1AT and b = T�1B̄.

Note. Any system that can be placed in controllable canonical form can be stabilized by state feedback.

Example. Consider

ẋ =

2

4
0 1 0
0 0 1

�↵3 �↵2 �↵1

3

5x+

2

4
0
0
1

3

5u

With state feedback the input is u = �Kx where K is a constant row vector. Consider the polynomial
p(a) =

P3
k=0 aks

3�k = a0s3 + a1s2 + a2s + a3 with a0 = 1. For the closed loop feedback system with
K =

⇥
k1 k2 k3

⇤
, we have

A�BK =

2

4
0 1 0
0 0 1

�↵3 � k1 �↵2 � k2 �↵1 � k3

3

5
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Then, �(s) = s3+(↵1+k3)s2+(↵2+k2)s+↵3+k1. Equating the coe�cients with p(s) we get a1 = ↵1+k3,
a2 = ↵2 + k2, and a3 = ↵3 + k1. So, K = [a3 � ↵3 a2 � ↵2 a1 � ↵1]T .

Example. Consider

ẋ =


1 0
0 2

�
x+


1
1

�
u

and the desired characteristic polynomial p(s) = (s+ 1)(s+ 3). First,

rank C = rank

✓
1 1
1 2

�◆
= 2

Then for u = �kx,

det(sI �A+ bk) = det

✓
s 0
0 s

�
�


1 0
0 2

�
+


1
1

� ⇥
k1 k2

⇤◆

= det

✓
s� 1 + k1 k2

k1 s� 2 + k2

�◆

= (s� 1 + k1)(s� 2 + k2)� k2k1

= (s� 1)(s� 2) + k1(s� 2) + k2(s� 1)

= s2 � 3s+ 2 + k1s� 2k1 + k2s� k2

= s2 + (k1 + k2 � 3)s+ 2� 2k1 � k2

So then by equating coe�cients of the above and

p(s) = s2 + 4s+ 3

we get

4 = k1 + k2 � 3 =) 7� k2 = k1

3 = 2� 2k1 � k2 =) 1 = �2k1 � k2 =) 1 = �2(7� k2)� k2 = �14 + k2

so that
k1 = �8 and k2 = 15

and the closed loop system is thus

ẋ = (A�BK)x =


9 15
8 17

�
x
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Lecture 6: LTV Controllability/Observability: Gramians and DT vs. CT

Lecturer: L.J. Ratli↵

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications,
meaning you should take your own notes in class and review the provided references as opposed to taking
these notes as your sole resource. I provide the lecture notes to you as a courtesy; it is not required that I
do this. They may be distributed outside this class only with the permission of the Instructor.

References. Chapter 11 and 15 [JH]; Chapter 8/8d, [C&D].

1 Gramians

We can characterize the controllability and observability in terms of operators.

Remark. This is where the Finite Rank Operator Lemma (FROL) and adjoint map definition will play

a role.

0H 0m

N (A)

R(A
⇤
)

N (A
⇤
)

R(A)

H F
m

A

A
⇤

Figure 1: The orthogonal decomposition of the domain and the co-domain of a finite rank operator A : H !
F

m
and its associated bijections.

Recall FROL: It tells us that for a map linear map A : U ! V that

V = R(A)
?
� N (A

⇤
)

and

U = R(A
⇤
)

?
� N (A)

Moreover,

N (AA
⇤
) = N (A

⇤
), R(AA

⇤
) = R(A)

N (A
⇤
A) = N (A), R(A

⇤
A) = R(A

⇤
)

and

AA
⇤|R(A) ! R(A) and A

⇤
A|R(A⇤) ! R(A

⇤
) are one-to-one and onto

1
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Claim: the adjoint of Lr : U[t0,t1] ! Rn
, which is defined by

Lr(u(·)) =
Z

t1

t0

�(t1, ⌧)B(⌧)u(⌧) d⌧,

is

L⇤
r
x = B

⇤
(·)�⇤

(t1, ·)x

Proof. Lr : u[t0,t1] 7!
R
t1

t0
�(t1, ⌧)B(⌧)u(⌧)d⌧ so that

hLru, ziRn = hu,L⇤
r
ziU[t0,t1]

where

hLru, ziRn = z
⇤
Z

t1

t0

�(t1, ⌧)B(⌧)u(⌧)d⌧

=

Z
t1

t0

(B
⇤
(⌧)�

⇤
(t1, ⌧)z)

⇤
u(⌧)d⌧

= hu,B⇤
(⌧)�

⇤
(t1, ⌧)ziU[t0,t1]

so that

L⇤
r
z = B

⇤
(·)�⇤

(t1, ·)z

The adjoint L⇤
c
is derived similarly:

L⇤
c
z = B

⇤
(·)�⇤

(t0, ·)z

Note that

R(Lr) = �(t1, t0)R(Lc)

Indeed, let x 2 Lr then

x = Lru =

Z
t1

t0

�(t1, ⌧)B(⌧)u(⌧) d⌧

But, �(t1, t0)�(t0, ⌧) = �(t1, ⌧) so that

x = Lru = �(t1, t0)

Z
t1

t0

�(t0, ⌧)B(⌧)u(⌧) d⌧

Since LrL⇤
r
: Rn ! Rn

is represented by

Z
t1

t0

�(t1, ⌧)B(⌧)B
⇤
(⌧)�

⇤
(t1, ⌧) d⌧

we have our definitions of the reachability and controllability Gramians.

Definition 1 (Reachability and Controllability Gramian.). The reachability Gramian is given by the sym-

metric positive semi-definite matrix

Wr[t0, t1] =

Z
t1

t0

�(t1, ⌧)B(⌧)B
⇤
(⌧)�(t1, ⌧) d⌧ 2 Rn⇥n

The controllability Gramian is given by the symmetric positive semi-definite matrix

Wc[t0, t1] =

Z
t1

t0

�(t0, ⌧)B(⌧)B
⇤
(⌧)�(t0, ⌧) d⌧ 2 Rn⇥n
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Fact. The set of reachable states on [t0, t1] is the subspace R(Lr), which is equal to R(Wr[t0, t1]).

Definition 2. Controllability test

(A(·), B(·)) CC () rank(Wc) = n

Lr

L⇤
r

U[t0,t1]

Cn Lo

L⇤
o

Cn Y[t0,t1]

Figure 2: Graphic of Reachability and Observability Map Operation

Analogous construction for observability. The observability operator is denoted by Lo : Rn ! Y[t0,t1]

where

Lox0 = C(·)�(·, t0)x0

and

L⇤
o
y(·) =

Z
t1

t0

�
⇤
(⌧, t0)C

⇤
(⌧)y(⌧) d⌧

and

L⇤
o
Lo =

Z
t1

t0

�(⌧, t0)C
⇤
(⌧)C(⌧)�(⌧, t0) d⌧

Definition 3 (Observability Gramian.). The observability Gramian is the matrix

Wo[t0, t1] =

Z
t1

t0

�
⇤
(⌧, t0)C

⇤
(⌧)C(⌧)�(⌧, t0) d⌧ 2 Rn⇥n

Definition 4 (Observability test.).

(A(·), C(·)) CO () rank(W0) = n

1.1 Duality

Fact. Observability and controllability are dual to each other.

The dual of R(·) = [A(·), B(·), C(·), D(·)] is R̃(·) = [A(·),�B(·),�C(·), D(·)] and

L̃c = �Lc and L̃o = �Lo

Theorem 1.1 (Duality: controllability to zero versus unobservability.) The subspace of all states of

R(·) that are controllable to zero (unobservable) on [t0, t1] is the orthogonal complement of the subspace

of all states of its dual R̃(·) that are unobservable (controllable to zero, resp.) on [t0, t1]. That is,

R(Lc) = N (L̃o)
?

and N (Lo) = R(L̃c)
?
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or equivalently

R(Wc[t0, t1]) = N (W̃o(t0, t1))
?

and N (Wo(t0, t1)) = R(W̃c[t0, t1])
?

2 Duality

The controllability and observability theorems we have stated so far are intimately related. Consider the

system

ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t) +D(t)u(t)

Recalling our knowledge about computing adjoints, we can write the dual representation as

� ˙̃x(t) = A
⇤
(t)x̃(t) + C

⇤
(t)ũ(t)

ỹ(t) = B
⇤
(t)x̃(t) +D

⇤
(t)ũ(t)

where here x̃(t) 2 Cn
, ũ(t) 2 Cp

, ỹ(t) 2 Cm
. The state transition matrix is

 (t, ⌧) = �(⌧, t)
⇤

The minus sign on the dynamics essentially captures that the dual runs in reverse time. If we take the dual

of the dual, we get

(A(·),�B(·),�C(·), D(·))
so that the original system is equal to the dual of the dual modulo a sign change for the state. And thus

(L⇤
r
)
⇤
= �Lr, (L⇤

c
)
⇤
= �Lc, (L⇤

o
)
⇤
= �Lo

It turns out that controllability to zero on [t0, t1] is the dual of unobservability on [t0, t1] and vice versa.

Theorem 5. The subspace of all states of (A(·), B(·), C(·), D(·)) that are controllable to zero (unobservable)

on [t0, t1] is the orthogonal complement of the subspace of all states of its dual that are unobservable

(controllable to zero, resp.) on [t0, t1]. That is,

R(Lc) = N (L⇤
o
)
?
, N (Lo) = R(L⇤

c
)
?

Corollary 6. The system (A(·), B(·), C(·), D(·)) is controllable (observable) on [t0, t1] i↵ its dual is observable

(controllable, resp.) on [t0, t1].

3 Discrete Time Controllability and Reachability

Remark. The fundamental di↵erence between CT and DT is that DT controllability to zero does not

necessarily imply reachability from zero.

Definition 7. We say that the pair (A(·), B(·)) is controllable on [k0, k1] i↵ for all (x0, k0) and for all (x1, k1)

there exists a control sequence u[k0,k1�1] = (u(k0), . . . , u(k1 � 1)) that transfers the (x0, t0) to the (x1, t1).

Given the system (A(·), B(·)), we know that u[k0,k1�1] transfers x0 to x1 i↵

x1 = s(k1, k0, x0, u0) = �(k1, k0)x0 +

k1�1X

`=k0

�(k1, `+ 1)B(`)u(`)
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This expression, in turn, shows that there will be such an input taking arbitrary x0 to arbitrary x1 if and

only if the linear map

Lr(k0, k1) : Ud(k0, k1 � 1) ! Cn
: u[k0,k1�1] !

k1�1X

`=k0

�(k1, `+ 1)B(`)u(`)

is surjective. This map is the reachability map and since it is linear, we can invoke the matrix representation

theorem to note that it has a matrix representation Lr given by

Lr(k0, k1) =
⇥
B(k1 � 1) �(k1, k1 � 1)B(k1 � 2) · · · �(k1, k0 + 1)B(k0)

⇤

Unlike the CT case,

�(k1, k0) = A(k1 � 1)A(k1 � 2) · · ·A(k0)

has an inverse �(k0, k1) = (�(k1, k0))
�1

i↵ det(A(k)) 6= 0 for all k 2 [k0, k1 � 1]. Because of this fact, we

have the following result.

Theorem 8. The following implications hold:

(A(·), B(·)) is controllable on [k0, k1]

() 8x1 2 Cn
, 9u[k0,k1�1] that steers (0, k0) to (x1, k1) (reachable)

=) 8x0 2 Cn
, 9u[k0,k1�1] that steers (x0, k0) to (0, k1) (controllable to zero)

where the last statement is actually an equivalence if det(A(k)) 6= 0 for all k 2 [k0, k1 � 1].

Example 9. Show that the constant pair (A, b) with

A =

2

4
0 1 0

0 0 1

0 0 0

3

5 , b = e2

is not controllable on [0, 3] yet every state x0 is driven to zero at k = 3. Indeed, this matrix A is nilpotent

with k = 3 and hence with the zero control input every state goes to zero. On the other hand there are

clearly states x1 which are not reachable by any control.
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Lecture 6: Dynamic Programming and Discrete Time LQR
Lecturer: L.J. Ratli↵

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

Goal: Learn the basics of dynamic programming via discrete time linear quadratic regulator (LQR)

References: Stengel §3.4; Lewis §6

Remark. If you are somehow at the point not aware, there are tons of Python tutorials and references linked

on canvas. Moreover, there is a virtual machine you can download with everything pre-installed. Further

yet, one of the links provided maps Matlab commands to Python commands!!

6.1 Bellman’s Principle

In previous lectures, we have discussed the Lyapunov equation and NLP. We will see how these two things

combine to enable us to solve optimal control problems.

We will start with discrete time in order to give some intuition for dynamic programming and to better

connect with the NLP framework we recently discussed.

Suppose we have a DT di↵erence equation

x+
= f(x, u), x 2 Rn, u 2 Rm

and we want to choose inputs over time u : [0, t] ! Rm
to minimize some cost

V (x, u) = `(t, x(t))| {z }
’final’ cost

+

t�1X

k=0

L(k, x(k), u(k))| {z }
’running’ cost

History Lesson: Richard Bellman developed the key insight for ’recursion’ in optimal control in 1957. That

is, the optimal control at time t depends only on x(t) (i.e. not on previous states).

This key insight leads naturally to working backward from final time to determine optimal policy.

Let V ⇤
k
(x(k)) denote the lowest (i.e. optimal) cost achievable from state x(k) at time k,

V ⇤
k
(x(k)) = min

u(k)2Rm

�
L(k, x(k), u(k)) + V ⇤

k+1(x(k + 1))
�

where

x(k + 1) = f(x(k), u(k))

depends on u(k).

This is referred to as the Bellman Equation and it enables us (in principal) to determine optimal control

inputs by solving a sequence of NLP in backward time!

0These notes are partially based on those of Sam Burden (UW), Stephen Boyd (Stanford), and Claire Tomlin (UC Berkeley).

6-1
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6.2 Linear Quadratic Regulator DT

Consider

x(t+ 1) = Ax(t) +Bu(t), x(0) = x0

and

J(u) = xT

N
QfxN +

N�1X

k=0

�
x(k)TQx(k) + u(k)TRu(k)

�

where u = (u(0), . . . , u(N � 1)) and Q = QT � 0, Qf = QT

f
� 0, R = RT > 0 are the given state cost, final

state cost, and input cost matrices.

• N is the time horizon

• first term measures state deviation

• second term measures input size or actuator authority

• last term measures final state deviation

• Q, R set relative weights of state deviation and input usage

• R > 0 means any (non-zero) input adds cost to J

LQR Problem: find u⇤
that minimizes J(u).

Q: how does this compare to other problems you may be familiar with?

6.2.0.1 Comparison to Least Norm

Consider the least norm input problem where you must determine the least norm input that steers x to

xN = 0:

• no cost attached to x0, . . . , xN�1

• xN must be exactly zero

We can approximate this problem in the above framework by letting R = I, Q = 0 and Qf >> I (e.g.,

Qf = 10
8I).

6.2.0.2 Multi-Objective Interpretation

Common form for Q and R:

R = ⇢I, Q = Qf = CTC

where C 2 Rp⇥n
(p size of output), ⇢ 2 R with ⇢ > 0. Fix x(0) = x0.

The cost is then

J(u) =
NX

k=0

ky(k)k2

| {z }
output cost: Jo(u)

+⇢
N�1X

k=0

ku(k)k2

| {z }
input cost: Ji(u)
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where

y = Cx

Here,
p
⇢ gives the relative weighting of output norm and input norm.

The input and output costs Ji(u) and Jo(u) respectively are competing objectives. We want both of them

to be small.

Then the LQR cost is Jo(u) + ⇢Ji(u).

Ji

J0
u3

u1

u2

• Above the cyan curve shows (Ji, Jo) achieved by some u

• below the same cure shows (Ji, Jo) not achieved by any u

• Three samples inputs u1, u2, u3 are shown

• u3 is worse than u2 on both parameters Ji, Jo

• u1 is better than u2 in Ji but worse in Jo

Where J = Jo + ⇢Ji = constant corresponds to lines with slope �⇢ on the (Ji, Jo) plot.

LQR optimal input is at boundary of shaded region, just touching the line of smallest possible J . Hence, u2

in the plot is optimal for ⇢. By varying ⇢ from 0 to +1, can sweep optimal tradeo↵ curve.

6.2.1 LQR as least squares

LQR can be formulated and solved as a least squares problem. Let X = (x0, . . . , xN ) where xk = x(k). The
state is a linear function of x0 and u = (u0, . . . , uN�1):

2

64
x0
.
.
.

xN

3

75 =

2

666664

0 · · · · · · · · ·
B 0 · · · · · ·
AB B 0 · · ·
.
.
.

.

.

.
. . .

.

.

.

AN�1B AN�2B · · · B

3

777775

| {z }
G

2

64
u0
.
.
.

uN�1

3

75

| {z }
u

+

2

6664

I
A
.
.
.

AN

3

7775

| {z }
H

x0

Then we can express X = Gu+Hx0 where G 2 RNn⇥Nm
and H 2 RNn⇥m
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Thus the LQR cost is

J(u) =
���diag(Q1/2, . . . , Q1/2, Q1/2

f
)(Gu+Hx0)

���
2
+

���diag(R1/2, . . . , R1/2u
���
2

This is simply a big least squares problem! The solution method requires forming and solving a Least squares

problem with size N(n+m)⇥Nm. Using a näıve method (e.g., QR factorization), cost is O(N2nm2
).

6.2.2 Dynamic Programming Solution

• givens an e�cient, recursive method to solve LQR least-squares problem; cost is O(Nn3
)

• (but in fact, a less naive approach to solve the LQR least-squares problem will have the same com-

plexity)

• DP is a useful and important idea on its own (it is applied in a number of domains including search,

RL, MDPs, etc.)

Definition 6.1 For t = 0, . . . , N define the value function Vt : Rn ! R by

Vt(z) = min
ut,...,uN�1

N�1X

k=t

(xT

k
Qxk + uT

k
Ruk) + xT

N
QfxN

subject to
xt = z, xk+1 = Axk +Buk, k = t, . . . , N

• Vt(z) gives the minimum LQR cost-to-go, starting from state z at time t

• V0(x0) is minimum LQR cost (from state x0 at time 0

We will see that

• Vt is quadratic, i.e. Vt(z) = zTPtz, where Pt = PT

t
� 0 (this should look super familiar, like a

Lyapunov function and hence we can tie this back to what we initially learned at the beginning of the

quarter)

• Pt can be found recursively, working backward from t = N

• the LQR optimal u is easily expressed in terms of Pt

The cost to go with no time left is just the final state cost

VN (z) = zTQfz

Thus, we have that PN = Qf

6.2.2.1 Dynamic Programming Principle

Q: Suppose we know Vt+1(z). What is the optimal choice for ut?

choice of ut impacts current cost incurred (through uT

t
Rut) and where we end up, i.e. xt+1 (hene, the

min-cost-to-go from xt+1
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Definition 6.2 The dynamic programming principle is

Vt(z) = min
w

(zTQz + wTRw + Vt+1(Az +Bw)

where

• zTQz + wTRw is cost incurred at time t if ut = w

• Vt+1(Az +Bu) is min cost-to-go from where you land at t+ 1

This follows from the fact that we can minimize in any order:

min
w1,...,wk

f(w1, . . . , wk) = min
w1

✓
min

w2,...,wk

f(w1, . . . , wk)

◆

| {z }
a fn of w1

in words: min cost-to-go from where you are = min over (current cost incurred + min cost-to-go from where

you land)

Example: path optimization

• edges show possible flights and each has some cost (weight)

• e.g., want to find min cost route or path from Seattle to Atlanta

Q: what is the DP solution in this context?

• V (i) is min cost from airport i to ATL, over all possible paths

• to find min cost from city i to ATL: minimize sum of flight cost plus min cost to ATL from where you

land, over all flights out of city i (gives optimal flight out of city i on way to ATL)

• if we can find V (i) for each i, we can find min cost path from any city to ATL

• DP principle: V (i) = minj(cji + V (j)), where cji is cost of flight from i to j, and minimum is over all

possible flights out of i
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6.2.2.2 HJ equation for LQR

Vt(z) = zTQz +min
w

(wTRw + Vt+1(Az +Bw))

• called DP, Bellman, or Hamilton-Jacobi equation

• gives Vt recursively in terms of Vt+1

• any minimizing w gives optimal ut:

u⇤
t
= argmin

w

(wTRw + Vt+1(Az +Bw))

Let us assume that Vt+1(z) = zTPt+1z, with Pt+1 = PT

t+1 � 0. We will show that Vt has the same form!

By DP,

Vt(z) = zTQz +min
w

�
wTRw + (Az +Bw)TPt+1(Az +Bw)

�

Here comes the NLP! we can solve by setting the derivative wrt w to zero:

2wTR+ 2(Az +Bw)TPt+1B = 0

Hence the optimal input is

w⇤
= �(R+BTPt+1B)

�1BTPt+1Az

and after a bunch of algebra (check your self!) we get

Vt(z) = zTQz + (w⇤
)
TRw⇤

+ (Az +Bw⇤
)
TPt+1(Az +Bw⇤

)

= zT (Q+ATPt+1A�ATPt+1B(R+BTPt+1B)
�1BTPt+1A)z

= zP
t
z

where

Pt = Q+ATPt+1A�ATPt+1B(R+BTPt+1B)
�1BTPt+1A

This should look very familiar (discrete time Lyapunov?). Hence, it is easy to show that PT

t
= Pt � 0 (do

this your self!)

6.2.3 Summary of LQR via DP

step 1 set PN = Qf

step 2 for t = N, . . . , 1, do

Pt�1 = Q+ATPtA�ATPtB(R+BTPt+1B)
�1BTPtA

step 3 for t = 0, . . . , N � 1, define

Kt = �(R+BTPt+1B)
�1BTPt+1A

step 4 for t = 0, . . . , N � 1, optima u is given by

u⇤
t
= Ktxt

What else do we notice?

• optimal u is a linear function of the state (called linear state feedback)

• recursion for min cost-to-go runs backward in time
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Lecture 11: Linear Quadratic Regulator: Continuous Time
Lecturer: L.J. Ratli↵

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications,
meaning you should take your own notes in class and review the provided references as opposed to taking
these notes as your sole resource. I provide the lecture notes to you as a courtesy; it is not required that I
do this. They may be distributed outside this class only with the permission of the Instructor.

References. Chapter 10/20/21 [JH]

Note: these lecture notes follow the lectures of S. Boyd at Stanford pretty closely.

1 CT LQR Problem

Consider the CT system
ẋ = Ax+Bu, x(0) = x0

The problem is to choose u : [0, T ] ! Rm so as to minimize

J =

Z T

0

(x(⌧)TQx(⌧) + u(⌧)TRu(⌧)) d⌧ + x(T )TQfx(T )

We have a similar set up:

• T is horizon

• Q = Q
T � 0, Qf = Q

T
f � 0, R = R

T
> 0 are the state cost, final state cost and input cost matrices

This is now an infinite dimensional problem since u : [0, T ] ! Rm is the variable.

2 DP solution

As in the DT case, we define a value function Vt : Rn ! R by

Vt(z) = min
u

Z T

t

�
x(⌧)TQx(⌧) + u(⌧)TRu(⌧)

�
d⌧ + x(T )TQfx(T )

subject to x(t) = z, ẋ = Ax+Bu

Some notes:

• The minimization is taken over all possible signals u : [t, T ] ! Rm.

• Vt(z) gives the minimum LQR cost-to-go, starting from state z at time t

• VT (z) = z
T
Qfz

T

Note. Vt is quadratic, i.e., Vt(z) = z
T
Ptz, where Pt = P

T
t � 0

Moreover, like the DT case: Pt can be found from a di↵erential equation running backward in time from
t = T . And, the LQR optimalu is easily expressed in terms of Pt.

1
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Lecture 10: Linear Quadratic Regulator: Discrete Time
Lecturer: L.J. Ratli↵

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications,
meaning you should take your own notes in class and review the provided references as opposed to taking
these notes as your sole resource. I provide the lecture notes to you as a courtesy; it is not required that I
do this. They may be distributed outside this class only with the permission of the Instructor.

References. Chapter 10/20/21 [JH]

Note: these lecture notes follow the lectures of S. Boyd at Stanford pretty closely.

1 Overview

Last time we started to discuss the LQR problem and feedback invariants. We started in CT but we will
switch to DT because I think its more intuitive from an optimization perspective. Then we will come back
to CT.

Goal: Learn the basics of dynamic programming via discrete time linear quadratic regulator (LQR)

In previous lectures, we have discussed the Lyapunov equation. We will see how the Lyapunov equation
can be combined with non-linear programming (optimization with a nonlinear cost) to solve optimal control
problems.

An optimal control problem is the problem of finding a control input to a system that minimizes a given
objective which typically is a cost on the state and control such as minimum energy control, state tracking,
minimum energy output.

We will start with discrete time in order to give some intuition for dynamic programming.

2 Bellman’s Principle

Suppose we have a DT di↵erence equation

x+ = f(x, u), x 2 Rn, u 2 Rm

and we want to choose inputs over time u : [0, t] ! Rm to minimize some cost

V (x, u) = `(t, x(t))| {z }
’final’ cost

+
t�1X

k=0

L(k, x(k), u(k))| {z }
’running’ cost

History Lesson: Richard Bellman developed the key insight for ’recursion’ in optimal control in 1957. That
is, the optimal control at time t depends only on x(t) (i.e. not on previous states).

This key insight leads naturally to working backward from final time to determine optimal policy.

1



2 Lecture 10: Linear Quadratic Regulator: Discrete Time

Let Vt(x(t)) = `(t, x(t)), i.e., the final cost. Let V ⇤
k
(x(k)) denote the lowest (i.e. optimal) cost achievable

from state x(k) at time k,

V ⇤
k
(x(k)) = min

u(k)2Rm

�
L(k, x(k), u(k)) + V ⇤

k+1(x(k + 1))
�

where
x(k + 1) = f(x(k), u(k))

depends on u(k).

This is referred to as the Bellman Equation and it enables us (in principal) to determine optimal control
inputs by solving a sequence of nonlinear programs in backward time!

3 Linear Quadratic Regulator DT

Consider
x(t+ 1) = Ax(t) +Bu(t), x(0) = x0

and

J(u) = x>
N
QfxN +

N�1X

k=0

�
x(k)>Qx(k) + u(k)>Ru(k)

�

where u = (u(0), . . . , u(N � 1)) and Q = Q> � 0, Qf = Q>
f
� 0, R = R> > 0 are the given state cost, final

state cost, and input cost matrices.

• N is the time horizon

• first term measures state deviation

• second term measures input size or actuator authority

• last term measures final state deviation

• Q, R set relative weights of state deviation and input usage

• R > 0 means any (non-zero) input adds cost to J

LQR Problem: find u⇤ that minimizes J(u) subject to the state dynamics.

Q: how does this compare to other problems you may be familiar with?

Comparison to Least Norm. Consider the least norm input problem where you must determine the
least norm input that steers x to xN = 0:

• no cost attached to x0, . . . , xN�1

• xN must be exactly zero

We can approximate this problem in the above framework by letting R = I, Q = 0 and Qf >> I (e.g.,
Qf = 108I).

Multi-Objective Interpretation. Common form for Q and R:

R = ⇢I, Q = Qf = C>C

where C 2 Rp⇥n (p size of output), ⇢ 2 R with ⇢ > 0. Fix x(0) = x0.

The cost is then

J(u) =
NX

k=0

ky(k)k2

| {z }
output cost: Jo(u)

+⇢
N�1X

k=0

ku(k)k2

| {z }
input cost: Ji(u)
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where
y = Cx

Here,
p
⇢ gives the relative weighting of output norm and input norm.

The input and output costs Ji(u) and Jo(u) respectively are competing objectives. We want both of them
to be small.

Then the LQR cost is Jo(u) + ⇢Ji(u).

Ji

J0
u3

u1

u2

• Above the cyan curve shows (Ji, Jo) achieved by some u

• below the same cure shows (Ji, Jo) not achieved by any u

• Three samples inputs u1, u2, u3 are shown

• u3 is worse than u2 on both parameters Ji, Jo
• u1 is better than u2 in Ji but worse in Jo

Where J = Jo + ⇢Ji = constant corresponds to lines with slope �⇢ on the (Ji, Jo) plot.

LQR optimal input is at boundary of the region above/to right of the cyan curve, just touching the line of
smallest possible J . Hence, u2 in the plot is optimal for ⇢. By varying ⇢ from 0 to +1, can sweep optimal
tradeo↵ curve.

3.1 LQR as least squares

LQR can be formulated and solved as a least squares problem. Let X = (x0, . . . , xN ) where xk = x(k). The
state is a linear function of x0 and u = (u0, . . . , uN�1):

2

64
x0
...

xN

3

75 =

2

666664

0 · · · · · · · · ·
B 0 · · · · · ·
AB B 0 · · ·
...

...
. . .

...
AN�1B AN�2B · · · B

3

777775

| {z }
G

2

64
u0
...

uN�1

3

75

| {z }
u

+

2

6664

I
A
...

AN

3

7775

| {z }
H

x0

Then we can express X = Gu+Hx0 where G 2 RNn⇥Nm and H 2 RNn⇥m

Thus the LQR cost is

J(u) =
���diag(Q1/2, . . . , Q1/2, Q1/2

f
)(Gu+Hx0)

���
2
+
���diag(R1/2, . . . , R1/2)u

���
2

This is simply a big least squares problem! The solution method requires forming and solving a Least squares
problem with size N(n+m)⇥Nm. Using a näıve method (e.g., QR factorization), cost is O(N2nm2).
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3.2 Dynamic Programming Solution

Given an e�cient, recursive method to solve LQR least-squares problem the computational cost is O(Nn3).
However, there is in fact a less naive approach to solve the LQR least-squares problem will have the same
complexity: dynamic programming. DP is a useful and important idea on its own (it is applied in a number
of domains including search, RL, MDPs, etc.)

Definition 1. For t = 0, . . . , N define the value function Vt : Rn ! R by

Vt(z) = min
ut,...,uN�1

N�1X

k=t

(x>
k
Qxk + u>

k
Ruk) + x>

N
QfxN

subject to
xt = z, xk+1 = Axk +Buk, k = t, . . . , N

• Vt(z) gives the minimum LQR cost-to-go, starting from state z at time t

• V0(x0) is minimum LQR cost (from state x0 at time 0

We will see that

• Vt is quadratic, i.e. Vt(z) = z>Ptz, where Pt = P>
t

� 0 (this should look super familiar, like a Lyapunov
function and hence we can tie this back to what we initially learned at the beginning of the quarter)

• Pt can be found recursively, working backward from t = N

• the LQR optimal u is easily expressed in terms of Pt

The cost to go with no time left is just the final state cost

VN (z) = z>Qfz

Thus, we have that PN = Qf

3.2.1 Dynamic Programming Principle

Q: Suppose we know Vt+1(z). What is the optimal choice for ut?

choice of ut impacts current cost incurred (through u>
t
Rut) and where we end up, i.e. xt+1 (here, the

min-cost-to-go from xt+1

Definition 2. The dynamic programming principle is

Vt(z) = min
w

(z>Qz + w>Rw + Vt+1(Az +Bw))

where

• z>Qz + w>Rw is cost incurred at time t if ut = w

• Vt+1(Az +Bu) is min cost-to-go from where you land at t+ 1

This follows from the fact that we can minimize in any order:

min
w1,...,wk

f(w1, . . . , wk) = min
w1

✓
min

w2,...,wk

f(w1, . . . , wk)

◆

| {z }
a fn of w1

in words: min cost-to-go from where you are = min over (current cost incurred + min cost-to-go from where
you land)

Example: path optimization
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• edges show possible flights and each has some cost (weight)

• e.g., want to find min cost route or path from Seattle to Atlanta

Q: what is the DP solution in this context?

• V (i) is min cost from airport i to ATL, over all possible paths

• to find min cost from city i to ATL: minimize sum of flight cost plus min cost to ATL from where you
land, over all flights out of city i (gives optimal flight out of city i on way to ATL)

• if we can find V (i) for each i, we can find min cost path from any city to ATL

• DP principle: V (i) = minj(cji + V (j)), where cji is cost of flight from i to j, and minimum is over all
possible flights out of i

Hamilton-Jacobo equation for LQR.

Theorem 3. The optimal cost-to-go and the optimal control at time t are given by

V ⇤
k
(z) = z>Pkz, u⇤

k
= �Kkz

where
Kk = (R+B>Pk+1B)�1B>Pk+1A

and
Pt = Q+A>Pt+1A�A>Pt+1B(R+B>Pt+1B)�1B>Pt+1A

Vt(z) = z>Qz +min
w

(w>Rw + Vt+1(Az +Bw))

• called DP, Bellman, or Hamilton-Jacobi equation

• gives Vt recursively in terms of Vt+1

• any minimizing w gives optimal ut:

u⇤
t
= argmin

w

(w>Rw + Vt+1(Az +Bw))

Let us assume that Vt+1(z) = z>Pt+1z, with Pt+1 = P>
t+1 � 0. We will show that Vt has the same form!

By DP,
Vt(z) = z>Qz +min

w

�
w>Rw + (Az +Bw)>Pt+1(Az +Bw)

�

We can solve by setting the derivative wrt w to zero:

2w>R+ 2(Az +Bw)>Pt+1B = 0
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Hence the optimal input is

w⇤ = �(R+B>Pt+1B)�1B>Pt+1Az

and after a bunch of algebra (check your self!) we get

Vt(z) = z>Qz + (w⇤)>Rw⇤ + (Az +Bw⇤)>Pt+1(Az +Bw⇤)

= z>(Q+A>Pt+1A�A>Pt+1B(R+B>Pt+1B)�1B>Pt+1A)z

= z>Ptz

where

Pt = Q+A>Pt+1A�A>Pt+1B(R+B>Pt+1B)�1B>Pt+1A

This should look very familiar (discrete time Lyapunov?). Hence, it is easy to show that P>
t

= Pt � 0 (do
this your self!)

3.3 Summary of LQR via DP

step 1 set PN = Qf

step 2 for t = N, . . . , 1, do

Pt�1 = Q+A>PtA�A>PtB(R+B>Pt+1B)�1B>PtA

step 3 for t = 0, . . . , N � 1, define

Kt = �(R+B>Pt+1B)�1B>Pt+1A

step 4 for t = 0, . . . , N � 1, optima u is given by

u⇤
t
= Ktxt

What else do we notice?

• optimal u is a linear function of the state (called linear state feedback)

• recursion for min cost-to-go runs backward in time

4 Riccati and Steady-State DT LQR

Above is a summary of a procedure for how to solve the DT LQR via DP. The following are some additional
comments:

• another name for the recursion for Pt is the Riccati recursion

• usually Pt rapidly converges as t decreases below N (remember we are going backward in time)

• the limit or steady-state (ss) value Pss satisfies the following Riccati equation:

Pss = Q+A>PssA�A>PssB(R+B>PssB)�1B>PssA

i.e. the DT algebraic Riccati equation (ARE)

• for t not close to the horizon N , LQR optimal input is approximately a linear constant state feedback

ut = Kssxt, Kss = �(R+B>PssB)�1B>PssA
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5 LQR via Constrained Non-Linear Programming

Matrix inversion identities:

1. (I + ÃB̃)�1 = I � Ã(I + ÃB̃)�1B̃

2. Ã(I + ÃB̃)�1 = (I + B̃Ã)�1B̃

3. (I + ÃC̃�1B̃)�1 = I � Ã(C̃ + B̃Ã)�1B̃

We saw the following matrix inversion lemma last quarter:

Lemma 4.

(Ã+ B̃C̃)�1 = Ã�1 � Ã�1B̃(I + C̃Ã�1B̃)�1C̃Ã�1

This allows us to convert the Riccati recursion into a di↵erent form:

Pt�1 = Q+A>PtA�A>PtB(R+B>PtB)�1B>PtA

= Q+A>Pt(I �B(R+B>PtB)�1B>Pt)A [factor]

= Q+A>Pt(I �B
�
(I +B>PtBR�1)R

��1
B>Pt)A [pull R out]

= Q+A>Pt(I �BR�1(I +B>PtBR�1)�1B>Pt)A [apply inverse]

= Q+A>Pt(I +BR�1B>Pt)
�1A [apply woodbury]

= Q+A>(I + PtBR�1B>)�1PtA [apply 2 above]

which can be converted to the following symmetric form

Pt�1 = Q+A>P 1/2
t

(I + P 1/2
t

BR�1B>P 1/2
t

)�1P 1/2
t

A

where we applied woodbury with

Ã = I, C̃ = B>Pt, B̃ = BR�1

5.1 Recall Some Basics of Non-Linear Programming

Recall the constrained NLP’s we looked at before the midterm:

min
x

F (x)

s.t. Gx = h

where F : Rn ! R and G 2 Rm⇥n.

The Lagrangian is given by

L(x,�) = F (x) + �>(h�Gx)

If x is optimal, then

DxL = DF (x)�G>� = 0, D�L = h�Gx = 0

Interesting connection to the LA we saw last quarter: the first equation implies that DF (x) = G>� for some
�. This is true i↵ DF (x)> 2 R(G>) i↵ DF (x)>?N (G) (behold! the many applications of FROL—Finite
Rank Operator Lemma).
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Recall Descent Directions. Suppose x is current, feasible point (i.e. Gx = h). Consider a small step in
the direction v, to x+ �v (� small, positive step size).

Q: When is x+ �v better than x?

A: We need the following:

1. x+ �v to be feasible:
G(x+ �v) = h+ �Gv = h =) Gv = 0

Hence, v 2 N (G) is called a feasible direction.

2. x+ �v to have a smaller objective than x:

F (x+ �v) ' F (x) + �DF (x)v < F (x)

so we need DF (x)v < 0 (i.e. descent direction)

Note that if DF (x)v > 0, �v is a descent direction, so we need only DF (x)v 6= 0.

x is not optimal if there exists a feasible descent direction.

if x is optimal, every feasible direction satisfies DF (x)v = 0. Hence,

Gv = 0 =) DF (x)v = 0 () N (G) ⇢ N (DF (x))

() R(G>) � R(DF (x)>)

() DF (x)> 2 R(G>)

() DF (x)> = G>� for some � 2 Rn

() DF (x)>?N (G)

5.2 LQR as Constrained Minimization Problem

Consider the following

min
u

J =
1

2

N�1X

t=0

�
x>
t
Qxt + u>

t
Rut

�
+

1

2
x>
N
QfxN

s.t. xt+1 = Axt +But, t = 0, . . . , N � 1

• variables are u0, . . . , uN�1 and x1, . . . , xN (x’s can actually be specified in terms of u’s via the constraint
as we have seen before).

• x0 is given

• the objective is quadratic (i.e. it is convex)

First step is to introduce Lagrange multipliers.

Q: How many do we need?

A: �i 2 Rn for i = 1, . . . , N .

Next step is to form the Lagrangian:

L = J +
N�1X

t=0

�>
t+1(Axt +But � xt+1)

5.2.1 Optimality Conditions

Q: What are the optimality conditions?
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A: First, x0 is given and we know that

xt+1 = Axt +But, t = 0, . . . , N � 1

We can take the derivative of L wrt ut to get

DutL = Rut +B>�t+1 = 0, t = 0, . . . , N � 1

Hence,
ut = �R�1B>�t+1

Similarly, we can write first order conditions for xt:

DxtL = Qxt +A>�t+1 � �t = 0, t = 0, . . . , N � 1

Hence
�t = A>�t+1 +Qxt

Finally,
DxNL = QfxN � �N = 0

so that �N = QfxN

This is a set of linear equations in the variables

u0, . . . , uN�1, x1, . . . , xN , �1, . . . ,�N

5.2.2 Co-State Equations

Q: What do you notice about these equations?

A: we have a forward equation for x and a backward equation for �. . .

Optimality conditions break into two parts:

xt+1 = Axt +But, x0

this recursion for state x runs forward in time, with initial condition

�t = A>�t+1 +Qxt, �N = QfxN

this recursion for co-state � runs backward in time, with final condition

As mentioned before, the recursion for � is sometimes called the adjoint system.

5.2.3 Solution via Riccati Recursion

We will see that �t = Ptxt where Pt is the min-cost-to-go matrix defined by the Riccati recursion we saw
last time. This implies that the Riccati recursion gives a useful way to solve this set of linear equations.

Q: How do we show this?

A: via induction like last time.

First, it holds for t = N , since PN = Qf and �N = QfxN

Now, suppose it holds for t+1, that is, �t+1 = Pt+1xt+1. Let’s show it holds for t. Using the state equation
xt+1 = Axt +But and ut = �R�1B>�t from our optimality conditions, we get that

�t+1 = Pt+1(Axt +But) = Pt+1(Axt �BR�1B>�t+1)
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so that
�t+1 = (I + Pt+1BR�1B>)�1Pt+1Axt

We can then use the co-state equation �t = A>�t+1 +Qxt to get that

�t = A>(I ++Pt+1BR�1B>)�1Pt+1Axt +Qxt = Ptxt

since by the Riccati recursion we know that

Pt = Q+A>(I + Pt+1BR�1B>)�1Pt+1A.

This completes the induction argument so that �t = Ptxt.

5.2.4 Check for consistency across the two methods

ut = �R�1B>�t+1

= �R�1B>(I + Pt+1BR�1B>)�1Pt+1Axt

= �R�1(I +B>Pt+1BR�1)�1B>Pt+1Axt

= �
�
(I +B>Pt+1BR�1)R

��1
B>Pt+1Axt

= �(R+B>Pt+1B)�1B>Pt+1Axt
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2.1 DP Approach

Start with x(t) = z. Let us take u(t) = w 2 Rm, a constant, over the time interval [t, t+ h], where h > 0 is
small.

Just as with the usual DP approach, we want to approximate the value at time t forward as the instantaneous
cost incurred where we are plus the cost to go over the remainder of the horizon.

We will do this in an approximate manner. . .

First, the cost incurred over [t, t+ h] is
Z t+h

t

�
x(⌧)TQx(⌧) + u(⌧)TRu(⌧)

�
d⌧ ' h(zTQ+ w

T
Rw)

and we end up at x(t+ h) ' z + h(Az +Bw)

Second, the min-cost-to-go from where we end-up is approximately given by

Vt+h(z + h(Az +Bw)) = (z + h(Az +Bw))TPt+h(z + h(Az +Bw))

' (z + h(Az +Bw))T (Pt + hṖt)(z + h(Az +Bw))

' z
T
Ptz + h

⇣
(Az +Bw)TPtz + z

T
Ṗt(Az +Bw) + z

T
Ṗtz

⌘

(of course, dropping h
2 and h.o.t’s)

Adding them up, the cost incurred plus min-cost-to-go is approximately given by

z
T
Ptz + h

⇣
z
T
Qz + w

T
Rw + (Az +Bw)TPtz + z

T
Pt(Az +Bw) + z

T
Ṗtz

⌘

Now, minimize over w to get (approximately) optimal w:

2hwT
R+ 2Hz

T
PtB = 0

so that
w

⇤ = �R
�1

B
T
Ptz

(boy does that look similar!)

Thus optimal u is time-varying linear state feedback is given by

u
⇤(t) = Ktx(t), Kt = �R

�1
B

T
Pt

Ok, so this gives us the optimal control in terms of Pt. But, what is Pt?

2.2 (Approx.) Hamilton-Jacobi Equation

Let’s substitute w
⇤ into the (approx.) HJ equation

z
T
Ptz ' z

T
Ptz + h

⇣
z
T
Qz + (w⇤)TRw

⇤ + (Az +Bw
⇤)TPtz + z

T
Pt(Az +Bw

⇤) + z
T
Ṗtz

⌘

After you plug things in and simplify we get

�Ṗt = A
T
Pt + PtA� PtBR

�1
B

T
PtQ

which is the Riccati di↵erential equation for the LQR problem.

We can solve it (numerically) using the final condition PT = Qf .

Summary:
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step 1 solve Riccati di↵erential equation

�Ṗt = A
T
Pt + PtA� PtBR

�1
B

T
PtQ, PT = Qf

backward in time
step 2 optimal u is u⇤(t) = Ktx(t), Kt = �R

�1
B

T
Pt

3 Some Additional comments

• DP method readily extends to time-varying A, B, Q, R, and tracking problem
• usually Pt rapidly converges as t decreases below T (same comment as DT)
• limit Pss satisfies (cts-time) algebraic Riccati equation (ARE)

A
T
P + PA� PBR

�1
B

T
P +Q = 0

which is a quadratic matrix equation
• Pss can be found by (numerically) integrating the Riccati di↵erential equation, or by direct methods (you

will do this in your project)
• for t not close to horizon T , LQR optimal input is approximately a linear, constant state feedback

u(t) = Kssx(t), Kss = �R
�1

B
T
Pss

There is a similar co-state formulation for continuous time. Please see Lewis chapter 3 for this.

4 CT LQR via Lagrange

Constrained NLP:

min
u

1

2

Z T

0

x(⌧)TQx(⌧) d⌧ =: J +
1

2
x(T )TQfx(T )

s.t. ẋ(t) = Ax(t) +Bu(t), t 2 [0, T ]

Introduce Lagrange multiplier (function) � : [0, T ] ! Rn and write

L = J +

Z T

0

�(⌧)T (Ax(⌧) +Bu(⌧)� ẋ(⌧)) d⌧

We can compute the derivatives (recall: you need distributions or test function to actually compute the
derivatives here. . . )

wrt u:
Du(t)L = Ru(t) +B�

T (t) = 0 =) u = �R
�1

B
T
�(t)

wrt x: use the fact that (just basic fundamental theorem of calculus)
Z T

0

�(⌧)T ẋ(⌧) + �̇(⌧)Tx(⌧) d⌧ = �(T )Tx(T )� �(0)Tx(0)

Dx(t)L = Qx(t) +A
T
�(t) + �̇(t) = 0 =) �̇(t) = �A

T
�(t)�Qx(t)

wrt x(T ):
Dx(T )L = Qfx(T )� �(T ) = 0 =) �(T ) = Qfx(T )

The above gives us optimality conditions just as in the DT case:

ẋ = Ax+Bu, x(0) = x0, �̇ = �A
T
��Qx, �(T ) = Qfx(T ), u(t) = �R

�1
B

T
�(t)
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4.1 Adjoint or Co-state system

Using u(t) = �R
�1

B
T
�(t), we can write a system of equations (two-point boundary value problem):

d

dt


x(t)
�(t)

�
=


A �BR

�1
B

T

�Q �A
T

�

| {z }
Hamiltonian


x(t)
�(t)

�
(1)

You can argue that �(t) = Ptx(t). That is, use the Riccati DE with final time condition PT = Qf and the
co-state equation to show that �(t) = Ptx(t) as above is a solution to the costate equation.

4.2 Solving the Riccati DE via Hamiltonian

Consider

�Ṗ = A
T
P + PA� PBR

�1
B

T
P +Q

and recall (1). These two di↵erential equations are related.

The fact that �(t) = Ptx(t) suggests that P should have the form �(t)x(t)�1 but of course this only makes
sense if they are scalars.

So what do we do? How do we generalize this intuition?

Consider the matrix version of the Hamiltonian DE:

d

dt


X(t)
Y (t)

�
=


A �BR

�1
B

T

�Q �A
T

�

| {z }
Hamiltonian


X(t)
Y (t)

�
(2)

where X,Y 2 Rn⇥n.

Then Z(t) = Y (t)X(t)�1 satisfies the Riccati DE:

�Ż = A
T
Z + ZA� ZBR

�1
B

T
Z +Q

Check your self using the facts that

d

dt
(F (t)G(t)) = Ḟ (t)G(t) + F (t)Ġ(t)

d

dt
(F (t)�1) = �F (t)�1

Ḟ (t)F (t)�1 we saw this last quarter!!

Ż =
d

dt
Y X

�1 = Ẏ X
�1 � Y X

�1
ẊX

�1

= (�QX �AY )X�1 � Y X
�1(AX �BR

�1
B

T
Y )X�1

= �Q�A
T
Z � ZA+ ZBR

�1
B

T
Z

Hence, we can solve the Riccati DE by solving a linear matrix (Hamiltonian) DE with final conditions
X(T ) = I, Y (T ) = Qf and forming P (t) = Y (t)X(t)�1 after.
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4.3 Solving ARE via Hamiltonian

Recall the ARE (which gives you the steady state solution for the Riccati DE and also gives you the infinite
horizon LQR solution—see hw 5):

Q+A
T
P + PA� PBR

�1
B

T
P = 0

with P � 0.


A �BR

�1
B

T

�Q �A
T

� 
I

P

�
=


A�BR

�1
B

T
P

�Q�A
T
P

�
=


A+BK

�Q�A
T
P

�

Aside:
Note u

⇤ = Kx = �BR
�1

B
T
Px and the closed loop dynamics look like

ẋ+Ax+Bu = (A+BK)x

It turns out that the closed loop system is stable when (Q,A) is observable and (A,B) is controllable (that
is, finding an LQR solution will stabilize the system if these two conditions are met).

Let the eigenvalues of the closed loop system be

�1, . . . ,�n

And with the assumptions above, Re(�i) < 0.

Coming back to our algebra:


I 0

�P I

� 
A �BR

�1
B

T

�Q �A
T

� 
I 0
P 0

�
=


A+BK �BR

�1
B

T

0 �(A+BK)T

�
(3)

where the zero comes from the ARE. Note


I 0
P 0

��1

=


I 0

�P I

�

Now, looking at the diagonal of RHS, the eigs of the Hamiltonian are �1, . . . ,�n and ��1, . . . ,��n. Hence,
closed-loop eigenvalues are the eigenvalues of H with negative real part (under assumptions above).

You can show that if A+BK is diagonalizable, i.e.

M
�1(A+BK)M = ⇤ = diag(�1, . . . ,�n),

then
M

T (�A�BK)TM�T = �⇤

so that 
M

�1 0
0 M

T

� 
A+BK �BR

�1
B

T

0 �(A+BK)T

� 
M 0
0 M

�T

�
=


⇤ �M

�1
BR

�1
B

T
M

�T

0 �⇤

�

Combine this with (3) to get

H


M

PM

�
=


M

PM

�
⇤

so that the n columns of 
M

PM

�

are the eigenvectors of H associated with the stable eigenvalues �1, . . . ,�n.



6 Lecture 11: Linear Quadratic Regulator: Continuous Time

Thus, to solve the ARE, take the n stable eigs (there will be n stable and n unstable ones) and finding the
eigenvectors associated with the n stables ones. Stack them up as columns in a matrix and partition that
matrix as

⇥
v1 · · · vn

⇤
=


X

Y

�
2 R2n⇥n

Then P = Y X
�1 is the unique PSD solution of the ARE.


