
510: Fall 2019

Lecture 1: Introduction and Overview

Lecturer: L.J. Ratli↵

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

They may be distributed outside this class only with the permission of the Instructor.

1 Today

Objective: This course is a bootcamp course in linear algebra. We will largely focus on finite dimensional
linear algebra with short forays into infinitely dimensional concepts where and when necessary.

The motivation for the material in this course is to ensure that graduate students are all ‘on the same page’
in terms of their linear algebra background as needed for courses such as 547 (Linear Systems Theory) and
578 (Convex optimization).

Linear algebra is the foundation for these courses and many more.

Topics to be covered include:

• linear algebra review, QR decomposition

• Solutions to linear equations

• regularized least squares, least norm problems

• Eigen-decompositions and Jordan canonical form

• positive semidefiniteness, matrix norms

• Singular value decompositions

• applied operator theory & functional analysis (e.g., adjoint operators)

• Introduction to autonomous linear systems, including finding solutions using linear algebra

• Stability via Lyapunov equations

Linear Algebra Background: This course is not meant to be a first course in linear algebra! You should
already have a strong background in linear algebra. In this course we will review some topics in a more
rigorous manner including learning to prove linear algebra results.

2 Course Organization

Canvas will be used as the “course website”. You will upload your homeworks (and self-assessments there). I
will post any lecture materials I provide on canvas. Information about o�ce hours will also be posted there.

Course prerequisites.

• knowledge of linear algebra, matrix analysis, di↵erential equations & Laplace transform

• comfort with mathematical proofs

• familiarity with computational tools (e.g., Python)

• exposure to numerical linear algebra

The course is suitable for students interested in PhD research in systems theory.
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questions? check out course website, reference texts, come to o�ce hours to consult

Grading. Grading will be based on four components:

1. homework sets: 25%

2. exam 1 (midterm): 30%

3. exam 2 (final, comprehensive): 40%

4. course participation: 5%

Homework: There will be (roughly) weekly homeworks. You will use a ‘self-assessment’ to self-grade your
homeworks. The purpose of self-assessment is so that you are forced to go through and review your work
and think critically about the solution.

Important: There is most often not one right answer. The self-assessment process lets you go through and
point myself and the TA to the problems in which you believe your solution is correct but you are not sure
because it is di↵erent.

Self-Assessment Process: You can give yourself the following point designations per problem.

• 2: Your solution is exactly correct on all parts.

• 1: You have any doubt about the correctness of any part of your solution, or it is incomplete.

• 0: If you have made no attempt at any part of the problem.

If you give yourself a 1, we will look at your solution and mark it up to a 2. Essentially, you earn back the
extra point by simply going through and critically assessing your solution.

In giving your self each of the point designations, you have to justify why. In particular, if you give your self
1pt, then say what you did wrong. Do not provide a corrected solution because you will have the
solutions during the assessment so it makes no sense to provide a corrected solution. Instead,
provide an assessment of what you did wrong. We will look and give you back the extra point. Do not
give yourself the extra point; we will do this! If you deviate from this process at all, we reserve the
right to give you zero points for that problem.

No late homeworks will be accepted!: even a couple mins or seconds after the deadline, your homework
will be considered not submitted. Plan accordingly.

Exams: the exams will be in-class. The final will be comprehensive.

2.1 Books

There is no book for the course. There are several reference books you can consider looking at including the
following:

• Linear algebra done right, Sheldon Axler

• Linear Functional Analysis, Rynne and Youngson

• Optimization by vector space methods, Luenberger

• Principles of Mathematical Analysis, Rudin

• Linear Systems Theory, Callier and Desoer (Appendix A, B primarily)

3 Why study linear algebra so intensely?

Linear algebra is the foundation for almost everything we do in engineering and computer science, and most
of the pure sciences!

• automatic control systems
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• signal processing

• communications

• economics, finance

• operations research and logistics

• circuit analysis, simulation, design

• mechanical and civil engineering

• aeronautics

• navigation, guidance

Let us discuss some concrete examples.

3.1 Optimization and Machine Learning

Relevant secondary courses: CSE/EE578: Convex Optimization, CSE546: Machine Learning, MATH/ AM-
ATH515A: Optimization: Fundamentals and Applications, CSE535: Theory of optimization and continuous
algorithms. . . so many more!

Setting statistics aside1, basically everything in optimization and machine learning boils down to some linear
algebra concept or depends on some core linear algebra concept.

The following is one of many examples.

Note: You do not have to know all of the mathematics behind this example; it is simply to demonstrate the

connections between linear algebra and optimization/ML problems.

Example. Principle Component Analysis.

Cool visualization: http://setosa.io/ev/principal-component-analysis/

PCA is a powerful statistical tool for analyzing data sets and is formulated in the language of linear algebra.
Largely, it used as a tool in exploratory data analysis or for making predictive models. Indeed, it can be
used to address all kinds of questions of relevance to data analysis including:

• Is there a simpler way of visualizing data? Data is a priori a collection of points in Rn, where n might be
very large. Might want to project onto lower dimensional subspaces of important explanatory variables.

• Which variables are correlated?

• Which variables are the most significant in describing the full data set?

PCA is an orthogonal linear transformation that transforms the data to a new coordinate system such
that the greatest variance by some projection of the data lies on the first coordinate (i.e., first principal
component), the second greatest variance on the second coordinate, and so on. . .

Connecting ML+Opt via Linear Algebra: Let’s see it in action.

Consider a data matrix, X 2 Rn⇥p, with column-wise zero empirical mean (the sample mean of each column
has been shifted to zero), where

• each of the n rows, denoted xi 2 R1⇥p, represents a di↵erent repetition of the experiment

• each of the p columns gives a particular kind of feature (e.g., the results from a particular sensor)

Zero mean:
Pn

i=1 xi = 01⇥d which can be enforced by subtracting the mean x̄ = 1
n

Pn
i=1 xi.

The output of PCA is ` orthonormal vectors wj , j 2 {1, . . . , `} (i.e. the top ` principle components) that

1Another very foundational area worth becoming familiar with; ask and I will happily provide you with references or course
suggestions.

http://setosa.io/ev/principal-component-analysis/
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maximize

1

n

nX

i=1

X̀

j=1

(xi · vj)2

Mathematically, the transformation is defined by a set, with cardinality `, of p-dimensional vectors of weights
or coe�cients wk = (wk1, . . . , wkp), k = 1, . . . , `, that map each row vector xi ofX to a new vector of principal
component scores ti = (ti1, . . . , til), given by

tik = xi · wk, i = 1, . . . , n, k = 1, . . . , `

in such a way that the individual variables ti1, . . . , ti` of ti considered over the data set successively inherit
the maximum possible variance from X, with each coe�cient vector w constrained to be a unit vector (where
` is usually selected to be less than p to reduce dimensionality).

e.g., consider computing the first principle component: in order to maximize variance, the first weight vector
w1 thus has to satisfy

w1 = arg max
kwk=1

(
X

i

t
2
i1

)
= arg max

kwk=1

(
X

i

(xi · w)2
)

Equivalently, writing this in matrix form gives

w1 = arg max
kwk=1

�
kXwk2

 
= arg max

kwk=1
w

T
X

T
Xw

and since kwk = 1, this is equivalent to

w1 = argmax

⇢
w

T
X

T
Xw

wTw

�

where

X =

2

64
— x1 —

...
— xn —

3

75

and

Xw =

2

64
x1 · w

...
xn · w

3

75

The quantity to be maximised can be recognised as a Rayleigh quotient. A standard result for a positive
semidefinite matrix such as XT

X is that the quotient’s maximum possible value is the largest eigenvalue of

the matrix, which occurs when w is the corresponding eigenvector.

The matrix X
T
X has a natural interpretation. The (i, j) entry of this matrix is the inner product of the

i–th row of X and the j–th column of X—i.e., of the i–th and j–th columns of X. So X
T
X just collects the

inner products of columns of X, and is a symmetric matrix.

Other examples:

• Solutions to systems of linear equations. Solving linear equations is very basic problem that shows up in
all kinds of application areas.

e.g., Ax = b. This shows up in a lot of ML problems where you need to invert a matrix. In a lot of ML
applications, you need to compute vector-Jacobian products, inverse Hessians, etc.

• Gradient-based Optimization. Using a local linearization of a cost function to determine the direction of
steepest descent towards finding a local minima.
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3.2 Dynamical Systems and Control Theory

Relevant secondary courses: AA/ME/EE547 (linear systems theory, I)-548 (linear systems theory, II)-
549(Estimation and System Identification); AMATH575 A/B/C: Dynamical Systems; AMATH 502 A: In-
troduction to Dynamical Systems Theory and Chaos; EE550: Nonlinear Optimal Control; AMATH 518
Theory of Optimal Control, etc.

Linear dynamical systems are central to control theory. They represent a class of systems that we understand
very well and can be used to approximate nonlinear phenomena, particularly in the design of controllers or
observers for real world systems.

Example. Controllability/Observability. Consider the linear system

xk+1 = Axk +Buk

yk = Cxk

Questions about the controllability or observability of such a system boil down to characterizing the rank of
a particular operator.

Controllability : informally, a system—in particular, the pair (A,B)—is controllable on [k0, k1] if and only if
(i↵) 8 (x0, k0) and 8 (x1, k1), there exists a control input (uk)k2[k0,k1�1] that transfers x0 at time k0 to x1

at time k1.

Observability : informally, a system—in particular, the pair (C,A)—is observable on [k0, k1] i↵ for all in inputs
(uk)k2[k0,k1�1] and for all corresponding outputs (yk)k2[k0,k1], the state x0 at time k0 is uniquely determined.

Controllability is tantamount to assessing the surjectivity of a map Lc which maps the input sequence to
the state space. Observability is tantamount to assessing the injectivity of a map Lo that maps initial states
to the output space. Eventually (if you take 547) you will see that this reduces to checking rank conditions
on the matrices

C =
⇥
B AB · · · A

n�1
B
⇤

and

O =

2

6664

C

CA

...
CA

n�1

3

7775

for controllability and observability, respectively.

Other examples.

• Stability of a linear system. Towards the end of this course, we will actually cover this topic. Stability
can be assessed based on characterizing the eigen structure of a dynamical system or solving a Lyapunov
equation which is defined by a special linear operator which we will study in this course.

• Optimal control. e.g., finding the least norm control input to a linear system.

• Characterizing invariant spaces. Invariant spaces are important for all kinds of aspects of control theory
including providing safety guarantees or understanding reachability or robustness.

3.3 Numerical Methods for Di↵erential Equations

Relevant secondary courses: AA/EE/ME 547-548 (linear systems theory); AMATH 516: Numerical Opti-
mization; MATH 554-556 Linear Analysis, etc.

Example. Solving di↵erential equations numerically. In solving di↵erential equations such as

ẋ = f(x), x 2 Rn
,
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one approach is to discretize the di↵erential equation. Indeed,

x(t+ h)� x(t) = hẋ+O(h2) = hf(x(t)) +O(h2) =) xk+1 = xk + hf(xk)

where we define xk+1 = x(t + h)2. Whether or not this process converges depends on the stability of the
discretization which, in turn, depends on the choice of step-size h relative to the behavior of the dynamics.
For instance, in the case of a linear system

ẋ = Ax, x 2 Rn
, A 2 Rn⇥n

we have a discretized system
xk+1 = xk + hAxk = (I + hA)xk

Discrete time systems, as we will learn, are stable when their eigenvalues are inside the unit circle. Hence, h
would need to be chosen such that spec(I +hA) 2 D1(0). To further illustrate this, consider the scalar case:

ẋ(t) = �ax(t) =) xk+1 = (1� ha)xk

Q: for what values of a does the continuous time system decay to zero?

A: 0 < a 2 R. Why is this the case? Well, the solution is x(t) = x(t0)e�a(t�t0), 8t � t0 and we know an
exponential function will decay to zero if the exponent is negative.

Hence, if a > 0, |1� ha| < 1 if h < h0 where h0 is the largest h such that |1� ha| = 1.

h = a =) |1� ha| = 1

Hence, for any 0 < h < a, the discretized linear system will be stable.

4 Cool Visualizations

http://setosa.io/ev/

2In particular, the continuous time t at iteration k is t = t0 + kh.

http://setosa.io/ev/


b

EE547: Fall 2018

Lecture 1b: Functions, Linear Functions, Examples, and More. . .
Lecturer: L.J. Ratli↵

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

1.1 Functions

First, what is a function? And, what kind of notation will we use?

Given two sets X and Y, by f : X ! Y we mean that 8x 2 X , f assigns a unique f(x) 2 Y.

f(x)

f : X ! Y

co-domain

image (or range)
domain

• f maps X into Y (alternative notation: f : x 7! y.

• image of f (range):

f(X ) = {f(x)| x 2 X}

1.1.1 Characterization of functions

Injectivity (one-to-one):

f is injective () [f(x1) = f(x2)) x1 = x2]() [x1 6= x2 ) f(x1) 6= f(x2)]

Surjectivity (onto):

f is surjective() 8 y 2 Y, 9 x 2 X , such that y = f(x)

Bijective (injective and surjective):

8 y 2 Y, 9! x 2 X s.t. y = f(x)

Example. Consider f : X ! Y and let 1X be the identity map on X . We define the left inverse of f as the
map gL : Y ! X such that gL � f ⌘ 1X . (composition: gL � f : X ! X such that gL � f : x 7! gL(f(x)))

0

1-1
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f(x)

f : X ! Y

gL : Y ! XX Y

Exercise. Prove that
[f has a left inverse gL]() [f is injective]

Before we do the proof, some remarks on constructing proofs. Consider proving

Expression A =) Expression B

One can provide things with a direct argument (e.g., suppose Expression A is true, and argue that
Expression B must hold), finding a contradiction (i.e., by supposing Expression A holds and Expression
B does not and arguing a contradiction in the logic), or via the contrapositive argument. The statement

Expression A =) Expression B

is equivalent to
Expression B =) Expression A

(i.e. not B implies not A). One can also disprove a statement by coming up with a counter-example.

Proof: ((): Assume f is injective. Then, by definition,

f(x1) = f(x2)) x1 = x2

Construct gL : Y ! X such that, on f(X ), gL(f(x)) = x. This is a well-defined function due to injectivity
of f . Hence, gL � f ⌘ 1X .

()): Assume f has a left inverse gL. Then, by definition, gL � f ⌘ 1X . Which implies that 8 x 2 X ,
gL(f(x)) = x. We can use these facts to find a contradiction. Indeed, suppose f is not injective. Then, 9
some x1 6= x2 such that f(x1) = f(x2). Hence, gL(f(x1)) = x1 AND gL(f(x2)) = x2. Yet, since gL is a
function x1 = x2 which contradicts our assumption (! ). Thus f has to be injective.

Remark. Some of the homeworks (particularly early on) will require you to derive arguments such as the
above. So I will try to derive some of these in the class. Please ask questions if you feel uncomfortable at
all.

Analogously, we define the right inverse of f as the map gR : Y ! X such that f � gR ⌘ 1Y .

DIY Exercise. prove that
[f has a right inverse gR]() [f is surjective]

Remark. DIY exercises you find in the notes will sometimes appear in the o�cial homeworks but not always.
They are called out in the notes to draw your attention to practice problems that will help you grasp the
material.

Finally, g is called a two-sided inverse or simply, an inverse of f (and is denoted f�1)

• () g � f ⌘ 1X and f � g ⌘ 1Y (that is, g is both a left and right inverse of f)

• () f is invertible, f�1 exists
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1.2 Linear equations and functions

Another characterization of functions is linearity.

Probably the most common representation of a linear function you have seen is a system of linear equations.
Consider a system of linear equations:

y1 = a11x1 + a12x2 + · · ·+ a1nxn

y2 = a21x1 + a22x2 + · · ·+ a2nxn

...
...

...

ym = am1x1 + am2x2 + · · ·+ amnxn

We can write this in matrix form as y = Ax where

y =

2

6664

y1
y2
...
ym

3

7775
A =

2

6664

a11 a12 · · · a1n
a21 a22 · · · a2n
...

. . .
...

am1 am2 · · · amn

3

7775
x =

2

6664

x1

x2
...
xn

3

7775

Formally, a function f : Rn ! Rm is linear if

• f(x+ y) = f(x) + f(y), 8 x, y 2 Rn

• f(↵x) = ↵f(x), 8 x 2 Rn, 8 ↵ 2 R

That is, superposition holds!

f(x)

f(x+ y)

f(y)

y
x

1.2.1 Linear Maps

Let (U,F ) and (V, F ) be linear spaces over the same field F . Let A be a map from U to V .

Definition 1.1 (Linear operator/map) A : U ! V is said to be a linear map (equiv. linear operator) i↵
for each v1, v2 2 V

A(↵1v1 + ↵2v2) = ↵1A(v1) + ↵2A(v2), 8 ↵1,↵2 2 F
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A : U ! V

U V

Figure 1.1: A : V !W s.t. A(v) = w, v 2 V , w 2W .

Remark. We will show that the operator notation A operates on v 2 V is equivalent to pre-multiplication
of v by a matrix if A is linear.

Example. Consider the following mapping on the set of polynomials of degree 2:

A : as2 + bs+ c 7! cs2 + bs+ a

is this map linear?

Proof: Let

v1 = a1s
2 + b1s+ c1

v2 = a2s
2 + b2s+ c2

Then

A(↵1v1 + ↵2v2) = A(↵1(a1s
2 + b1s+ c1) + ↵2(a2s

2 + b2s+ c2))

= (↵1c1 + ↵2c2)s
2 + (↵1b1 + ↵2b2)s+ (↵1a1 + ↵2a2)

= ↵1(c1s
2 + b1s+ a1) + ↵2(c2s

2 + b2s+ a2)

= ↵1A(v1) + ↵2A(v2)

Hence, A is a linear map.

DIY Exercises: Are the following linear maps?

1.

A : as2 + bs+ c 7!
Z s

0
(bt+ a) dt

Let v1 = a1s2 + b1s+ c1, v2 = a2s2 + b2s+ c2

A(↵1v1 + ↵2v2) = A(↵1(a1s
2 + b1s+ c1) + ↵2(a2s

2 + b2s+ c2))

= A((↵1a1 + ↵2a2)s
2 + (↵1b1 + ↵2b2)s+ (↵1c1 + ↵2c2))

=

Z s

0
((↵1b1 + ↵2b2)t+ (↵1a1 + ↵2a2)) dt

=

Z s

0
(↵1b1t+ ↵1a1) dt+

Z s

0
(↵2b2t+ ↵2a2) dt

2.

A : v(t) 7!
Z 1

0
v(t) dt+ k

for v(·) 2 C([0, 1],R).
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3. A : R3 ! R3 such that A(v) = Av with

A =

2

4
1 2 3
0 1 5
7 0 16

3

5

Aside: what happens to the zero vector under this (or any) linear map?

Given a linear map A : U ! V we define the follow two spaces.

Definition 1.2 The range space of A to be the subspace

R(A) = {v| v = A(u), u 2 U}

The range is also called the image of A.

Definition 1.3 The null space of A to be the subspace

N (A) = {u| A(u) = 0} ⇢ U

The null space is also called the kernel of A.

DIY Exercise. Prove that R(A) and N (A) are linear subspaces.

1.2.2 Matrix multiplication as a linear function

Consider f : Rn ! Rm given by f(x) = Ax where A 2 Rm⇥n. Matrix multiplication as a function is linear!

Turns out the converse is also true: i.e. any linear function f : Rn ! Rm can be written as f(x) = Ax for
some A 2 Rm⇥n.

representation via matrix multiplication is unique: for any linear function f there is only one matrix A for
which f(x) = Ax for all x

y = Ax is a concrete representation of a generic linear function

Interpretation of y = Ax:

• y is a measurement or observation and x is unknown to be determined

• x is ‘input’ or ‘action’; y is ‘output’ or ‘result’

• y = Ax defines a function or transformation that maps x 2 Rn into y 2 Rm

Interpretation of aij :

yi =
nX

j=1

aijxj

aij is a gain factor from j-th input (xj) to i-th output (yi). The sparsity pattern of A—i.e. list of zero/non-
zero elements of A—shows which xj a↵ect which yi.
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1.2.3 Applications for Linear Maps y = Ax

Linear models or functions of the form y = Ax show up in a large number of applications that can be broadly
categorized as follows:

estimation or inversion.

• yi is the i–th measurement or sensor reading (we see this)
• xj is the j–th parameter to be estimated or determined
• aij is the sensitivity of the i–th sensor to the j–th parameter

e.g.,

• find x, given y
• find all x’s that result in y (i.e., all x’s consistent with measurements)
• if there is no x such that y = Ax,find x s.t. y ⇡ Ax (i.e. if the sensor readings are inconsistent, find x
which is almost consistent)

control or design.

• x is vector of design parameters or inputs (which we can choose)
• y is vector of results, or outcomes
• A describes how input choices a↵ect results

e.g.,

• find x so that y = ydes
• find all x’s that result in y = ydes (i.e., find all designs that meet specifications)
• among the x’s that satisfy y = ydes, find a small one (i.e. find a small or e�cient x that meets the
specifications)

mapping or transformation.

• x is mapped or transformed to y by a linear function A

e.g.,

• determine if there is an x that maps to a given y
• (if possible) find an x that maps to y
• find all x’s that map to a given y
• if there is only one x that maps to y, find it (i.e. decode or undo the mapping)

1.2.4 Other views of matrix multiplication

Matrix Multiplication as

mixture of columns. write A 2 Rm⇥n in terms of its columns

A =
⇥
a1 a2 · · · an

⇤

where aj 2 Rm. Then, y = Ax can be written as

y = x1a1 + x2a2 + · · ·+ xnan

xj ’s are scalars and aj ’s are m dimensional vectors. the x’s given the mixture or weights for the mixing
of columns of A.

One very important example is when x = ej , which is the j–th unit vector.

e1 =

2

6664

1
0
...
0

3

7775
, e2 =

2

6664

0
1
...
0

3

7775
, · · · , en =

2

6664

0
...
0
1

3

7775

In this case, Aej = aj , the j–th column of A.
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inner product with rows. write A in terms of its rows

A =

2

6664

ãT1
ãT2
...
ãTn

3

7775

where ãi 2 Rn. Then y = Ax can be written as

y =

2

6664

ãT1 x
ãT2 x
...

ãTnx

3

7775

Thus, yi = hãi, xi, i.e. yi is the inner product of the i–th row of A with x.

This has a nice geometric interpretation. yi = ãTi x = ↵ is a hyperplane in Rn (normal to ãi

1.2.4.1 Composition of matrices

For A 2 Rm⇥n and B 2 Rn⇥p, C = AB 2 Rm⇥p where

cij =
nX

k=1

aikbkj

composition interpretation: y = Cz represents composition of y = Ax and x = Bz

z y
xA B z yAB

We can also interpret this via columns and rows. That is, C = AB can be written as

C =
⇥
c1 · · · cp

⇤
= AB =

⇥
Ab1 · · · Abp

⇤

i.e. the i–th column of C is A acting on the i–th column of B.

similarly we can write

C =
h
c̃T1

... c̃Tm

i
= AB =

2

64
ãT1 B
...

ãTmB

3

75
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i.e. the i–th row of C is the i–th row of A acting (on the left) on B.

as above, we can write entries of C as inner products:

cij = ãTi bj = hãi, bji

i.e. the entries of C are inner products of rows of A and columns of B

• cij = 0 means the i–th row of A is orthogonal to the j–th column of B
• (Gram matrices are defined this way): Gram matrix of vectors v1, . . . , vn defined as Gij = vTi vj (gives
inner product of each vector with the others)

G =
⇥
v1 · · · vn

⇤T ⇥
v1 · · · vn

⇤
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Lecture 2: Review of Mathematical Preliminaries & Functions
Lecturer: L.J. Ratli↵

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

The material in this lecture should be a review.

1 Review of Mathematical Preliminaries

It is assumed that you are familiar with mathematical notation; if not, please take the time to review. Some
of the main notion that will be used in this course is summarized below.

Quantifiers.

• 8: for all
• 9: there exists; 9!: there exists a unique; 6 9: there does not exist

• a =) b: statement or condition a implies statement or condition b; (= is the opposite.

• (): if and only if (i.e. a() b means a =) b and b =) a).

Further, a =) b is equivalent to b is necessary for a and a is su�cient for b, hence when proving an i↵
(()) statement, we often say =) is the su�cient condition and (= is the necessary condition.

Familiar spaces.

• R: real numbers

• C: complex numbers

• C+, R+: right (positive) complex plane or positive reals

• C�
+: open right half complex plane

• C�, R�: left (negative) complex plane or negative reals

• Z: integers
• N: natural numbers

Set notation.

• 2: “in” e.g., a 2 R means a lives in the real numbers R
• 62: “not in”
• ⇢: subset e.g., A ⇢ B: the set A is a subset (contained in) the set B

• 6⇢: “not contained in”

• [: union e.g., A [B is the union of the sets A and B

• \: intersection

2 Review of Basic Proof Techniques

It is assumed that you have some basic knowledge of proof techniques. If you do not, please review.

Do not get scared o↵ by the work “prove”. Basically, proving something is as simple as constructing a logical
argument by invoking a series of facts which enable you to deduce a particular statement or outcome.

2-1
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There are several basic proof techniques that you can apply including the following. For each of the proof
techniques below, consider the following statement

ExpressionA =) ExpressionB

• direct. The direct method of proof is as its sounds. You start by assuming Expression A is true
and you try to argue based on other facts that are known to be true and using logical deduction that
Expression B must hold as a result.

• contradiction. There are a number of ways to argue by contradiction, but the most straightforward
approach is to assume that Expression A holds but Expression B does not. Then reason why this
assumption therefore leads to a contradicting state of the world.

• contrapositive. To construct a proof by this approach, you prove the contrapositive statement by direct
proof. That is, you use the direct proof method to prove

⇠ ExpressionB =) ⇠ ExpressionA

where ⇠ ExpressionB means “not Expression B” (i.e. Expression B does not hold.

• disprove by counterexample. a statement such as the one above can also be shown to be false by
construction of a counterexample. This is an specific example which shows that the statement cannot
be true.

3 Functions

First, what is a function? And, what kind of notation will we use?

Given two sets X and Y , by f : X ! Y we mean that 8x 2 X, f assigns a unique f(x) 2 Y .

(a) function (b) not function

Figure 1: Example: a function and something that is not a function.

f(x)

f : X ! Y

co-domain

image (or range)
domain

• f maps X into Y (alternative notation: f : x 7! y.

• image of f (range):

f(X) = {f(x)| x 2 X}
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3.1 Characterization of functions

Injectivity (one-to-one):

f is injective () [f(x1) = f(x2) =) x1 = x2]() [x1 6= x2 =) f(x1) 6= f(x2)]

Surjectivity (onto):

f is surjective() 8 y 2 Y, 9 x 2 X, such that y = f(x)

Bijective (injective and surjective):

8 y 2 Y, 9! x 2 X s.t. y = f(x)

Example. Consider f : X ! Y and let 1X be the identity map on X.

Left inverse. the left inverse of f is defined as the map gL : Y ! X such that gL � f ⌘ 1X . (composition:
gL � f : X ! X such that gL � f : x 7! gL(f(x)))

Right inverse. the right inverse of f is defined as the map gR : X ! Y such that f � gR ⌘ 1Y .

f(x)

f : X ! Y

gL : Y ! XX Y

Exercise. Prove that

[f has a left inverse gL]() [f is injective]

Proof. Direct Proof of (=: Assume f is injective. Then, by definition, for any x1, x2,

f(x1) = f(x2) =) x1 = x2

Construct a mapping gL : Y ! X such that, on f(X) = {f(x), 8x 2 X}, gL(f(x)) = x. This mapping is in
fact a well-defined function due to injectivity of f . That is, since f is injective, for each x there is a unique
f(x). Hence, this mapping satisfies the definition of a function. Hence, gL � f ⌘ 1X .

Contradiction proof of =): Assume f has a left inverse gL but f is not injective. Then, by definition

gL � f ⌘ 1X =) 8 x 2 X, gL(f(x)) = x.

Since we have assumed that f is not injective, 9 some x1 6= x2 such that f(x1) = f(x2). Using the definition
of left inverse gL(f(x1)) = x1 and gL(f(x2)) = x2. Yet, since gL is a function x1 = x2 (since f(x1) = f(x2))
which contradicts our assumption (! ). Thus f has to be injective.

Remark. Many of the homework problems will require you to derive arguments such as the above. So I will
try to derive some of these in the class. Please ask questions if you feel uncomfortable at all.
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DIY Exercise. prove that

[f has a right inverse gR]() [f is surjective]

Remark. DIY exercises you find in the notes will sometimes appear in the o�cial homeworks but not always.
They are called out in the notes to draw your attention to practice problems that will help you grasp the
material.

Two-sided inverse. A function g is called a two-sided inverse or simply, an inverse of f (and is denoted
f�1)

• () g � f ⌘ 1X and f � g ⌘ 1Y (that is, g is both a left and right inverse of f)

• () f is invertible, f�1 exists

The following is a commutative diagram which we can use to illustrate these functional properties:

X Z

Y

f � g

g f

4 Linear functions

A map (or function) f : X ! Y is linear if

• f(x1 + x2) = f(x1) + f(x2), 8x1, x2 2 X

• f(↵x) = ↵f(x), 8x 2 X and 8 ↵ 2 R.

Note. We can also check this definition by combining the two properties. Indeed, f is linear i↵

f(↵x1 + �x2) = ↵f(x1) + �f(x2), 8 x1, x2 2 X, 8↵,� 2 R

Example. Consider the following mapping on the set of polynomials of degree 2:

f : as2 + bs+ c 7! cs2 + bs+ a

is this map linear?

Proof. Let

v1 = a1s
2 + b1s+ c1

v2 = a2s
2 + b2s+ c2

Then

f(↵1v1 + ↵2v2) = f(↵1(a1s
2 + b1s+ c1) + ↵2(a2s

2 + b2s+ c2))

= (↵1c1 + ↵2c2)s
2 + (↵1b1 + ↵2b2)s+ (↵1a1 + ↵2a2)

= ↵1(c1s
2 + b1s+ a1) + ↵2(c2s

2 + b2s+ a2)

= ↵1f(v1) + ↵2f(v2)

Hence, f is a linear map.
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DIY Exercise. Is the following map linear map?

f : as2 + bs+ c 7!
Z s

0
(bt+ a) dt

Let v1 = a1s2 + b1s+ c1, v2 = a2s2 + b2s+ c2

f(↵1v1 + ↵2v2) = f(↵1(a1s
2 + b1s+ c1) + ↵2(a2s

2 + b2s+ c2))

= f((↵1a1 + ↵2a2)s
2 + (↵1b1 + ↵2b2)s+ (↵1c1 + ↵2c2))

=

Z s

0
((↵1b1 + ↵2b2)t+ (↵1a1 + ↵2a2)) dt

=

Z s

0
(↵1b1t+ ↵1a1) dt+

Z s

0
(↵2b2t+ ↵2a2) dt

4.1 Matrix multiplication as a linear function

Consider f : Rn ! Rm given by f(x) = Ax where A 2 Rm⇥n. Matrix multiplication as a function is linear!

Turns out the converse is also true!

Matrix representation theorem. any linear function f : Rn ! Rm can be written as f(x) = Ax for some
A 2 Rm⇥n.

e.g.,
L(X) = ATX +XA

L(a1X1 + a2X2) = AT (a1X1 + a2X2) + (a1X1 + a2X2)A

= a1(A
TX1 +X1A) + a2(A

TX2 +X2A)

= a1L(X1) + a2L(X2)

Suppose that X,A 2 R2⇥2. We can find the matrix representation by viewing L as a map from R4 to R4 by
first expressing

A =


A11 A12

A21 A22

�
, X =


X11 X12

X21 X22

�

Then, if you actually expressed L(X) in terms of this decomposition and took into consideration the mapping


a b
c d

�
7!

2

664

a
b
c
d

3

775

You would find that
L(X) = LX

where

L =

2

664

2A11 A21 A21 0
A12 A11 +A22 0 A21

A12 0 A22 +A11 A21

0 A12 A21 2A22

3

775

e.g., derivatives of nonlinear maps are linear operators Suppose we are given a non-linear map (or
function) f : Rn ! Rm which is di↵erentiable at a point x0 2 Rn. Then, for any x “near” x0, f(x) is “very
near” f(x0) +Df(x0)(x� x0) where

(Df(x0))ij =
@fi
@xj

���
x0
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is the derivative (Jacobian) matrix such that Df(x0) 2 Rm⇥n.

With y = f(x), y0 = f(x0), we define the input deviation (or variation) as �x = x�x0 and output deviation
as �y = y � y0 so that �y ⇡ Df(x0)�x.

When deviations are small, they are approximately related by a linear function.

Such a representation via matrix multiplication is unique: for any linear function f there is only one matrix
A for which f(x) = Ax for all x

The expression y = Ax is a concrete representation of a generic linear function
Interpretation of y = Ax:

• y is a measurement or observation and x is unknown to be determined
• x is ‘input’ or ‘action’; y is ‘output’ or ‘result’
• y = Ax defines a function or transformation that maps x 2 Rn into y 2 Rm

Interpretation of aij :

yi =
nX

j=1

aijxj

aij is a gain factor from j-th input (xj) to i-th output (yi). The sparsity pattern of A—i.e. list of zero/non-
zero elements of A—shows which xj a↵ect which yi.

4.2 Applications for Linear Maps y = Ax

Linear models or functions of the form y = Ax show up in a large number of applications that can be broadly
categorized as follows:

estimation or inversion.

• yi is the i–th measurement or sensor reading (we see this)
• xj is the j–th parameter to be estimated or determined
• aij is the sensitivity of the i–th sensor to the j–th parameter

e.g.,

• find x, given y
• find all x’s that result in y (i.e., all x’s consistent with measurements)
• if there is no x such that y = Ax,find x s.t. y ⇡ Ax (i.e. if the sensor readings are inconsistent, find x
which is almost consistent)

control or design.

• x is vector of design parameters or inputs (which we can choose)
• y is vector of results, or outcomes
• A describes how input choices a↵ect results

e.g.,

• find x so that y = ydes
• find all x’s that result in y = ydes (i.e., find all designs that meet specifications)
• among the x’s that satisfy y = ydes, find a small one (i.e. find a small or e�cient x that meets the
specifications)

mapping or transformation.

• x is mapped or transformed to y by a linear function A

e.g.,

• determine if there is an x that maps to a given y
• (if possible) find an x that maps to y
• find all x’s that map to a given y
• if there is only one x that maps to y, find it (i.e. decode or undo the mapping)
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4.3 Other views of matrix multiplication

Matrix Multiplication as

mixture of columns. write A 2 Rm⇥n in terms of its columns

A =

2

4
| | |
a1 a2 · · · an
| | |

3

5

where aj 2 Rm. Then, y = Ax can be written as

y = x1a1 + x2a2 + · · ·+ xnan

xj ’s are scalars and aj ’s are m dimensional vectors. the x’s given the mixture or weights for the mixing
of columns of A.

One very important example is when x = ej , which is the j–th unit vector.

e1 =

2

6664

1
0
...
0

3

7775
, e2 =

2

6664

0
1
...
0

3

7775
, · · · , en =

2

6664

0
...
0
1

3

7775

In this case, Aej = aj , the j–th column of A.
inner product with rows. write A in terms of its rows

A =

2

6664

— ãT1 —
— ãT2 —
...
— ãTn —

3

7775
=

2

64
hã1, xi

...
hãn, xi

3

75

where ãi 2 Rn. Then y = Ax can be written as

y =

2

6664

ãT1 x
ãT2 x
...

ãTnx

3

7775

Thus, yi = hãi, xi, i.e. yi is the inner product of the i–th row of A with x.

This has a nice geometric interpretation. yi = ãTi x = ↵ is a hyperplane in Rn (normal to ãi
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4.4 Composition of matrices

For A 2 Rm⇥n and B 2 Rn⇥p, C = AB 2 Rm⇥p where

cij =
nX

k=1

aikbkj

composition interpretation: y = Cz represents composition of y = Ax and x = Bz

z y
xA B z yAB

We can also interpret this via columns and rows. That is, C = AB can be written as

C =
⇥
c1 · · · cp

⇤
= AB =

⇥
Ab1 · · · Abp

⇤

i.e. the i–th column of C is A acting on the i–th column of B.

Similarly we can write

C =

2

64
c̃T1
...
c̃Tm

3

75 = AB =

2

64
ãT1 B
...

ãTmB

3

75

i.e. the i–th row of C is the i–th row of A acting (on the left) on B.

as above, we can write entries of C as inner products:

cij = ãTi bj = hãi, bji

i.e. the entries of C are inner products of rows of A and columns of B

• cij = 0 means the i–th row of A is orthogonal to the j–th column of B
• (Gram matrices are defined this way): Gram matrix of vectors v1, . . . , vn defined as Gij = vTi vj (gives
inner product of each vector with the others)

G =
⇥
v1 · · · vn

⇤T ⇥
v1 · · · vn

⇤
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References: Appendix A.2 & A.3 of [C&D]; Chapter 1 and 2 of [Ax]

1 A Review of Fields and Rings

Definition 1. A field F is an object consisting of a set of elements and two binary operations

1. addition (+)

2. multiplication (·)

such that the following axioms are obeyed:

• Addition (+) satisfies the following : for any ↵, �, � 2 F,
– associative: (↵+ �) + � = ↵+ (� + �)

– commutative: ↵+ � = � + ↵

– 9 identity element 0 2 F such that ↵+ 0 = ↵

– 9 inverse: 8↵ 2 F, 9(�↵) 2 F such that ↵+ (�↵) = 0

• Multiplication (·) satisfies the following : for any ↵, �, � 2 F,
– associative: (↵ · �) · � = ↵ · (� · �)
– commutative: ↵ · � = � · ↵
– 9 identity element 1 such that ↵ · 1 = ↵ 8↵ 2 F
– 9 inverse: 8↵ 6= 0, 9↵�1 such that ↵ · ↵�1 = ↵�1 · ↵ = 1

– distributive (over (+)):

↵ · (� + �) = ↵ · � + ↵ · �
(� + �) · ↵ = � · ↵+ � · ↵

Note. Throughout this course, a field F is either R or C. If not clear from context, assume C as it is
the more general case.

Examples. (see if you can prove that each of the following are fields)

• R: reals
• C: complex numbers

• R(s): the field of rational functions in s with coe�cients in R—i.e.

s2 + 3s+ 1

s+ 1

(This is important for frequency domain analysis of controllability, observability, stability, etc. You will
see this, e.g., in 547)

• C(s): field of rational functions in s with coe�cients in C

3-1
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DIY Exercise. Show that
• the polynomials in s w/ coe�cients in R (denoted by R[s]) is not a field

• strictly proper rational functions, denoted by Rp,o(s) is not a field

Answer:

• sf(s) = 1 2 R[s] implies 0 = 1 in R by taking s = 0. Or you can see this via the fact that 1/x is
not a polynomial. More generally, we know that for polynomials deg(fg) = deg(f) + deg(g) for any
polynomials f, g. Any polynomial of degree n � 1 would then need a polynomial of degree �n as an
inverse, which does not exist in the ring of polynomials.

• A similar argument can be made for strictly proper rational functions.

Definition 2 (Ring). A ring is the same as a field except the multiplication operator is not commutative
and there is no inverse for non-zero elements under the multiplication operator.

Examples.

• Commutative Rings : Z,R[s],C[s],Rp,o(s)

• Non-commutative rings: Rn⇥n,Cn⇥n, Rn⇥n[s], Cn⇥n[s], Rn⇥n(s), Cn⇥n(s), Rn⇥n
p (s), . . .

DIY Exercise.Show that the set {0, 1} with
• (·) = binary AND

• (+) = binary XOR
is a field.

2 Vector Spaces (or Linear Spaces)

Before formally defining a vector space, let’s consider some examples.

• A plane (set of all pairs of real numbers): R2 = {(x, y)| x, y 2 R}
• More generally, Rn = {(x1, . . . , xn)| xi 2 R, i 2 {1, . . . , n}}

Definition. A vector space (V,F) is a set of vectors V , and a field of scalars F, and two binary operations:

• vector addition ’+’

• scalar multiplication ’·’ (multiplication of vectors by scalars)

such that

• Addition (+ : V ⇥ V ! V , + : (x, y) 7! x+ y) satisfies the following: for any x, y, z 2 F,
– associative: (x+ y) + z = x+ (y + z)

– commutative: x+ y = y + x

– 9 identity 0 (“zero vector”) such that x+ 0 = 0+ x = x

– 9 inverse: 8x 2 V , 9(�x) 2 F such that x+ (�x) = 0

• Scalar Multiplication (· : F⇥ V ! V , · : (↵, x) 7! ↵ · x) satisfies the following: for any x, y 2 V and for
any ↵, � 2 F,
– (↵ · �) · x = ↵(� · x)
– 1 · x = x

– 0 · x = 0

where 1 and 0 are the multiplicative and additive identities of the field F.



Lecture 3: Vector Spaces and Linear Spaces 3-3

• distributive laws:
8x 2 V, 8↵,� 2 F (↵+ �)x = ↵ · x+ � · x

8x, y 2 V, 8↵ 2 F ↵(x+ y) = ↵ · x+ ↵ · y

Examples.

1. (Fn,F) the space of n-tuples in F over the field F is a vector space. (i.e. (Rn,R), (Cn,C))
2. The function space F(U, V ) defined by: (V,F) is a vector space and U is a set (i.e. R,Rn, . . .). Hence

F(U, V ) is the class of all functions which map U to V . Then, (F(U, V ),F) with
• addition: (f + g)(u) = f(u) + g(u), f, g 2 F(U, V ), u 2 U

• scalar multiplication: (↵f)u = ↵f(u), 8u 2 U .

is a vector space. e.g.,

• Continuous functions f : [t0, t1] ! Rn—notation

(C([t0, t1],R),R)

• k–times di↵erentiable functions f : [t0, t1] ! Rn—notation

(Ck([t0, t1],Rn),R)

3. Another example of vector spaces of functions:

V = {⇠ : R+ ! Rn| ⇠ is di↵erentiable}

where vector sum the sum of functions, i.e.

(⇠ + �)(t) = ⇠(t) + �(t)

and scalar multiplication is defined by
(↵⇠)(t) = ↵⇠(t)

e.g., a point in V is a trajectory in Rn or the flow of a di↵erential equation for example.

Now, consider
W = {⇠ 2 V | ⇠̇ = A⇠}

points in W are trajectories of the linear system ⇠̇ = A⇠

DIY Exercise. Show that W is a subspace of V .

3 Vector subspaces (or linear subspaces)

Let (V,F) be a linear space and W a subset of V (denoted W ⇢ V ). Then (W,F) is called a subspace of
(V,F) if (W,F) is itself a vector space.

How to check if W is a subspace of V ?

step 1. verify that W is a subset of V (thus W inherits the vector space axioms of V )

step 2. verify closure under vector addition and scalar multiplication—i.e. 8w1, w2 2 W , 8↵ 2 F,

↵w1 + ↵w2 2 W

This is equivalent to. . .
Defn. A subspace W of V is a subset of V such that
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1. 0 2 W
2. u, v 2 W =) u+ v 2 W
3. u 2 W , ↵ 2 F =) ↵u 2 W

Examples.

• Is {(x1, x2, 0)| x1, x2 2 F} is a subspace of F3? (e.g., is a plane in R3 is a subspace?)
• Prove that if W1,W2 are subspaces of V , then

i) W1 \W2 is a subspace
ii) W1 [W2 is not necessarily a subspace

Proof. 1. simple; DIY Exercise

2. for (i), consider two arbitrary subspaces of V . Then to show that W1 \ W2 is a subspace, we need
to show that W1 \ W2 ⇢ V , which is obvious since Wi ⇢ V for each i and W1 \ W2 ⇢ W1 and
W1 \W2 ⇢ W2. Now we need to check its closed under vector addition and scalar multiplication: let
v1, v2 2 W1 \W2 and ↵1,↵2 2 F. Then, we know that ↵1v1 + ↵2v2 2 W1 and ↵1v1 + ↵2v2 2 W2 since
W1 and W2 are subspaces and vi 2 W1 \W2 (i.e. its in both spaces) for each i = 1, 2. Hence,

↵1v1 + ↵2v2 2 W1 \W2

and we are done.
for (ii) a counterexample is su�cient: Let

W1 = span

⇢
1
0

��

W2 = span

⇢
0
1

��

and V = R2. Consider

w =


1
1

�
=


1
0

�
+


0
1

�

but w /2 W1 [W2. Hence, W1 [W2 is not closed under vector addition and thus is not a subspace.

4 Sums and Direct Sums

Suppose W1, . . . ,Wm are subspaces of V . The sum of the Wi’s, denoted by W1 + · · ·+Wm is defined to be
the set of all possible sums of elements in W1, . . . ,Wm—i.e.,

W1 + · · ·+Wm = {w1 + · · ·+ wm| wi 2 Wi, 8i 2 {1, . . . ,m}}

DIY Exercise. Show the following:

W1, . . . ,Wm subspaces of V =)
mX

i=1

Wi subspace of V

Example. Consider U = {(x, 0, 0) 2 F3| x 2 F} and W = {(0, y, 0) 2 F3| y 2 F}. Show that U + W =
{(x, y, 0)| x, y 2 F} is a subspace of F3.

Suppose that W1, . . . ,Wm are subspaces of V such that V = W1+ · · ·+Wm. We say that V is the direct sum
of subspaces W1, . . . ,Wm, written as

V = W1 � · · ·�Wm

if each element of V can be written uniquely as a sum w1 + · · ·+ wm where each wi 2 Wi.

Example. Consider U = {(x, y, 0) 2 F3| x, y 2 F} and W = {(0, 0, z) 2 F3| z 2 F}. Then F3 = U �W .
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Proposition 1. Suppose that U1, . . . , Um are subspaces of V . Then, V = U1 � · · ·�Um if and only if both
the following conditions hold:

1. V = U1 + · · ·+ Um

2. the only way to write zero as a sum u1 + · · · + um, where each ui 2 Ui is by taking all the ui = 0,
i 2 {1, . . . ,m}.

Proof. (=)): Suppose that V = U1 � · · ·� Um. By definition, 1. holds. Now, we need to show 2. Suppose
uj 2 Uj for each j 2 {1, . . . ,m} and that

0 = u1 + · · ·+ um

Then, each uj = 0 due to the uniqueness part of the definition of the direct sum—i.e., recall that a space is a
direct sum of Uj , j 2 {1, . . . ,m} if each element in that space can be written uniquely as a sum u1+ · · ·+um.
Hence, 0 = 0 + · · ·+ 0 where 0 2 Uj .

((=): Suppose that 1. and 2. hold. Let v 2 V . By 1.,

v = u1 + · · ·+ um

for some uj 2 Uj , j 2 {1, . . . ,m}. To show that this representation is unique, suppose that we also have

v = v1 + · · ·+ vm

where vj 2 Uj , j 2 {1, . . . ,m}. Subtracting these two expressions for v we have that

0 = (u1 � v1) + · · ·+ (um � vm)

so that uj � vj 2 Uj so that the equation above and 2. imply that each uj � vj = 0. Thus uj = vj ,
j 2 {1, . . . ,m}.

Proposition 2. Suppose that U and W are subspaces of V . Then V = U �W if and only if V = U +W
and U \W = {0}.

Proof. DIY Exercise.

5 Linear Independence and Dependence

Suppose (V,F) is a linear space. A linear combination of vectors (v1, . . . , vp), vi 2 V is a vector of the form

↵1v1 + · · ·+ ↵pvp, ↵i 2 F

• The set of vectors {vi 2 V, i 2 {1, . . . , p}} is said to be linearly independent if and only if (i↵)

↵1v1 + ↵2v2 + · · ·+ ↵pvp = 0, ↵i 2 F =) ↵i = 0, 8i = 1, . . . , p

where ↵i 2 F .
• The set of vectors is said to be linearly dependent i↵ 9 scalars ↵i 2 F, i 2 {1, . . . , p} not all zero such
that

↵1v1 + ↵2v2 + · · ·+ ↵pvp = 0

Example. Let F = R, k 2 {0, 1, 2, . . . , n}, fk : [�1, 1] ! R such that fk(t) = tk. Show that the set of
vectors (fk)nk=0 is linearly independent in (Fn([�1, 1],R),R).

proof sketch.
(fk)

n
0 = {f0, f1, . . . , fn}

Hence we need to show that, 8 t 2 [�1, 1],

↵0 + ↵1t+ ↵2t
2 + · · ·+ ↵nt

n = 0 =) ↵i = 0,↵i 2 R
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DIY Exercise. DIY Exercise. Finish proof.

Proof. To show this is the case, take derivatives of

↵0 + ↵1t+ ↵2t
2 + · · ·+ ↵nt

n = 0

up to the n–th derivative to get a system of equations. Indeed,

↵0 + ↵1t+ ↵2t
2 + · · ·+ ↵nt

n = 0

↵1 + 2↵2t+ 3↵2t
2 + · · ·+ n↵nt

n�1 = 0
... =

...

n!↵n = 0

so that 2

666664

1 t t2 · · · tn�1 tn

0 1 2t · · · (n� 1)tn�2 ntn�1

0 0 2 · · · (n� 1)(n� 2)tn�3 n(n� 1)tn�2

...
...

...
. . .

...
...

0 0 0 · · · 0 n!

3

777775

2

666664

↵0

↵1

↵2
...
↵n

3

777775
=

2

666664

0
0
0
...
0

3

777775

The determinant of this matrix is 2!3! · · · (n� 1)!n! which is the product of the diagonal (since its upper
triangular). This is clearly non-zero for any t. Thus there is a unique solution and the only solution is
when all the ↵’s are zero.

Span. The set of all linear combinations of (v1, . . . , vp) is called the span of (v1, . . . , vp). We use the
notation

span(v1, . . . , vp) =

(
pX

i=1

↵ivi
��� ↵i 2 F, i 2 {1, . . . , p}

)

If span(v1, . . . , vp) = V , then we say (v1, . . . , vp) spans V .

Note. If some vectors are removed from a linearly independent list, the remaining list is also linearly
independent, as you should verify.

Dimension. The notion of a spanning set let us define dimension. If we can find a set of spanning vectors
with finite cardinality for a space V , then V is said to be finite dimensional, and otherwise it is said to be
infinite dimensional. We denote by dim(V ) the dimension of the space V .

Example.
1. (Rn⇥n,R), the space of n⇥ n real valued matrices, has dimension n2.

2. PC([0, 1],R) is infinite dimensional. Indeed, this can be shown by showing it contains a subspace of
infinite dimension: span{(t ! tn)10 }.

The following is an alternative representation of linear dependence. Indeed, it states that given a linearly
dependent list of vectors, with the first vector not zero, one of the vectors is in the span of the previous ones
and, furthermore, we can throw out that vector without changing the span of the original list.

Lemma 1. If (v1, . . . , vp) is a linearly dependent set of vectors in V with v1 6= 0, then there exists j 2
{2, . . . , p} such that the following hold:

(a) vj 2 span(v1, . . . , vj�1)
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(b) if the j–th term is removed from (v1, . . . , vp), then the span of the remaining list equals span(v1, . . . , vp)

This lemma let’s us prove a stronger result: the cardinality of linearly independent sets is always smaller
than the cardinality of spanning sets.

Theorem 1. In a finite-dimensional vector space, the length of every linearly independent set of vectors is
less than or equal to the length of every spanning set of vectors.

DIY Exercise. Construct a proof using the above lemma.

Proposition 3. Every subspace of a finite-dimensional vector space is finite dimensional.

You cannot embed an infinite dimensional space in a finite dimensional one.

6 Basis and Coordinate Representation

With these concepts, we can introduce the notion of a basis for a space V .

Definition 3. Suppose (V,F) is a linear space. Then a set of vectors {v1, v2, . . . , vn} is called a basis of V
if

(a) {v1, v2, . . . , vn} spans V

(b) {v1, v2, . . . , vn} is a linearly independent set.

Example. The canonical example is the standard basis in Rn—i.e.,

{e1, . . . , en}

where each vector ei is all zeros with the exception of the i–th entry which is has value one.

Why do we care about bases? Any vector x 2 V may be written as a linear combination of the basis
vectors. Indeed, consider a basis {vi}ni=1 of V and a vector x 2 V . Then,

x = ⇠1v1 + ⇠2v2 + · · · ⇠nvn =
nX

i=1

⇠ivi

The vector

⇠ =

2

64
⇠1
...
⇠n

3

75 2 Fn

is called the coordinate vector of x w.r.t. {vi}ni=1. The ⇠i’s are called the coordinates of x w.r.t. {vi}ni=1.

Generating Subspaces w/ Linear Combinations. Using linear combinations we can generate sub-
spaces, as follows. Recall the notion of span.

Proposition 4. For a non-empty subset S of Rn, show that span(S) is always a subspace of Rn.

Proof. DIY Exercise.

Let V = span(S) be the subspace of Rn spanned by some S ✓ Rn. Then S is said to generate or span V ,
and to be a generating or spanning set for V .
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Note. If V is already known to be a subspace, then finding a spanning set S for V can be useful,
because it is often easier to work with the smaller spanning set than with the entire subspace V , e.g., if
we are trying to understand the behavior of linear transformations on V .

Example.
1. Let S be the unit circle in R3 which lies in the xy plane. Then span(S) is the entire xy plane.

2. Let
S = {(x, y, z) 2 R3| x = y = 0, 1 < z < 3}

Then span(S) is the z-axis.

If turns out the coordinate representation with respect to a basis is unique.

Proposition 5. A set {v1, . . . , vp} of vectors in V is a basis of V i↵ every v 2 V can be written uniquely in
the form

v = ⇠1v1 + · · ·+ ⇠pvp, ⇠i 2 F

Proof. (=)): Suppose not. Then 9 ⇠, ⇠0 such that

x = ⇠1v1 + ⇠2v2 + · · · ⇠nvn (1)

and
x = ⇠01v1 + ⇠02v2 + · · · ⇠0nvn (2)

Subtracting (2) from (1) gives

0 = (⇠1 � ⇠01)v1 + (⇠2 � ⇠02)v2 + · · · (⇠n � ⇠0n)vn

which, for ⇠i 6= ⇠0i implies that the {vi}ni=1 are linearly dependent, contradicting the assumption that {vi}ni=1

is a basis.

(=)): Suppose that every x 2 V can be written uniquely as in (1). Then, clearly {vi}ni=1 spans V . Now,
we need to argue that that {vi}ni=1 is a linearly independent set. Again since any x 2 V can be expressed
uniquely in the form (1) for some ⇠i, then it is certainly the case for 0 2 V so that

0 = ⇠1v1 + · · ·+ ⇠nvn, ⇠i 2 F

Since this representation is unique1, it has to be the case that ⇠i = 0 for each i 2 {1, . . . , n}. Thus {vi}ni=1

is linearly independent and hence a basis for V .

Fact 1. If {v1, v2, . . . , vn} is a basis for (V,F), then any other basis also has n elements. The number of
elements in the basis is called the dimension of the vector space.

Fact 2. A basis of a vector space is NOT unique.

Can you come up with an example in R3? The following are both bases for R3:
8
<

:

2

4
1
0
0

3

5 ,

2

4
0
1
0

3

5 ,

2

4
0
0
1

3

5

9
=

; and

8
<

:

2

4
1
1
0

3

5 ,

2

4
0
1
1

3

5 ,

2

4
0
0
1

3

5

9
=

;

1
Suppose its unique, but vi are not linearly independent. Then, there exists some ⇠i 6= 0 such that

P
j ⇠jvj = 0. WLOG,

suppose v1 can be written as a linear combination of the other vectors:

⇠1(↵2v2 + · · ·↵nvn) + ⇠2v2 + · · ·+ ⇠nvn = 0

0 · v1 + (⇠1↵2 + ⇠2)v2 + · · ·+ (⇠1↵n + ⇠n)vn = 0

which implies that we have another representation of 0 in terms of the basis vectors and hence, this contradicts uniqueness.
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DIY Exercise. what is a basis for R2⇥2?
DIY Exercise. the linear space of polynomials with real coe�cients defined over the field of reals, denoted
(R[s],R) is an example of an infinite dimensional vector space—i.e.,

B = {1, s, s2, s3, . . . , sk, . . .}

show this infinite set of vectors is linearly independent over R.

6.1 Simple Examples

Let’s do some simple examples.

Sometimes the coe�cients of a vector with respect to a basis are call coordinates. That is, coordinates of a
vector

v = (↵1,↵2, . . . ,↵n) 2 Rn

relative to the standard basis

e1 = (1, 0, . . . , 0, 0), e2 = (0, 1, . . . , 0, 0), . . . , en = (0, 0, . . . , 0, 1)

are
(↵1,↵2, . . . ,↵n)

e.g., in R2, the coe�cients w.r.t. the standard basis literally tell you the coordinates

↵1

↵2
v = (↵1,↵2)

Key: Just like writing v wrt the standard basis, we can represent a vector v in any of basis by finding its
coordinates via a transformation.

Example. Consider vectors u1 = (2, 1) and u2 = (3, 1). These vectors form a basis for R2.

1. Can you show that these vectors form a basis?
soln. you need to check that they are linearly independent. That means the only ↵’s such that

↵1u1 + ↵2u2 = ↵1


2
1

�
+ ↵2


3
1

�
= 0

are zero.

2↵1 = �3↵2, ↵1 = �↵2 () 2(�↵2) = �3(↵2) () (2� 3)↵2 = �↵2 = 0 () ↵1 = ↵2 = 0
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2. Find coordinates of the vector v = (7, 4) with respect to the basis {u1, u2}.
soln. i.e. we need to find ↵1,↵2 such that

v =


7
4

�
= ↵1u1 + ↵2u2 = ↵1


2
1

�
+ ↵2


3
1

�
=


2↵1 + 3↵2

↵1 + ↵2

�

hence, we need to solve the set of linear equations

7 = 2↵1 + 3↵2

4 = ↵1 + ↵2

from the second, ↵1 = 4� ↵2 so that

7 = 2(4� ↵2) + 3↵2 () �1 = ↵2 () ↵2 = �1, ↵1 = 5

3. Find the vector w whose coordinates with respect to the basis u1, u2 are (7, 4).
sol. That is, find w1, w2 such that

w =


w1

w2

�
= 7u1 + 4u2 = 7


2
1

�
+ 4


3
1

�
=


14 + 12
7 + 4

�
=


26
11

�

4. (change of coordinates). Given a vector v 2 R2, let (x, y) be its standard coordinates—i.e., coordinates
with respect to the standard basis e1 = (1, 0), e2 = (0, 1), and let (↵,�) be its coordinates with respect
to the basis u1 = (2, 1), u2 = (3, 1). Find a relation between (x, y) and (↵,�).
sol. By definition,

v = x


1
0

�
+ y


0
1

�
, v = ↵


2
1

�
+ �


3
1

�

so that 
x
y

�
=


2 3
1 1

� 
↵
�

�
()


↵
�

�
=


2 3
1 1

��1 
x
y

�
=


�1 3
1 �2

� 
x
y

�

What is the generalization of this? Given a vector x 2 Rn with coordinates (↵i)ni=1 w.r.t. basis {vi}ni=1

and coordinates (�i)ni=1 w.r.t. basis {wi}ni=1,

2

4
| · · · |
v1 · · · vn
| · · · |

3

5

| {z }
V

2

64
↵1
...
↵n

3

75

| {z }
↵

=

2

4
| · · · |
w1 · · · wn

| · · · |

3

5

| {z }
W

2

64
�1
...
�n

3

75

| {z }
�

so that
↵ = V �1W�
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References: Appendix A.4 of [C&D]; Chapter 3 of [Ax]

Last time we concluded with some examples which were leading up to representation of operations (trans-
formations) on linear spaces with respect to a basis. Before we dive into this further, let us revisit the linear
map concept from lecture 2.

1 Linear Maps

Recall the definition of a linear map: A linear map from V to W is a function f : V !W with the following
properties:

additivity. f(x+ z) = f(x) + f(z) for all x, z 2 V .

homogeneity. f(ax) = af(x) for all a 2 F and x 2 V .

We denote by L(V,W ) the set of all linear maps from V to W .

Suppose (v1, . . . , vn) is a basis of V and A : V !W is linear. If v 2 V , then we can write v in the form

v = a1v1 + · · ·+ anvn

The linearity of A implies that
A(v) = a1A(v1) + · · ·+ anA(vn)

That is, the values of A(vi), i 2 {1, . . . , n} determine the values of A on arbitrary vectors in V .

Converse: Construction of Linear Map. Linear maps can be constructed that take on arbitrary values
on a basis. Indeed, given a basis (v1, . . . , vn) of V and any choice of vectors w1, . . . , wn 2W , we can construct
a linear map A : V !W such that A(vj) = wj for j 2 {1, . . . , n}. To do this, we define A as follows:

A
 

nX

i=1

aivi

!
=

nX

i=1

aiwi

where ai 2 F, i = 1, . . . , n are arbitrary elements of F.

Fact. The set of all linear maps L(V,W ) is a vector space.

2 Null and Range Spaces

There are several important spaces associated with linear maps.

Null Space. For A 2 L(V,W ), we define the null space of A to be the subset of V consisting of those
vectors that map to zero under A—i.e.,

ker(A) = N (A) = {v 2 V | A(v) = 0}

4-1
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Examples.

1. Consider the map A 2 L(P (R), P (R)), where P (R) is the set of polynomials over the field R, defined by

(Ap)(x) = x2p(x), p(x) 2 P (R)

Hence,
ker(A) = {0}

The reason for this is that the only polynomial p(x) such that p(x)x2 = 0 for all x 2 R is the zero
polynomial.

2. Recall that derivatives are linear maps. Indeed, consider A 2 L(P (R), P (R)) defined by

A(p) = Dp

The only functions whose derivative equals the zero function are the constant functions, so in this case
the null space of A equals the set of constant functions.

Range Space. For A 2 L(V,W ) the range of A is the subset of W consisting of those vectors that are of
the form A(v) for some v 2 V—i.e.

range(A) = R(A) = {A(v)| v 2 V }

Examples.

1. Consider the map A 2 L(P (R), P (R)), defined by

(Ap)(x) = x2p(x), p(x) 2 P (R)

Then the range of A is the set of polynomials of the form

a2x
2 + · · ·+ amxm

where a2, . . . , am 2 R.
2. Consider A 2 L(P (R), P (R)) defined by

A(p) = Dp

Then
range(A) = P (R)

since every polynomial q 2 P (R) is di↵erentiable.

2.1 Some results on Null and Range Spaces

Proposition 1. If A 2 L(V,W ), then N (A) is a subspace of V .

Proof. Q: What do we need to check? A: (1) 0 2 V , (2) u, v 2 V =) u+ v 2 V , (3) u 2 V, a 2 F =)
au 2 V . OR (1) check N (A) ⇢ V and (2) 8 u, v 2 V, 8a 2 F, av1 + av2 2 V .

So, let’s try the former:

(1). Suppose A 2 L(V,W ). By additivity,

A(0) = A(0 + 0) = A(0) +A(0) =) A(0) = 0 =) 0 2 N (A)

(2). Suppose u, v 2 N (A), then

A(u+ v) = A(u) +A(v) = 0 + 0 = 0 =) u+ v 2 N (A)
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(3). Suppose u 2 N (A), a 2 F, then

A(au) = aA(u) = a · 0 = 0 =) au 2 N (A)

Definition 1. A linear map A : V !W is injective if for any u, v 2 V

A(u) = A(v) =) u = v

Because of the next proposition, only Example 1—i.e. A(p) = x2p(x)—above is injective.

Proposition 2. Suppose A 2 L(V,W ).

A injective () N (A) = {0}

DIY Exercise.

Proof. (=)) Suppose that A is injective.
WTS. N (A) = {0}.

Prop 1 =) {0} ⇢ N (A)

It is su�cient to show that N (A) ⇢ {0}:
Suppose v 2 N (A).

[A(v) = 0 = A(0)] and A injective =) v = 0

which shows the claim.

((=). Suppose that N (A) = {0}.
WTS. A is injective.
Suppose u, v 2 V and A(u) = A(v). Then,

0 = A(u)�A(v) = A(u� v) =) u� v 2 N (A) = {0} =) u� v = 0 =) u = v

which shows the claim.

Proposition 3. For any A 2 L(V,W ), R(A) is a subspace of W .

DIY Exercise. proof.

Definition 2. A linear map A : V !W is surjective if its range is all of the co-domain W .

Recall Example 2—i.e., A(p) = Dp. This map is surjective since R(A) = P (R).

Combining the above propositions and definitions leads us to a key result in linear algebra which is worth
internalizing.

Theorem 1. If V is finite dimensional and A 2 L(V,W ), then R(A) is a finite-dimensional subspace of
W and

dim(V ) = dim(N (A)) + dim(R(A))

Lemma 1. Every linearly independent list of vectors in a finite-dimensional vector space can be extended
to a basis of the vector space.
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Proof. Suppose V is a finite-dimensional vector space of dimension n. Let A 2 L(V,W ) and let (u1, . . . , um)
be a basis of N (A) so that dim(N (A)) = m.

We can extend (u1, . . . , um) to a basis of V—that is, we can find n�m vectors um+1, . . . , un such that

(u1, . . . , um, um+1, . . . , un)

is a basis for V .

WTS. R(A) is finite-dimensional with dimension n�m.

Claim. (A(um+1), . . . ,A(un)) is a basis for R(A).

Need to show: (1) the set spans R(A) and (2) it is linearly independent.

Let v 2 V . Since span(u1, . . . , um, um+1, . . . , un) = V ,

v =
nX

i=1

aiui, ai 2 F, 8i

so that

A(v) =
nX

i=1

aiA(ui) =
nX

i=m+1

aiA(ui) (1)

since u1, . . . , um 2 N (A). Now,

(1) =) span(A(uj))
n
j=m+1 = R(A).

Let’s show (2). Suppose that cm+1, . . . , cn 2 F and

cm+1A(um+1) + · · ·+ cnA(un) = 0 =) A(cm+1um+1 + · · ·+ cnun) = 0 =)
nX

j=m+1

cjuj 2 N (A)

Now, since span(u1, . . . , um) = N (A) and (uj)nj=1 are linearly independent,

nX

j=m+1

cjuj =
mX

i=1

diui, di 2 F =) cj , di = 0 8i, j

This shows the claim and also that dim(R(A)) = n�m.

There are two corollaries to this theorem which are important and can be used as sanity checks.

Corollary 1. If V and W are finite-dimensional vector spaces such that dim(V ) > dim(W ), then no linear
map from V to W is injective.

Proof.

dim(V ) > dim(W ) =) dim(N (A)) = dim(V )� dim(R(A)) � dim(V )� dim(W ) > 0

Corollary 2. If V and W are finite-dimensional vector spaces such that dim(V ) < dim(W ), then no linear
map from V to W is surjective.

Proof.
dim(V ) < dim(W ) =) dim(R(A)) = dim(V )� dim(N (A))  dim(V ) < dim(W )
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Implications for Systems of Linear Equations. Consider

aji 2 F, j 2 {1, . . . ,m}, i 2 {1, . . . , n}

Define A : Fn ! Fm by

A(x1, . . . , xn) =

 
nX

i=1

a1ixi, . . . ,
nX

i=1

amixi

!

Consider A(x) = 0 so that

nX

i=1

ajixi = 0, j 2 {1, . . . ,m}

Suppose we know the aji’s and want to find x’s that satisfy these equations. There are clearly m equations
and n unknowns. Trivially,

x1 = · · · = xn = 0

is a solution. Are there others? i.e.,

dim(N (A)) > dim({0}) = 0

This happens exactly when A is not injective which is equivalent to n > m.

Take away: a homogeneous system of linear equations in which there are more variables than equations
must have nonzero solutions.

Examining A(x) = c for some c 2 Fm, we can draw an analogous conclusion via similar reasoning.

Take away: an inhomogeneous system of linear equations in which there are more equations than variables
has no solution for some choice of the constant terms.

3 More on the Matrix Representation Theorem

Key Idea: Any linear map between finite dimensional linear spaces can be represented as a matrix multipli-
cation.

x 2 U y = A(x) 2 V
A

Qx AQx = Py
A

PQ

Let A : U ! V be a linear map from (U,F ) to (V, F ) where dim(U) = n and dim(V ) = m. Let U = {uj}nj=1

be a basis for U and let V = {vj}mj=1 be a basis for V .

We will get a matrix representation of A wrt to U and V in a few steps:
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(step 1) represent x in terms of a basis for U ;

(step 2) use linearity to get the map applied to each basis element for U

(step 3) use the uniqueness of a representation wrt a basis to get a representation in terms of basis vectors
for V for each map of the basis vectors of U

(step 4) compile these representations to get a matrix

Now in detail. . .

(step 1) We showed last time that given a basis, the coordinate representation of each x is unique—that
is, for any x 2 U , 9! ⇠ = (⇠1, . . . , ⇠n) 2 Fn such that

x =
nX

j=1

⇠juj

where ⇠ 2 Fn is the component vector.

(step 2) By linearity,

A(x) = A

0

@
nX

j=1

⇠juj

1

A =
nX

j=1

⇠jA(uj)

(step 3) Now each A(uj) 2 V , thus each A(uj) has a unique representation in terms of the {vj}mj=1 such
that

A(uj) =
mX

i=1

aijvi 8 j 2 {1, . . . , n}

i.e.

A(u1) =
mX

i=1

ai,1vi, A(u2) =
mX

i=1

ai,2vi, . . .

remark: (aij)i is the j–th column of A

Thus {ai,j}mi=1 is the representation of A(uj) in terms of {v1, v2, . . . , vm}. In fact, each A(uj)
forms a column of the matrix representation

A(uj)  !

2

64
a1,j
...

amj

3

75

Therefore,

A(x) =
nX

j=1

⇠jA(uj) =
nX

j=1

⇠j

mX

i=1

aijvi =
mX

i=1

0

@
nX

j=1

aij⇠j

1

A vi =
mX

i=1

⌘ivi

Thus, the representation of A(x) with respect to {v1, v2, . . . , vm} is

2

6664

⌘1
⌘2
...
⌘m

3

7775
2 Fm
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where

⌘i =
nX

j=1

aij⇠j =
⇥
ai1 · · · ain

⇤
2

64
⇠1
...
⇠n

3

75 for each i 2 {1, . . . ,m}

so that
⌘ = A⇠, a 2 Fm⇥n

(step 4) recall that the unique representation of x with respect to {u1, u2, . . . , un} is

2

6664

⇠1
⇠2
...
⇠n

3

7775
2 Fn

And, we just argued that ⌘ was the unique representation of

(A(u1), . . . ,A(un))

wrt V. Hence, A is the matrix representation of the linear operator A from U to V .

In most applications we replace vectors and linear maps by their representative, viz. component
vectors and matrices, e.g., we write N (A) instead of N (A).

Theorem 2 (Matrix Representation). Let (U,F ) have basis {uj}nj=1 and let (V, F ) have basis {vi}mi=1. Let
A : U ! V be a linear map. Then, w.r.t. these bases, the linear map A is represented by the m⇥ n matrix

A = (aij)
m,n
i=1,j=1 =

2

64
a11 a12 · · · a1n

· · ·
. . . · · ·

...
am1 am2 · · · amn

3

75 2 Fm⇥n

where the j–th column of A is the component vector of A(uj) w.r.t. the basis {vi}mi=1.

Example. (Observable Canonical Form). Let A : (Rn,R)! (Rn,R) be a linear map and suppose that

An = �↵1An�1 � ↵2An�2 � · · ·� ↵n�1A� ↵nI, ↵i 2 R

where I is the identity map from Rn to itself. Let b 2 Rn. Suppose

(b,A(b), . . . ,An�1(b))

is a basis for Rn. Show that, w.r.t. this basis, the vector b and the linear map A are represented by

b̄ =

2

6664

1
0
...
0

3

7775
, A =

2

666664

0 0 · · · 0 �↵n

1 0 · · · 0 �↵n�1

0 1 · · · 0 �↵n�2
...

... · · ·
...

0 0 · · · 1 �↵1

3

777775

Proof.

b̄ = 1 · b+ 0 · A(b) + · · ·+ 0 · An�1(b)) =

2

6664

1
0
...
0

3

7775
(1st column)

A(b) = 0 · b+ 1 · A(b) + 0 · A2(b) + · · ·+ 0 · An�1(b) (2nd column)
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A(An�1(b)) = An(b) = �↵nb� ↵n�1A(b) + · · ·� ↵1An�1(b) (n-th column)

hence

A =

2

666664

0 0 · · ·
1 0 · · ·
0 1 · · ·
...

... · · ·
0 0 · · ·

3

777775

as expected.

Remark. We will see later that this is the observable canonical form.

Fact. The composition of two linear operators is just matrix multiplication.

4 Change of Basis for Matrix Representation

We can apply this result to institute a change of basis.

Setup:

• Let A : U ! V , where U, V are vector spaces over the same field F , be a linear map with dimU = m
and dimV = n.

• Let U with elements x have bases {uj}mj=1 and {ūj}mj=1 generating component vectors ⇠ and ⇠̄, resp., in
Fm.

• Let V with elements y have bases {vj}nj=1 and {v̄j}nj=1 generating component vectors ⌘ and ⌘̄, resp., in
Fn.

• Let A be the matrix representation of A : U ! V w.r.t. the bases {uj}mj=1 and {vj}nj=1.

• Let Ā be the matrix representation of A : U ! V w.r.t. the bases {ūj}mj=1 and {v̄j}nj=1.

Note. A and Ā are said to be equivalent, and Ā = QAP is said to be a similarity transform.

Moreover, if U = V and {v̄j}nj=1 = {ūj}nj=1, then

Ā = P�1AP

Then, by the above proposition, x 2 U has generating component vectors ⇠ and ⇠̄ for bases {uj}mj=1 and
{ūj}mj=1, resp. Moreover,

⇠ = P ⇠̄

with non-singular P 2 Fm⇥m given by

P =
⇥
u1 · · · um

⇤�1 ⇥
ū1 · · · ūm

⇤

Similarly, y 2 V has generating component vectors ⌘ and ⌘̄ for bases {vi}ni=1 and {v̄i}ni=1, resp., and

⌘̄ = Q⌘

with non-singular Q 2 Fn⇥n given by

Q =
⇥
v̄1 · · · v̄n

⇤�1 ⇥
v1 · · · vn

⇤
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A (Ā)

A (A)

A : U ! V

U V

U V

QP

x

x

{ūi}, {⇠̄i} {v̄i}, {⌘̄i}

{ui}, {⇠i} {vi}, {⌘i}

Figure 1: Change of Basis

By the matrix representation theorem (Theorem 2), we know that ⌘ = A⇠. Hence,

⌘̄ = Q⌘ = QA⇠ = QAP ⇠̄ = Ā⇠̄

where Ā = QAP .

So, if A is the matrix representation of A with respect to {ui}, {vj}, then Ā = QAP is the matrix represen-
tation of A with respect to {ūi}, {v̄j}.

DIY Exercise. Let A : R3 ! R3 be a linear map. Consider

B = {b1, b2, b3} =

8
<

:

2

4
1
0
0

3

5 ,

2

4
0
1
0

3

5 ,

2

4
0
0
1

3

5

9
=

;

and

C = {c1, c2, c3} =

8
<

:

2

4
1
1
0

3

5 ,

2

4
0
1
1

3

5 ,

2

4
1
0
1

3

5

9
=

;

Clearly, B and C are bases for R3. Suppose A maps vectors in B in the following way:

A(b1) =

2

4
2
�1
0

3

5 , A(b2) =

2

4
0
0
0

3

5 , A(b3) =

2

4
0
4
2

3

5

Write down the matrix representation of A with respect to B and then C.
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1 Change of Basis for Matrix Representation

We can apply this result to institute a change of basis.

Setup:
• Let A : U ! V , where U, V are vector spaces over the same field F , be a linear map with dimU = m
and dimV = n.

• Let U with elements x have bases {uj}mj=1 and {ūj}mj=1 generating component vectors ⇠ and ⇠̄, resp., in
Fm.

• Let V with elements y have bases {vj}nj=1 and {v̄j}nj=1 generating component vectors ⌘ and ⌘̄, resp., in
Fn.

• Let A be the matrix representation of A : U ! V w.r.t. the bases {uj}mj=1 and {vj}nj=1.

• Let Ā be the matrix representation of A : U ! V w.r.t. the bases {ūj}mj=1 and {v̄j}nj=1.

A (Ā)

A (A)

A : U ! V

U V

U V

QP

x

x

{ūi}, {⇠̄i} {v̄i}, {⌘̄i}

{ui}, {⇠i} {vi}, {⌘i}

Figure 1: Change of Basis

Note. A and Ā are said to be equivalent, and Ā = QAP is said to be a similarity transform.

Moreover, if U = V and {v̄j}nj=1 = {ūj}nj=1, then

Ā = P�1AP

6-1
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Then, by the above proposition, x 2 U has generating component vectors ⇠ and ⇠̄ for bases {uj}mj=1 and
{ūj}mj=1, resp. Moreover,

⇠ = P ⇠̄

with non-singular P 2 Fm⇥m given by

P =
⇥
u1 · · · um

⇤�1 ⇥
ū1 · · · ūm

⇤

Similarly, y 2 V has generating component vectors ⌘ and ⌘̄ for bases {vi}ni=1 and {v̄i}ni=1, resp., and

⌘̄ = Q⌘

with non-singular Q 2 Fn⇥n given by

Q =
⇥
v̄1 · · · v̄n

⇤�1 ⇥
v1 · · · vn

⇤

By the matrix representation theorem, we know that ⌘ = A⇠. Hence,

⌘̄ = Q⌘ = QA⇠ = QAP ⇠̄ = Ā⇠̄

where Ā = QAP .

So, if A is the matrix representation of A with respect to {ui}, {vj}, then Ā = QAP is the matrix represen-
tation of A with respect to {ūi}, {v̄j}.

1.1 Invariant Subspaces

There are some nice connections between invariant subspaces of an operator and the existence of matrix
representations with particular forms.

definition. An invariant subspace of a linear mapping A 2 L(V ) on a vector space V to itself is a subspace
W of V such that A(W ) ⇢ W . Sometimes we call W an A–invariant subspace.

If W is A invariant, then we can restrict A to W , giving rise to a new linear operator which we denote
by

A|W : W ! W

The invariant subspaces of a given linear transformation A expose the structure of A. In the next few weeks,
we will see the following interesting fact: when V is a finite-dimensional vector space over an (algebraically)
closed field1, linear transformations acting on V are characterized (up to similarity) by the Jordan canonical
form, which decomposes V into invariant subspaces of A.

Indeed, many fundamental questions regarding A can be translated to questions about invariant subspaces
of A.

Suppose that W is an invariant subspace for a liner operator A : V ! V . Choose a basis {w1, . . . , wk}
for W . Complete it to a basis for V . Then, with respect to this basis, the matrix representation of A takes
the form

A =


A11 A12

0 A22

�

where
A11 = A|W

1
An algebraically closed field is a field F which contains a root for every non-constant polynomial in F[s], the ring of

polynomials in s with coe�cients in F. For example, the real numbers are not algebraically closed because x2
+ 1 = 0 does not

contain a root in the real numbers. On the other hand, the complex numbers are algebraically closed.
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This means that we can write V = W � U where U is spanned by the linearly independent vectors chosen
to complete the basis {w1, . . . , wk} for W . Hence, if we write

A =


A11 A12

A21 A22

�
:
W
�
U

!
W
�
U

it has to be the case that A21 : W ! U is the zero map.

remark. Determining whether a given subspaceW is invariant underA is ostensibly a problem of geometric
nature. Matrix representation allows one to phrase this problem algebraically.

A projection operator P onto the A–invariant subspace W is defined by P (w + u) = w with w 2 W and
u 2 U . Projection operators are formally defined as operators P : V ! V such that P 2 = P ; we will extend
this definition to orthogonal projections after we introduce Hilbert spaces in the next few lectures.

The projection operator has matrix representation

P =


I 0
0 0

�
:
W
�
U

!
W
�
U
.

Example. Show that W = R(P ) is invariant under A if and only if PAP = AP .

Proof. ((=): Suppose AP = PAP and x 2 W . Then

Ax = APx = PAPx 2 W

The first equality is due to the fact that

P =


I 0
0 0

�

and x 2 W . The second equality is by assumption. And the inclusion at the end is again because of the
structure of P—i.e. because P has the above structure and AP = PAP it means that APx 2 W .
(=)): Suppose that W is invariant under A. Then APx 2 W (since W = R(P )) and thus, APx = PAPx
for all x 2 V .

DIY Exercise. Show that if P is a projection, so is I � P .

Hence,
AP = PA () R(P ),R(I � P ) are A–invariant

Moreover, A has matrix representation

A =


A11 0
0 A22

�
:

R(P )
�

R(I � P )
!

R(P )
�

R(I � P )

Example. Show N (A) is A–invariant.

Proof. Indeed, consider v 2 N (A). We claim Av 2 N (A). Now

v 2 N (A) =) Av = 0 =) A(Av) = A(0) = 0 2 N (A)

since A is linear and we know that N (A) is a subspace so that it contains 0.
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2 Rank and Nullity

Recall that we showed in Lec 4 that for a linear map A 2 L(U, V ) with dim(U) = n and dim(V ) = m,

dim(R(A)) + dim(N (A)) = n = dim(Domain(A)| {z }
U

)

where R(A) ⇢ V is a subspace and N (A) ⇢ U is a subspace.
Moreover, we showed that any linear map A 2 L(U, V ) on finite dimensional spaces can be represented

by a matrix A 2 Fm⇥n where dim(U) = n and dim(V ) = m as above.

Definition. The rank of a matrix A 2 Fm⇥n, denoted by rank(A), is the dimension of the range space.
That is,

rank(A) = dim(R(A))

The nullity of a matrix A 2 Fm⇥n, denoted by null(A), is the dimension of the null space. That is,

null(A) = dim(N (A))

Theorem 1 (Rank-Nullity). Consider a linear map A 2 Rm⇥n. Then,

n = rank(A) + null(A)

Proof. DIY Exercise

Proof Sketch. Note that N (A) ⇢ Fn while R(A) ⇢ Fm. Consider a basis for N (A) where dimN (A) = k.
Complete that basis (i.e. generate n � k linearly independent vectors independent of the original basis for
N (A)). Consider the representation of x w.r.t. this completed basis. To prove the Rank-Nullity theorem,
you need to know that you can extend a basis of a subspace to a basis for the whole space.

Lemma 1. Let (U,F ) be a finite-dimensional linear space with dimU = n. Suppose {u1, u2, . . . , um} is a
set of m linearly independent vectors. There exists n�m additional vectors {ũm+1, . . . , ũn} such that

{u1, u2, . . . , um, ũm+1, . . . , ũn}

forms a basis for U—i.e. any set of linearly independent vectors can be extended to a basis.

Proof. If m = n, no extension is needed. Hence we assume m < n. It follows that {u1, . . . , um} is not a
basis for U so there must exists a v 2 U such that

mX

i=1

↵iui 6= v, 8 {↵i}mi=1 ⇢ F

Then,
{u1, . . . , um, v}

is linearly independent so that we can take ũm+1 = v. The lemma follows by induction.

Fact 1. Let A 2 Fm⇥n. Then,
0  rank(A)  min(m,n)

and rank(A) is equivalent to
a. maximum number of linearly independent column vectors of A

b. maximum number of linearly independent row vectors of A

c. largest integer r such that at least one minor of order r is non-zero.
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DIY Exercise. Let A 2 Fn⇥n. Show that A has an inverse if and only if rank(A) = n.

Recall:
A 2 Fn⇥n invertible () A non-singular (i.e. det(A) 6= 0)

Note that rank(A) = n is equivalent to det(A) 6= 0.

Definition. Let A 2 Fm⇥n. The row rank of A, denoted by rowrk(A), is the maximum number of linearly
independent row vectors. The column rank of A, denoted by colrk(A), is the maximum number of linearly
independent column vectors.

By Fact 1,
rank(A) = rowrk(A) = colrk(A)

The column rank of A is the dimension of the column space of A, while the row rank of A is the dimension
of the row space of A.

The matrix A 2 Fm⇥n is said to be full-row rank or full-column rank if and only if rank(A) = m or
rank(A) = n, respectively.

DIY Exercise. Let A 2 Fm⇥n and Im be the m⇥m identity matrix. Show that
a. A has a right inverse (equiv. A surjective) i↵

rank(A) = rank(
⇥
A Im

⇤
)

(equiv. A has full-row rank).

b. A has a left inverse (equiv. A injective) i↵

N (A) = {0}

(equiv. A has full-column rank).

Theorem 2 (Sylvester’s Inequality.). Let A 2 Fm⇥n and B 2 Fn⇥p be two matrices. Then, AB 2 Fm⇥p

and
rank(A) + rank(B)� n  rank(AB)  min{rank(A), rank(B)}

DIY Exercise. Prove Thm 2. Hints: Let W be the co-domain of A and let A|R(B) : R(B) ! W be the
restriction of A to R(B). Note that that the following are true:

R(AB) = R(A|R(B)) ⇢ R(A)

N (A|R(B)) ⇢ N (A)

R(B) = domain(A|R(B))

Applying the rank-nullity theorem to A|R(B), we get

dim(R(B)) = dim(R(A|R(B))) + dim(N (A|R(B)))

Then, argue from here to get the result.

Combining Sylvester’s inequality with the rank-nullity theorem, we get the following result.

Theorem 3 (Rank and Nullity are invariant under equivalence.). Let A 2 Fm⇥n and P 2 Fn⇥n, Q 2 Fm⇥m

be nonsingular. Then,
rank(A) = rank(AP ) = rank(QA) = rank(QAP )

and
null(A) = null(AP ) = null(QA) = null(QAP )
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This theorem is an algebraic consequence of the obvious geometric fact that the range and null space of
a linear map A does not change under a change of basis in its domain or co-domain or both.

Why important? Sylvester’s inequality and the rank-nullity theorem are the main tools to prove the
following fact, which is very useful for our analysis since we will see that transformation, e.g., to the
controllable canonical form does not change key facts about the system which allow us to analyze its
properties.

Fact. Rank and nullity are invariant under equivalence (i.e. if two matrices are equivalent via similarity
transformation, then they have the same rank and nullity).

3 Eigenvalues and Eigenvectors

Why do we care? Eigenvalues and eigenvectors are important for
• assessing stability; recall the example

ẋ = ��x

whose solution is x(t) = x0e��t and if � > 0 solution decays to zero, otherwise it blows up. � is an
’eigenvalue’ for this scalar system.

• as we will see, it is also important for assessing controllability and observability

Let (V,C) be a vector space and A 2 L(V, V ). If there exists ↵ 2 C and v 2 V , v 6= 0, such that

Av = �v

then � is an eigenvalue of A and v is an eigenvector of A.

Note that if v is an eigenvector, then any nonzero multiple of v is an eigenvector.

The subspace ker(A��I) ⇢ V is called the eigenspace (corresponding to �) and the geometric multiplicity
of � is the number m� = null(A� �I).

Definition. Spectrum. The set of all eigenvalues of A is known as the spectrum of A, denoted by spec(A).
The spectral radius of A is defined as

⇢(A) = max{|�| : � 2 spec(A)}

The definition of eigenpairs (x,�)—i.e. Ax = �x—is equivalent to

(A� �I)x = 0

Thus, � is an eigenvalue of A i↵ the linear system (A� �I)x = 0 has a nontrivial—i.e. x 6= 0—solution.

This, in turn, is equivalent to
det(A� �I) = 0.

Therefore we define the so-called characteristic polynomial of A.

Definition. Characteristic Polynomial .

�A(�) = det(A� �In) = ↵0 + ↵1�+ ↵2�
2 + · · ·+ ↵n�

n

The eigenvalues of A are the roots of the characteristic polynomial :

�A(�) = det(A� �In) = ↵0 + ↵1�+ ↵2�
2 + · · ·+ ↵n�

n

where In is the n⇥ n matrix identity. The characteristic polynomial is an n-degree polynomial.
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3.1 Examples

Ex 1. Consider A 2 L(F3) defined by
A(x, y, z) = (2y, 0, 5z)

Find the eigenvalues and eigenvectors.

sol. suppose � is an eigenvalue of A. taking heed of the eigenpair equation, we get

2y = �x

0 = �y

5z = �z

If � 6= 0, then the second equation implies y = 0 so that x = 0. Since an eigenvalue must have a nonzero
eigenvector, this means the solution is such that z 6= 0 which implies that � = 5. That is, � = 5 is the only
non-zero eigenvalue of A. The set of eigenvectors corresponding to � = 5 is

{(0, 0, z) : x 2 F}

If � = 0, then the first and third equations imply that y = 0 and z = 0. With these values for y, z,
the equations above are satisfied for all values of x. Thus zero is an eigenvalue of A. The corresponding
eigenvectors are

{(x, 0, 0) : x 2 F}

Ex 2. Consider the map A 2 L(Fn), where n is a positive integer, defined by

A(x1 + · · ·+ xn) = (x1 + · · ·+ xn, . . . , x1 + · · ·+ xn)

i.e. A is an operator whose matrix (wrt standard basis) consists of all ones. What are the eigenpairs?

sol. Suppose � 2 spec(A). Then,

x1 + · · ·+ xn = �x1

...

x1 + · · ·+ xn = �xn

so that
�x1 = · · · = �xn

Hence, either � = 0 or x1 = · · · = xn.
Suppose first that � = 0. Then we get the homogeneous system of equations

x1 + · · ·+ xn = 0
...

x1 + · · ·+ xn = 0

so that � = 0 is an eigenvalue with corresponding eigenvectors

{(x1, . . . , xn) 2 Fn : x1 + · · ·+ xn = 0}

Now consider the case that x1 = · · · = xn. Let x1 = · · · = xn = ⇠. Then, the system we get is

n⇠ = �⇠

so that � = n has to be the eigenvalue since an eigenvalue must have a non-zero eigenvector. The corre-
sponding eigenvector is

{(x1, . . . , xn) 2 Fn| x1 = · · · = xn}
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3.2 Polynomials Applied to Operators and Cayley-Hamilton

The main reason that a richer theory exists for operators (which map a vector space into itself) than for
linear maps is that operators can be raised to powers.

When the domain and co-domain of a map are the same, we will denote the set of linear operators as
follows:

L(V ) = {A : V ! V | A is linear}

Consider A 2 L(V ). Then A �A = A2 2 L(V ). More generally, for m 2 Z+, then

Am = A � · · · �A| {z }
m times

Consider A 2 L(V ) and p 2 P (F) such that

p(z) = a0 + a1z + · · ·+ amzm, z 2 F

Then, p(A) is the operator defined by

p(A) = a0I + a1A+ a2A
2 + · · ·+ amAm

DIY Exercise. Verify that p 7! p(A) is linear.

Given �1, . . . ,�p, the coe�cients ↵i are determined by solving the above equation.

Suppose we define
�A(X) = ↵0I + ↵1X + ↵2X

2 + · · ·+ ↵nX
n

Theorem 4. Cayley-Hamilton. For any square matrix A with elements in a field F ,

�A(A) = 0

i.e.
0 = ↵0I + ↵1A+ ↵2A

2 + · · ·+ ↵nA
n

Fact. � is an eigenvalue of A i↵ �A(�) = 0.

Example. It is well known that even real matrices can have complex eigenvalues. For instance,

A =


0 1

�1 0

�

has a characteristic polynomial

�A(z) = det

✓
z �1
1 z

�◆
= z2 + 1

so that its eigenvalues are �1,2 = ±i with associated eigenvalues

x1 =


1
i

�
, x2 =


i
1

�

3.3 Multiplicities

The characteristic polynomial also leads to the following definition.
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Definition. Algebraic Multiplicity . Let �1,�2, . . . ,�p be the distinct eigenvalues of A. Then

det(A� �In) = (�1 � �)m1(�2 � �)m2 · · · (�p � �)mp

where
Pp

i=1 mi = n and mi is the algebraic multiplicity of �i.

This result can also be seen from the fact that for a matrix A,

det(A) =
nY

i=1

�i

Definition. Geometric Multiplicity . Let (v,�) be an eigenvalue/eigenvector pair for A 2 Cn⇥n. Then

null(A� �I)

is the geometric multiplicity of �.

In particular, the null space of A� �I (or the eigenspace of A for �) is the space of all eigenvectors of A
for � and the zero vector. Its dimension is the geometric multiplicity of �.
Note: It is called geometric because it refers to the dimension of a particular space. On the other hand,
the algebraic multiplicity of � is the number of times � is a root of the characteristic polynomial for A—
i.e. det(A� �I) = 0.

3.4 Examples: Multiplicities and Eigenpairs

Example.[of Multiplicities] Consider

A =

2

4
1 0 0
1 1 1
0 0 1

3

5

so that �A(z) = (z � 1)3. Thus, � = 1 is an eigenvalue (in fact, the only one) of A with algebraic
multiplicity 3. To determine its geometric multiplicity we need to find the associated eigenvectors. Thus
we solve (A� �I)x = 0 for the special case of � = 1. That is

(A� I) =

2

4
0 0 0
1 0 1
0 0 0

3

5x = 0

Hence x1 = �x3 from the second row or

x =

2

4
↵
�
�↵

3

5 = ↵

2

4
1
0
�1

3

5+ �

2

4
0
1
0

3

5

and thus the geometric multiplicity of � = 1 is only 2 since all vectors in the null space can be written in
terms of the two basis vectors given.

Example. Consider A 2 L(F2) defined such that

A(w, v) = (�v, w)

If F = R, then this operator has a nice geometric interpretation: A is just a counterclockwise rotation by
90� about the origin in R2.

An operator has an eigenvalue if and only if there exists a nonzero vector in its domain that gets sent by
the operator to a scalar multiple of itself.
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The rotation of a nonzero vector in R2 obviously never equals a scalar multiple of itself. Hence, if F = R,
the operator A has no eigenvalues. However, this is no longer the case if F = C. To find eigenvalues of
A, we must find the scalars � such that

A(w, v) = �(w, v)

has some solution other than w = v = 0. For A defined above, this is equivalent to

�v = �w

w = �v

Substituting the value for w given by the second equation into the first gives

�v = �2v =) �1 = �2

since v 6= 0 (otherwise this would imply that w = 0 and not lead to an eigenpair). The solutions are thus

� = ±i

so that
{v 2 C2| v = (w,±iw), w 2 C}

are the eigenvectors.

3.5 Eigenbasis

Given the notion of ‘null space’, we can define an eigenbasis for a linear map A.

Definition. Eigenbasis. An eigenbasis corresponding to A is a basis for V consisting entirely of eigenvectors
for A.

To find an eigenbasis, you find a basis for each eigenspace of A where the null space of A� �I is called
the eigenspace associated with �. That is, the vector space E� of all eigenvectors corresponding to �:

E� = span{x| Ax = �x, � 2 C}

The collection of all these basis vectors for an eigenbasis for A.

Theorem 5. Let V be a vector space and let A 2 L(V, V ). Let {�1, . . . ,�k} be a set of distinct eigenvalues
of A, and for each 1  j  k let xj be an eigenvector corresponding to �j . Then the set {x1, . . . , xk} is
linearly independent.

Corollary 1. Each operator on V has at most dim(V ) distinct eigenvalues.

Fact. Two similar matrices A and Ā = P�1AP have the same spectrum (i.e. same eigenvalues).

This is important because we can transform our system and preserve key properties like controllability,
observability, stability.

Fact. Similar matrices have the same characteristic polynomial, eigenvalues, algebraic and geometric
multiplicities. The eigenvectors, however, are in general di↵erent.

Theorem 6. A matrix A 2 Cm⇥m is nondefective—i.e., has no defective eigenvalues meaning the geometric
and algebraic multiplicites are equal—if and only if A is similar to a diagonal matrix, i.e.,

A = X⇤X�1

where
X =

⇥
x1 x2 · · · xm

⇤

is the matrix formed with the eigenvectors of A as its columns, and ⇤ = diag(�1, . . . ,�m).
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We will talk more about this when we discuss Jordan form, but essentially there is a full set of eigenvectors.

Consequences of Distinct Eigenvalues. An operator A 2 L(V ) has a diagonal matrix

2

66664

�1 0 · · · 0

0 �2
. . .

...
...

. . .
. . . 0

0 · · · 0 �n

3

77775

with respect to a basis (v1, . . . , vn) of V if and only if

Av1 = �1v1

· · ·
Avn = �nvn

An operator A 2 L(V ) has a diagonal matrix with respect to some basis of V if and only if V has a basis
consisting of eigenvectors of A.

Example. Q. Does A 2 L(C2) defined by

A(w, v) = (v, 0)

have a diagonal matrix with respect to some basis?

A. No. The only eigenvalue is 0 and the set of eigenvectors is the 1d subspace

{(w, 0) 2 C2| w 2 C}

so that there are not enough linearly independent eigenvectors of A to form a basis of the 2d space C2.

Proposition 1. Suppose A 2 L(V ). Let �1, . . . ,�m denote the distinct eigenvalues of A. Then the following
are equivalent:
a. A has a diagonal matrix with respect to some basis of V .

b. V has a basis consisting of eigenvectors of A

c. there exists 1d subspaces U1, . . . , Un of V , each invariant under A, such that

V = U1 � · · ·� Un

d. V = N (A� �1I)� · · ·�N (A� �mI)

e. dim(V ) = dim(N (A� �1I)) + · · ·+ dim(N (A� �mI))

Fact. If matrix A 2 Rn⇥n (or 2 Cn⇥n) has m distinct eigenvalues (�i 6= �j , i 6= j) then it has (at least)
m linearly independent eigenvectors.

Proposition 2. If all eigenvalues of A are distinct then A is diagonalizable.

Definition. Diagonalizable. An n ⇥ n matrix A is diagonalizable i↵ the sum of the dimensions of its
eigenspaces is n—aka there exists a matrix P such that

A = P⇤P�1

where ⇤ = diag(�1, . . . ,�n),
P =

⇥
v1 · · · vn

⇤
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with
Avi = �ivi

(i.e. col vectors of P are right eigenvectors of A)

Proof. Proof of Prop. 2 (By contradiction) Assume �i, i 2 {1, . . . ,m} are distinct and vi, i = 1, . . . ,m are
linearly dependent. That is, there exists ↵i such that

mX

i=1

↵ivi = 0

where all ↵i are not zero. We can assume w.l.o.g that ↵1 6= 0. Multiplying on the left by (�mI �A),

0 = (�mI �A)
mX

i=1

↵ivi = (�mI �A)
m�1X

i=1

↵ivi + ↵m(�mI �A)vm =
m�1X

i=1

↵i(�m � �i)vi

since Avi = �ivi. Then multiply by (�m�1I �A) to get that

0 = (�m�1I �A)
m�1X

i=1

↵i(�m � �i)vi =
m�2X

i=1

↵i(�m�1 � �i)(�m � �i)vi = 0

Repeatedly multiply by (�m�kI �A), k = 2, . . . ,m� 2 to obtain

↵
mY

i=2

(�i � �1)vi = 0

As �1 6= �i, i = 2, . . . ,m, the above implies that ↵1 = 0 which is a contradiction.

3.6 Connections with Invariant Subspaces

The notion of a subspace that gets mapped into itself is su�ciently important to deserve a name.

Definition. For A 2 L(V ) and U ⇢ V a subspace, we say U is invariant under A if u 2 U implies Au 2 U .

That is, U is invariant under A if A|U is an operator on U .

Example. If A is the di↵erentiation operator on P7(R) (i.e., polynomials of dimension seven over R),
then P4(R) is invariant under A because the derivative of any polynomial o f degree at most four is also
a polynomial with degree at most four.

Example. Consider A 2 L(V ).
• {0} is clearly invariant under A.

• V is clearly invariant under A

• N (A) is invariant under A:

u 2 N (A) =) Au = 0 =) A(Au) = 0 =) Au 2 N (A)

We can describe a subspace of dimension one by the following: for v 2 V ,

U = {au| a 2 F}
is a subspace of V of dimension one. Indeed, all 1d subspaces are of this form. To see this, consider the
following line of reasoning. If A 2 L(V ) and U is invariant under A, then Au 2 U and hence, there exists a
scalar � 2 F such that Au = �u. Conversely, if u 2 V such that u 6= 0 and Au = �u for some � 2 F, then
the subspace U = {au| a 2 F} is a 1d subspace of V invariant under A.

The notion of an eigenvalue and eigenvector is closely related to 1d invariant subspaces. Recall that (�, v)
such that Av = �v is an eigenpair. Note also that

Av = �v () (A� �I)u = 0

so that � is an eigenvalue if and only if A� �I is injective.
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1 Normed Linear Spaces

Why? We need to be able to measure distances between things and hence, we need to formally introduce
a metric onto the linear spaces we consider. This is going to be important for classical stability notions.

Intuitively the norm of a vector is a measure of its length. Of course, since elements of a linear space can
be vectors in Rn, matrices, functions, etc. Hence, the concept of norm must be defined in general terms.
Let the field F be R or C.

Definition (Normed Linear Space.) A linear space (V, F ) is said to be a normed linear space if there exists
a map k · k : V ! R+ satisfying

1. the ‘triangle inequality’ holds:

kv1 + v2k  kv1k+ kv2k, 8 v1, v2 2 V

2. length under scalar multiplication satisfies

k↵vk = |↵|kvk, 8 v 2 V,↵ 2 F

3. the only element with zero length is the zero vector:

kvk = 0 () v = 0

The expression kvk is read ’the norm of v’ and the function k · k is said to be the norm on V . It is often
convenient to label the space (V, F, k · k).

Example.
1. `p–norms:

kxkp =

 
nX

i=1

|xi|p
!1/p

• `1–norm (sum norm)

kxk1 =
nX

i=1

|xi|

• `2–norm (Euclidean norm)

kxk2 =

 
nX

i=1

|xi|2
!1/2

• `1–norm (sup norm)
kxk1 = max

i

|xi|

7-1
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Recall: sup =‘supremum’ is the least upper bound and inf =‘infimum’ is the greatest lower bound.
The concepts of infimum and supfctum are similar to minimum and maximum, but are more useful
in analysis because they better characterize special sets which may have no minimum or maximum.

2. Function norms: C([t0, t1],Rn)

• L1–norm

kfk1 =

Z
t1

t0

kf(t)k dt

where kf(t)k is any of the `p norms from above
• L2–norm

kfk2 =

✓Z
t1

t0

kf(t)k2 dt

◆1/2

Note. since f maps into Rn, this is equivalent to each component function of f being in C([t0, t1], F )
and since (as we will see) all norms on Rn are equivalent, it does not matter which norm we choose
on Rn.

What do we do with norms? A typical engineering use of norms is in deciding whether or not an iterative
technique converges or not—this will be very important in our analysis of stability.

Aside on Convergence (Recall from Calculus).

Definition 1. Convergence. Given a normed linear space (V, F, k ·k) and a sequence of vectors {vi}1i=1 ⇢ V ,
we say the sequence {vi}1i=1 converges to the vector v 2 V i↵ the sequence of non-negative real numbers
kvi � vk tends to zero as i!1.

We denote convergence by vi ! v or limi!1 vi = v.

1.1 Equivalence of Norms

Two norms k · ka and k · kb on (V, F ) are said to be equivalent if 9 m`, mu 2 R+ such that for all v 2 V

m`kvka  kvkb  mukvka

It is crucial to note that the same m` and mu must work for all v 2 V .

How can we use equivalence of norms? Consider (V, F ) and two equivalent norms k · ka and k · kb.
Then, convergence is equivalent—i.e.

vi
i!1�! v in k · ka () vi

i!1�! v in k · kb

Example.
1.

kxk2  kxk1 
p
nkxk2

2.
kxk1  kxk2 

p
nkxk1

3.
kxk1  kxk1  nkxk1

Aside: Many other things are equivalent too.
• Cauchy nature of sequences is equivalent—i.e.

(vi)
1
i=1 Cauchy in k · ka () (vi)

1
i=1 Cauchy in k · kb
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• Completeness is equivalent—i.e.

(V, F ) complete in k · ka () (V, F ) complete in k · kb

• density is equivalent—i.e.

X a dense subset of V in k · ka () X a dense subset of V in k · kb

What is the point of this? As far as convergence is concerned, k · ka and k · kb lead to the same answer,
yet in practice the analysis may be more easy in one than the other.

1.2 Continuity

You have probably seen the notion of continuity in your calculus class from undergrad.

Intuition. Continuous maps have the desirable property that a small perturbation in x results in a small
perturbation in the operator at that point. They are paramount in the study of robustness and the e↵ect
of perturbations of data.

Definition. (Continuity.) Let F = R (or C) and consider two normed linear spaces (U,G, k · kU ) and
(V, F, k · kV ). Let f be a map (or operator) s.t. f : U ! V .
a. (Local continuity). We say f is continuous at u 2 U i↵ for every " > 0, there exxists � > 0 (possibly

depending on " at u) such that considering points u0 2 U

ku0 � ukU < � =) kf(u0)� f(u)kV < "

b. (Global continuity). We say f is continuous on U i↵ it is continuous at every u 2 U .

1.3 Induced Norms

Definition. (Induced Operator Norm.) The induced (operator) norm of f is defined to be

kfk = sup
u 6=0

⇢
kf(u)kV
kukU

�

Let A : U ! V be a (continuous) linear operator. Let U and V be endowed with the norms k · kU and k · kV ,
resp. Then, the induced norm of A is defined by

kAki = sup
u 6=0

kAukV
kukU

Interpretation. The induced norm kAk is the maximum gain of the map A over all directions; moreover,
kAk depends on the choice of the norms k · kU and k · kV in the domain and co-domain, resp.

Definition. (Bounded Operator.) Let V,W be normed vector spaces over field F (=R or C). A linear
transformation or linear operator A : V !W is bounded if 9 0 < K <1 such that

kAxkW  KkxkV , 8x 2 V

Theorem 1. Connections between bounded and continuous linear operators. Let V,W be normed vector
spaces and let A : V !W be a linear transformation. The following statements are equivalent:
a. A is a bounded linear transformation

b. A is continuous everywhere in V
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c. A is continuous at 0 2 V .

Proof. [a. =) b.] Suppose a. Let K as in the definition of bounded linear transformation. By linearity of
A we have that

kA(x)�A(x̃)kW = kA(x� x̃)kW  Kkx� x̃kV
which implies b.

[b. =) c.] trivial

[c. =) a.] If A is continuous at 0 2 V , 9 � > 0 such that for v 2 V with kvk < � we have that kAvk < 1
since continuity at a point x implies that for every " > 0, 9 � > 0 s.t.

kx� x
0kV < � =) kA(x)�A(x0)kQ < "

so, in particular, it is true for " = 1.

Now, let x 2 V with x 6= 0. Then
����

�

2kxkV
x

����
V

=
�

2
< � =)

����A
✓

�

2kxkV
x

◆����
W

< 1

But by linearity of A,

kAxkW =

����
2kxkV

�
A

✓
�

x

2kxkV

◆����
W

=
2kxkV

�

����A
✓
�

x

2kxkV

◆����
W

 kxkV
�

· 1 =
2

�
kxkV

And, since kAxkW  (2/�)kxkV for x = 0 too, then K = 2/�.

Facts about induced norms. Let (U,F, k · kU ), (V,F, k · kV ), and (W,F, k · kW ) be normed linear spaces
and let A : V ! W , Ã : V ! W and B : U ! V be linear maps. Note that 8↵ 2 F, ↵A : V ! W ,
A+ Ã : V !W and AB : U !W are also linear maps. Then we have that

1. kAvkW  kAkkvkV
2. k↵Ak = |↵|kAk, 8 ↵ 2 F

3. kA+ Ãk  kAk+ kÃk
4. kAk = 0 () A = 0 (zero map)

5. kABk  kAkkBk

Matrix norms are induced norms or operator norms. Consider A 2 Fm⇥n, A : Fn ! Fm. The induced
matrix norm is defined by

kAk = sup {kAxk : x 2 Fn
, kxk = 1} = sup

⇢
kAxk
kxk : x 2 Fn

, x 6= 0

�

With this definition, we can show the following:
• 1–norm (column sums)

kAki,1 = max
1jn

mX

i=1

|aij |

• 2–norm (largest singular value—we will discuss singular values later)

kAki,2 =
p
�max(A⇤A) = �max(A)
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• (not induced) Forbenius norm

kAki,F =

0

@
mX

i=1

nX

j=1

|aij |2
1

A
1/2

= (tr(AT
A))1/2

Note: kAk2  kAkF
• 1–norm (row sums)

kAki,1 = max
1im

nX

j=1

|aij |

Suppose A is an m⇥ n matrix and we have the induced norm

kAkp = sup
x 6=0

kAxkp
kxkp

Since kxkp is a scalar, we have

kAkp = sup
x 6=0

kAxkp
kxkp

= sup
x 6=0

����
Ax

kxkp

����
p

Since x/kxkp has unit length, we can express the induced norm as follows:

kAkp = sup
kxkp=1

kAxkp

That is, kAkp is the supremum of kAxkp on the unit ball kxkp = 1. Note that kAxkp is a continuous function
of x and the unit ball B1(0) = {x| kxkp = 1} is closed and bounded (compact).

Fact. On a compact set, a continuous function always achieves its maximum and minimum values.

The above fact enables us to replace the ’sup’ with a ’max’. Indeed,

kAkp = max
x 6=0

kAxkp
kxkp

= max
kxkp=1

kAxkp

When computing the norm of an operator A, the definition is the starting point and the remainder of the
process is the following:
step 1. First, find a candidate for the norm, call it K for now, that satisfies

kAxkp  Kkxkp, 8 x

step 2. Then, find at least one non-zero x0 for which

kAx0kp = Kkx0kp

step 3. Finally, set kAkp = K. That is,

kAx0k = Kkx0k = kAkkx0k =) kAx0k
kx0k

= kAk

which is the definition
We can do this because

kAxkp  kAkpkxkp
which is clearly the case by inspecting the definition of kAkp.

Recall that
kxk1 = max

i

|xi|
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The sup norm is the max of row sums:

kAk1 = max
i

0

@
nX

j=1

|aij |

1

A (max of row sum)

Proof. We prove this using the above steps. Let A 2 Rm⇥n. Then, Ax 2 Rm is a vector so that

kAxk1 =

�������

P
n

k=1 a1kxk

...P
n

k=1 amkxk

�������
1

= max
i2{1,...,m}

�����

nX

k=1

aikxk

�����

 max
i2{1,...,m}

nX

k=1

|aikxk|


 

max
i2{1,...,m}

nX

k=1

|aik|
!

max
k2{1,...,n}

|xk|

=

 
max

i2{1,...,m}

nX

k=1

|aik|
!
kxk1

so that we have completed step 1—that is,

K = max
i2{1,...,m}

nX

k=1

|aik|

so that
kAxkp  Kkxk1, 8 x

Step 2 above requires that we find non-zero x0 for which equality holds in the above inequality. Examination
reveals that we have equality if x0 is defined to have the components

xk =

⇢
ai⇤k
|ai⇤k| , aik 6= 0

1, ai⇤k = 0
1  k  n

where i
⇤ above is

i
⇤ = arg max

i2{1,...,m}

nX

j=1

|aij |

You can check this by starting with the definition for kAxk1 and plugging in this choice of x0 to see that

kAx0k = Kkx0k
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kAk1 = sup
kxk6=0

kAxk1
kxk1

= sup
kxk6=0

maxi2{1,...,m}

���
P

n

j=1 aijxj

���
maxi2{1,...,m} |xi|

= sup
kxk=1

max
i2{1,...,m}

������

nX

j=1

aijxj

������

 sup
kxk=1

max
i2{1,...,m}

nX

j=1

|aij ||xj | (triangle inequality)

 sup
kxk=1

max
i2{1,...,m}

nX

j=1

|aij |max
j

|xj |

= max
i2{1,...,m}

nX

j=1

|aij |

where equality holds when we let x be the vector with kxk1 = 1 such that it extracts the max row sum,
i.e. for 1  j  n, let

xj =

⇢ ai⇤j

|ai⇤j | , ai⇤j 6= 0

1 , ai⇤j = 0
(1)

where

i
⇤ = arg max

i2{1,...,m}

nX

j=1

|aij |

Allowing for the vector x to have the above property, we have kAk1 = maxi2{1,...,m}
P

n

j=1 |aij |

Definition. (Positive definite matrix.) A matrix P 2 Rn⇥n such that for all x 2 Rn

x
T
Px � 0, whenever x 6= 0

is said to be positive definite.

A positive definite matrix P has only positive eigenvaules. Indeed, for all (non-trivial) eigenvectors x we
have that

x
T
Px = �x

T
x = �kxk2 > 0

and thus, � > 0.

Fact. Every positive definite matrix induces a norm via

kxk2
P
= x

T
Px

This is because P = SS
1/2

2 Inner Product Space (Hilbert Spaces)

Let the field F be R or C and consider the linear space (H,F ). The function

h·, ·i : H ⇥H ! F [(x, y) 7! hx, yi]

is called inner product i↵
1. hx, y + zi = hx, yi+ hx, zi, 8x, y, z 2 H

2. h↵x, yi = ↵hx, yi, 8↵ 2 F, 8x, y 2 H
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3. kxk2 = hx, xi > 0 () x 2 H s.t. x 6= 0

4. hx, yi = hy, xi
where the overbar denotes the complex conjugate of hy, xi. Moreover, in (c) k · k is called the norm induced
by the inner product.

definition.(Hilbert Space.) A space equipped with an inner product is called a Hilbert space and denoted
by (H,F, h·, ·i).

Example. The following are examples:
1. (Fn

, F, h·, ·i) is a Hilbert space under the inner product

hx, yi =
nX

i=1

xiȳi = y
⇤
x

2. L2([t0, t1], Fn) (space of square, integrable Fn-valued functions on [t0, t1]) defined by the inner prod-
uct by

hf, gi =
Z

t1

t0

f(t)g(t)⇤ dt

Theorem 2. Schwawrz’s Inequality. Let (H,F, h·, ·i) be an inner product space.

|hx, yi|  kxkkyk 8 x, y 2 H

This inequality implies the triangle inequality for the inner product norm kxk2 = hx, xi.

Proof. Choose ↵ 2 F with |↵| = 1 such that

↵hx, yi = |hx, yi|

(basically choose ↵ to have the sign which makes the expression on the left non-negative). Then, for all
� 2 R, we have

0  k�x+ ↵yk2 = �
2kxk2 + 2�|hx, yi|+ kyk2

Since this last polynomial in � is non-negative, we have

|hx, yi|2 � kxk2kyk2  0

2.1 Orthogonality

Definition. (Orthogonality.) Two vectors x, y 2 H are said to be orthogonal () hx, yi = 0.

If two vectors are orthogonal, they satisfy

kx+ yk2 = kxk2 + kyk2 (Pythogoras’ Theorem)

Definition. (Orthogonal Complement.) If M is a subspace of a Hilbert space, the subset

M
? = {y 2 H| hx, yi = 0, 8x 2M}

is called the orthogonal complement of M .

M \M
? = {0}.
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Proof. Suppose not. Then there exists x 6= 0 with x 2M \M
?. Hence,

hx, yi = 0 8y 2M

but x 2M so
hx, xi = 0

This in turn implies that x = 0 ! .

2.2 Adjoints

Let F be R or C and let (U,F, h·, ·iU ) and (V, F, h·, ·iV ) be Hilbert spaces. Let A : U ! V be continuous
and linear.

Definition. (Adjoint.) The adjoint of A, denoted A⇤, is the map A⇤ : V ! U such that

hv,AuiV = hA⇤
v, uiU

Consider A : V !W .

matrix type notation Adjoint property

transpose A
T hAf, gi = hf,A⇤

gi, 8 f 2 V, g 2W (adjoint)

symmetric A = A
T hAf, gi = hA⇤

f, gi, 8 f 2 V, g 2W (self-adjoint)

orthogonal A
�1 = A

T hf, gi = hAf,Agi, 8 f 2 V, g 2W (isometry)

Example. Let f(·), g(·) 2 C([t0, t1],Rn) and define A : C([t0, t1],Rn)! R by

A : f(·) 7! hg(·), f(·)i

Find the adjoint map of A.

soln.
A⇤ : R! C([t0, t1],Rn)

such that
hv,Af(·)iR = hA⇤

v, f(·)iC([t0,t1],Rn)

where v 2 R and f(·) 2 C([t0, t1],Rn).
c.f. with

hA⇤
v, f(·)i =) A⇤ : v 7! v

⇤
g(·)

(multiplication by g(·)). Indeed,

hv,Af(·)iR = hv, hg(·), f(·)iC([t0,t1],Rn)iR
= v

⇤hg(·), f(·)iC([t0,t1],Rn)

= hv⇤g(·), f(·)iC([t0,t1],Rn)

We can also compute the matrix of an adjoint of a linear operator.

Definition. (Adjoint of a matrix.) The adjoint of matrix A is

A
⇤ = AT

Regarding a matrix representation of a linear operator T , if the matrix A is its representation with respect
to bases ↵ and � of V and W , respectively, then we would like for the adjoint of A to coincide with the
matrix of the adjoint of T with respect to � and ↵.

We need the following definition.
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Definition. (Orthonormal Basis.) An orthonormal basis for an inner product space V with finite dimension
is a basis for V whose vectors are orthonormal—that is, they are all unit vectors and orthogonal to each
other.

For example, the standard basis for Rn is an orthonormal basis.

Theorem 3. Adjoint of Matrix Representation. Let V,W be finite dimensional inner product spaces with
↵,� as orthonormal bases for V and W , respectively. If T : V !W is a linear operator, then

[T ⇤]�
↵
= ([T ]↵

�
)⇤

where [T ]�
↵
denotes the matrix representation of T wrt the bases ↵ and � for V and W , respectively.

Proof. If (aij) is the matrix representation of T wrt ↵,�, then

T↵i =
X

j

aij�j , 1  i  m

Since ↵ is orthonormal,
hT↵i,�ji = aij , 1  i  m, 1  j  n

Indeed, plugging in T↵i from above we have
DX

`

ai`�`,�j

E
=
X

`

ai`h�`,�ji = aij

since h�`,�ji = 1 only when ` = j. Similarly, if B = (bij) is the representation of ([T ]↵
�
)⇤, then

hT ⇤
�i,↵ji = bij

Then
bij = hT ⇤

�i,↵ji = h�i, T↵ji = hT↵j ,�ii = a
⇤
ji

so that
B = AT

Fact. (“Necessity”) This is NOT true in general—i.e. it is true when both ↵ and � are orthonormal.

We can still write [T ⇤]↵
�

in terms of [T ]�
↵

without assuming ↵ and � are orthonormal. Indeed, let
↵ = {↵i}mi=1 and � = {�j}nj=1. Then

[T ⇤]↵
�
= C

�1([T ]�
↵
)⇤B

where

C =

2

6664

h↵1,↵1i h↵2,↵1i · · · h↵m,↵1i
h↵1,↵2i h↵2,↵2i · · · h↵m,↵2i

...
...

. . .
...

h↵1,↵mi h↵2,↵1i · · · h↵m,↵mi

3

7775

and

B =

2

6664

h�1,�1i h�2,�1i · · · h�n,�1i
h�1,�2i h�2,�2i · · · h�n,�2i

...
...

. . .
...

h�1,�ni h�2,�1i · · · h�n,�ni

3

7775

2.3 Self-Adjoint Maps

Let (H,F, h·, ·iH) be a Hilbert space and letA : H ! H be a continuous linear map with adjointA⇤ : H ! H.
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Definition. (Self-Adjoint.) The map A is self-adjoint i↵ A = A⇤, or equivalently

hx,AyiH = hAx, yiH , 8x, y 2 H

Definition. (Hermitian matrices.) Let H = F
n and let A be represented by a matrix A : Fn ! F

n, A 2
F

n⇥n. Then A is self-adjoint i↵ the matrix A is Hermitian (i.e. A = A
⇤, viz. aij = āij , 8i, j 2 {1, . . . , n}.

Fact. Let A : H ! H be a self-adjoint, continuous linear map. Then
a. all eigenvalues of A are real

b. if �i and �k are distinct eigenvalues of A, then any eigenvector vi associated with �i is orthogonal to
any eigenvector vk associated with �k.

Proof of part (a). From Avi = �ivi and A
⇤ = A, we get that

hvi, Avii = �ikvik2 = hAvi, vii = hvi, Avii

It follows that �i is real.

Proof of part (b). From Avi = �ivi and Avk = �kvk we obtain

�ihvk, vii = hvk, Avii

and
�khvk, vii = hAvk, vii = hvk, Avii

Subtracting the last two equations, we get

(�i � �k)hvi, vki = 0

Since �i 6= �k,
hvi, vki = 0

2.4 Orthogonal Projection

Recall that we already defined a direct sum of spaces:

V = U �W () 8x 2 V, 9! x = u+ v : u 2 U, v 2 V

Fact. Let U be a closed subspace of (H,F, h·, ·i). Then, we have the direct sum decomposition

H = U � U
?

Equivalently, 8x 2 H, 9! u 2 U called the orthogonal projection of x onto the subspace U such that
x� u 2 U

?.

The operator that does this operation, called the orthogonal projection operator, is such that its range
space is U and its null space is U?.

DIY Exercise. Let (H,C, h·, ·, i) be a Hilbert space and U be a closed subspace defined by an orthonormal
basis (ui)k1 . For any x 2 H, let xp be the orthogonal projection of x onto U . By direct calculation, show
that

xp =
kX

i=1

hui, xiui
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and
kx� xpk  kx� yk, 8y 2 U, y 6= xp

Hint: write y =
P

k

i=1 ⌘iui and minimize kx� yk w.r.t. ⌘i’s. Further show that if H = Cn and the basis
(ui)ki=1 is not orthonormal, then xp = U(U⇤

U)�1
U

⇤
x where U is n⇥ k with columns from the ui’s.

In fact, in the orthonormal case, if we define U =
⇥
u1 · · · uk

⇤
, then

PU = UU
>

This does exactly this operation
kX

i=1

hui, xiui

Why is this the case? Well consider a U = [u] as a line so that we have just a single vector u spanning
U . Then, consider a vector x we want to project onto U .

u

x

xp

Then the scalar projection of x onto u can be found using basic cosine properties. Indeed,

|xp| = kxk cos(✓) = u · x

Hence,
xp = hu, xiu

2.5 Properties of the Adjoint

Let A be a linear continuous map from U to V (both Hilbert spaces). Then, A⇤ is linear and continuous
with induced norm kA⇤k = kAk. Moreover, A⇤⇤ = A.

Theorem 4. Finite Rank Operator Lemma (FROL). Let F be R or C. Let (H,F, h·, ·iH) be a Hilbert space
and consider Fm as the Hilbert space (Fm

,F, h·, ·iFm). Let A : H ! Fm be a continuous linear map with
adjoint A⇤ : Fm ! H. Then

A
⇤ : Fm ! H, AA

⇤ : Fm ! Fm
, A

⇤
A : H ! H

are continuous linear maps with AA
⇤ and A

⇤
A self-adjoint. Furthermore,

a. H = R(A⇤)
?
� N (A), Fm = R(A)

?
� N (A⇤)

b. The restriction A|R(A⇤) is a bijection of R(A⇤) onto R(A) and

N (AA
⇤) = N (A⇤), R(AA

⇤) = R(A)

c. The restriction A
⇤|R(A) is a bijection of R(A) onto R(A⇤) and

N (A⇤
A) = N (A), R(A⇤

A) = R(A⇤)

The following result proves that Fm = R(A)
?
� N (A⇤).

Proposition 1. Let V and W be finite-dimensional nonzero inner product spaces. Let T 2 L(V,W ). Then
ker(T ⇤) = (im(T ))?
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0H 0m

N (A)

R(A⇤)

N (A⇤)

R(A)

H F
m

A

A
⇤

Figure 1: The orthogonal decomposition of the domain and the co-domain of a finite rank operator A : H !
F

m and its associated bijections.

Proof. We must show that ker(T ⇤) ⇢ (im(T ))? and ker(T ⇤) � (im(T ))?.
Let w 2 ker(T ⇤). Then T

⇤(w) = 0. Hence, for all v 2 V , we have 0 = hv, 0i = hv, T ⇤(w)i which implies
that hT (v), wi = 0 for all v 2 V . Therefore w is orthogonal to every vector in im(T ) so w 2 (im(T ))?.

Now, let w 2 (im(T ))?. Then every vector in im(T ) is orthogonal to w, that is hT (v), wi = 0 for all
v 2 V . Thus hv, T ⇤(w)i = 0 for all v 2 V . But if hv, T ⇤(w)i = 0 for all v 2 V then this must imply that
T

⇤(w) = 0 so w 2 ker(T ⇤).

You can argue H = R(A⇤)
?
� N (A) similarly.

Proposition 2. Let V and W be finite dimensional inner product spaces and let T 2 L(V,W ). Then
im(T ⇤) = (ker(T ))?.

The following are important comments on this result:
• It is crucial to notice that AA

⇤ : Fm ! Fm and hence, by

N (AA
⇤) = N (A⇤), R(AA

⇤) = R(A),

the study of the range of A and the null space of A⇤ is equivalent to study of the range and null space,
resp., of any (Hermitain) matrix representation M of AA

⇤ (cf. controllability. . . )

• This result also leads to singular value decomposition which is often very useful in studying the modes
of a system—i.e. given a matrix A we can decompose it into

A = U⌃V 2 Fm⇥n

where ⌃ contains the singular values of A (or the square roots of the common positive eigenvalues
of A

⇤
A and AA

⇤) and U = [U1 : U2] 2 Fm⇥m where U1 cols form an orthonormal basis of R(A)
and R(U2) = N(A⇤) (cols of U2 form an orthonormal basis for N(A⇤)). Cols of U form a complete
orthonormal basis of eigenvectors of AA

⇤. And, V is also unitary V
⇤
V = In and R(V1) = R(A⇤) and

R(V2) = N(A). cols of V1 form ortho basis of R(A⇤) and cols of V2 form ortho basis of N(A).
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1 Finite Rank Operator Lemma

Theorem 1. Finite Rank Operator Lemma (FROL). Let F be R or C. Let (H,F, h·, ·iH) be a Hilbert
space and consider Fm as the Hilbert space (Fm

,F, h·, ·iFm). Let A : H ! Fm be a continuous linear map
with adjoint A⇤ : Fm ! H. Then

A
⇤ : Fm ! H, AA

⇤ : Fm ! Fm
, A

⇤
A : H ! H

are continuous linear maps with AA
⇤ and A

⇤
A self-adjoint. Furthermore,

a. H = R(A⇤)
?
� N (A), Fm = R(A)

?
� N (A⇤)

b. The restriction A|R(A⇤) is a bijection of R(A⇤) onto R(A) and

N (AA
⇤) = N (A⇤), R(AA

⇤) = R(A)

c. The restriction A
⇤|R(A) is a bijection of R(A) onto R(A⇤) and

N (A⇤
A) = N (A), R(A⇤

A) = R(A⇤)

0H 0Fm

N (A)

R(A⇤)

N (A⇤)

R(A)

H Fm

A

A
⇤

Figure 1: The orthogonal decomposition of the domain and the co-domain of a finite rank operator A : H !
F

m and its associated bijections.

2 Singular Value Decomposition

FROL leads to singular value decomposition which is often very useful in studying the modes of a system or
for solving systems of equations or for understanding the contribution that di↵erent features have in terms
of explaining things like correlations/variance.

8-1
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Note: this is not the only decomposition one can perform on a matrix which is useful, but it is one that
is widely used in a number of applications.

2.1 Overview of SVD

A = U⌃V ⇤

left singular vecs

singular values

right singular vecs

Given a matrix A 2 Fm⇥n we can decompose it into

A = U⌃V ⇤ 2 Fm⇥n

where
• Singular Values: ⌃ contains the singular values of A (or the square roots of the common positive
eigenvalues of A⇤

A and AA
⇤)

• Orthonormal basis of R(A): U 2 Fm⇥m is such that U =
⇥
U1 U2

⇤
where columns R(U1) = R(A) and

R(U2) = N (A⇤)
• Orthonormal basis for N (A): V 2 Fn⇥n is such that V =

⇥
V1 V2

⇤
where R(V1) = R(A⇤) and

R(V2) = N (A).

2.2 Reminder of some basic classes matrices/operators

Definition. (positive operator/positive semi-definite (PSD)) An operator A 2 L(V ) is called positive if A
is self-adjoint (A = A

⇤, i.e. Hermitian) and

hAv, vi � 0, 8v 2 V

Example: if U is a subspace of V , then the orthogonal projection PU is a positive operator.
Recall that a symmetric matrix has real eigenvalues:

Suppose A = A
>, then � is real.

Proof. suppose Av = �v, v 6= 0, v 2 Cn. Then,

v̄
>
Av = v̄

>(Av) = �v̄
>
v = �

X

i

|vi|2

But, we also have that

v̄
>
Av = (Av)

>
v = (�v)

>
v = �̄

X

i

|vi|2

Hence, �̄ = �.

Definition. (square root) An operator T is called the square root of an operator A if T 2 = A. Sometimes
we write T = A

1/2 =
p
A.

Fact. Square roots in general are not unique, however for PSD matrices, they are unique. That is, if A
is a positive operator, then

p
A denotes the unique positive square root of A.

How to compute? if A 2 Rn⇥n and it is diagonalizable, we can compute it via diagonalization. Then,
p
A = V D

1/2
V

�1
, for A = V DV

�1

Other ways include Jordan decomposition (which we will get to after the midterm).
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Definition. (unitary) A matrix U 2 Fn⇥n is said to be unitary if and only if U⇤
U = UU

⇤ = I. if F = R,
then U is called orthogonal.

Unitary matrices preserve inner product and hence, length:

U 2 Fn⇥n =) 8x, y 2 Fn
, hUx,UyiFn = hx, yi

Hence, kUxk2 = kxk2.

Fact. Let A 2 Fm⇥n have rank r. Then, the Hermitian PSD matrices A⇤
A and AA

⇤ are such that

r = rank(AA
⇤) = rank(A) = rank(A⇤) = rank(A⇤

A)

Further, AA⇤ and A
⇤
A has exactly r identical (strictly) positive eigenvalues �2

i
> 0, i 2 {1, . . . , r}.

DIY Exercise. Prove the above fact.

2.3 The Nitty Gritty

SVD is like an eigendecomposition. We have a rotation, a scaling and another rotation. Just the coordinates
are changed. Indeed, if we have a diagonalizable matrix A, then

A = Q�Q
>

where Q
> = Q

�1 for an orthonormal basis. (Recall from undergrad linear algebra that if �i are not distinct
you can take any basis and Gram schmidt it to get an orthonormal basis). Then when we have

y = Ax

what we are doing is resolving x into qi coordinates (rotate), then scaling by the �i’s (dialate), then recon-
stituting with the basis qi (rotate back). Note that you can write this as

A =
nX

i=1

�iqiq
>
i

v2 v1

v4v3

u1 u2

u3u4

R(A>) R(A)

N (A) N (A>)

Rn Rm

A
>
ui =

1

�i

vi Avi = �iui, i = 1, 2

Avj = 0, A
>
uj = 0, j = 3, 4
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subspace definition dimension basis

R(A) ✓ Rm column space (image) of A r first r columns of U

N (A>) ✓ Rm nullspace of A>
m� r last m� r columns of U

R(A>) ✓ Rn row space (image) of A r first r columns of V

N (A) ✓ Rn nullspace of A n� r last n� r columns of V

N (A)
?
� R(A>) Rn

n all n columns of V

N (A>)
?
� R(A) Rm

m all m columns of U

Definition. (singular values) Suppose A 2 L(V ). The singular values of A are the eigenvalues of
p
A⇤A,

with each eigenvalue � repeated dim(N (
p
A⇤A� �I)) times.

A coupled relevant facts:
• Recall: N (

p
A⇤A� �I) is the set of all eigenvectors of A corresponding to � and the zero vector.

• A
⇤
A is a positive operator for every A 2 L(V ), so that

p
A⇤A is well-defined.

• singular values of A are all non-negative because they are the eigenvalues of the positive operator
p
A⇤A.

Theorem 2. Singular Value Decomposition. Let F = R or C. Let A 2 Fm⇥n be a matrix of rank r.
Then there exists matrices U 2 Fm⇥m and V 2 Fn⇥n and ⌃1 2 Rr⇥r such that
a. V 2 Fn⇥n is a unitary matrix (V ⇤

V = I) of the form

V =
h
V1 V2

i
, V1 2 Fn⇥r

where the columns of V1 form an orthonormal basis of R(A⇤) (i.e., R(V1) = R(A⇤)), the columns of
V2 form an orthonormal basis of N (A), and the columns of V form a complete orthonormal basis of
eigenvectors of A⇤

A.

b. U 2 Fm⇥m is a unitary matrix (U⇤
U = I) of the form

U =
h
U1 U2

i
, U1 2 Fm⇥r

where the columns of U1 form an orthonormal basis of R(A) (i.e., R(U1) = R(A)), the columns of
U2 form an orthonormal basis of N (A⇤), and the columns of U form a complete orthonormal basis
of eigenvectors of AA

⇤.

c. Let x 2 R(A⇤) and y 2 R(A) be represented by component vectors ⇠ and ⌘ respectively, according
to the following scheme:

Fr ! R(A⇤) : ⇠ 7! x = V1⇠, Fr ! R(A) : ⌘ 7! y = U1⌘

Then, the bijections induced by the orthogonal decomposition, viz.

A|R(A⇤) : R(A⇤) ! R(A), A
⇤|R(A) : R(A) ! R(A⇤)

have representations
⌃1 : ⇠ 7! ⌘ = ⌃1⇠, ⌃1 : ⌘ 7! ⇠ = ⌃1⌘

with
⌃1 = diag(�1,�2, . . . ,�r) 2 Rr⇥r

such that
�1 � �2 � · · · � �r � 0

where �i (i.e., the positive singular values of A) are the square roots of the common positive eigen-
values of A⇤

A and AA
⇤.
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d. A has a dyadic expansion

A = U1⌃1V
⇤
1 =

rX

i=1

�iuiv
⇤
i

where ui, vi are the columsn of U1 and V1, respecitvely.

e. A 2 Fm⇥n has singular value decomposition (SVD) given by

A = U⌃V ⇤

where

⌃ =

2

4 ⌃1 0r⇥(n�r)

0(m�r)⇥r 0(m�r)⇥(n�r)

3

5 2 Rm⇥n

Recall our discussion of orthogonal projections. For simplicitly, suppose we have a subspace W of Fn.
Then we can find an orthogonal projection on to this space by doing the following:

xp =
mX

i=1

hx,wiiwi

where {wi} is an orthonormal basis for W which is of dimension m.
Hence, we can rewrite the dyadic expansion to look like a projection:

Av =
rX

i=1

�iuiv
⇤
i
v =

rX

i=1

�ihv, viiui

where we can think of writing the coordinate representation of v in terms of the vectors that span R(A⇤):
2

6664

hv, vni
...

hv, vni

3

7775
= ⇠

Then, ⌃1 : ⇠ 7! ⌘, so that the terms �ihv, vii = ⌘i. Then we are left with

Av =
rX

i=1

⌘iui

where {ui} forms a basis for R(A).

Fact. Suppose A 2 L(V ). Then the singular values of A are the non-negative square roots of the
eigenvalues of A⇤

A, with each eigenvalue � repeated dim(N (A⇤
A� �I)) times.

Note also that
A

>
A = (U⌃V ⇤)⇤(U⌃V ⇤) = V ⌃2

V
⇤

Hence, vi are eigenvectors of A>
A (nonzero eigenvalues) since this is an eigendecomposition, �i =

p
�i(A>A)

and �i(A>
A) = 0 for i > r), and kAk = �1.

Same for AA
>:

AA
> = (U⌃V ⇤)(U⌃V ⇤)⇤ = U⌃2

U
⇤

so that ui are eigenvectors of AA
>, �i =

p
�i(AA>).

2.4 Some geometric intuition

The matrices U and V are isometries so that they preserve length in what ever coordinate system. So the
way they operate on their domain is simply to rotate. The operator ⌃ on the other hand is diagonal and
hence only performs scaling of each of the coordinates. So basically the SVD breaks up any matrix operation
into three peices: rotation, scaling, then rotation.
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What does A do to the unit sphere? Consider for simplicity that A 2 Fn⇥n to be non-singular. Apply
the unitary transformation x = V ⇠ and y = U⌘ in the domain and codomain of A (here Fn = R(V ) =
R(A) = R(U) = R(A⇤)). Let

Sn = {x 2 Fn| kxk2 = 1}
(i.e., Sn is the unit sphere in Fn). Since V is unitary (i.e., it preserves length), we have that

Sn = {⇠ 2 Fn| k⇠k22 =
nX

i=1

|⇠i|2 = 1}

Let A(Sn) denote the image of Sn under A. That is,

A(Sn) = {y 2 Fn|]y = Ax, kxk2 = 1}

Hence, since U is unitary and by the SVD, i.e., AV = U⌃, we have that

A(Sn) =

(
y = U⌘

�����

nX

i=1

✓
|⌘i|
�i

◆2

= 1

)

Note that column-wise, Avi = �iui. Thus, A(Sn), the image of the unit sphere Sn under A, is an ellipsoid
whose principal axes are along the Uj ’s and are of length �i, the positive singular values of A. The action
of A consists of, first, a ”rotation” (vi 7! ui), then a scaling (ui 7! �iui), i.e. the size of the action of A is
dictated by its singular values.

A

3 Facts for me

• T is normal if TT ⇤ = T
⇤
T .

• Spectral theorem: T normal () V has an orthonormal basis consisting of evecs of T () T has a
diangal with respect to some orthonormal basis of V

4 Steps for computing

1. Computer AA
>. The eigenvectors of this operator make up the columns of U . So, find the eigepairs of

AA
> in the usual way: first find the eigenvalues via solving the characteristic polynomial for its roots.

Then find x in the null space of AA
> � �iI for each i:

(AA
> � �iI)x = 0

Orthonormalize them via Gram-Schmidt, e.g.

2. Eigenvectors of A>
A make up the columns of V .

3. Construct ⌃ by taking the common eigenvlaues of AA
> and A

>
A and take the square root.
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Fact. AA> and A
>
A have the same non-zero eigenvalues. Indeed, consider � 6= 0, � 2 spec(A>

A). Then,

A
>
Ax = �x =) AA

>(Ax) = �(Ax) =) AA
>
y = �y

(x 62 N (A) because otherwise � = 0 since eigenvectors have to be non-trivial). Hence, � 2 spec(AA
>).

Suppose � 2 spec(AA
>). Then,

AA
>
z = �z =) z

>
A

>
A = �z

>

or
AA

>
z = �z =) A

>
AA

>
z = �A

>
z =) A

>
Aw = �w

Hence, � 2 spec(A>
A).

5 Connections to PCA

Recall the PCA discussion we had on lecture 1. The goal was to perform dimensionality reduction of a data
set, either to ease interpretation or as a way to avoid overfitting and to prepare for subsequent analysis.
Consider a sample covariance matrix from data matrix X 2 RN⇥p which is defined by

S =
X

>
X

N

since X has zero mean. Rows of X represent cases or observations and columns represent the variables of
each observed unit.

If you do the eigendecomposition of X>
X you get

X
>
X = (U⌃V ⇤)⇤(U⌃V ⇤) = V ⌃⇤

U
⇤
U⌃V ⇤ = V ⌃2

V
⇤

since U
⇤
U = I and the elements of ⌃ are real. Thus, if you have done the SVD then you already have the

eigendecomposition for X>
X.

The eigenvectors of X>
X (i.e., vj , j = 1, . . . , p) are called the principle component directions of X. The

first principle component direction v1 has the following properties:
1. v1 is the eigenvector associated with the larges eigenvalue �

2
1 of X>

X.

2. z1 = Xv1 has the largest sample variance amongst all normalized linear combinations of the columns of
X.

3. z1 is called the first principle component of X and var(x1) = �
2
1/N .

The second principal component direction v2 (the direction orthogonal to the first component that has the
largest projected variance) is the eigenvector corresponding to the second largest eigenvalue, �2

2 of X>
X and

so on. PCA projects the data along the directions where the data varies the most. The variance of the data
along the principal component directions is associated with the magnitude of the eigenvalues.

6 Linear Systems of Equations and SVD

Solution of linear equations numerically di�cult for matrices with ‘bad condition’. Regular matrices in
numeric approximation can be singular. SVD helps with this issue.

Generally in solving Ax = b, there are two possible sources of error:
1. intrinsic errors in A and b.

2. numerical errors due to rounding.

Solution Ax = b. Suppose that A 2 Rn⇥n for simplicity. Then,

b = Ax = U1⌃1V
⇤
1 x =) U

⇤
1 b = ⌃1V

⇤
1 x =) x = V1⌃

�1
1 U

⇤
1 b
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if �1 � · · · � �r > 0. If b 2 R(A), then we get the exact solution. If b 62 R(A), then the above gives the
closest possible solution in the sense that it minimizes kAx� bk. Recall that The columns of U correspond
to non-zero singular values of A are an orthonormal set of basis vectors for R(A). And, the columns of V
that correspond to *zero* singular values form an orthonormal basis for N (A). So we are transforming b

into its coordinate representation for the basis for R(A), then appropriately scaling it, then rotating it to a
coordinate representation for the domain in terms of a orthonormal basis for R(A⇤).

One of the important aspects of SVD is it allows us to assess the sensitivity of solutions of Ax = b to
sources of noise or error. Let A 2 Fn⇥n and suppose that det(A) 6= 0, b 6= 0, and A = U⌃V ⇤. Then,
x0 = A

�1
b is the solution. Suppose that as a result of noisy measurements, round-o↵ errors, etc. we only

have an approximate value A+ �A for A and b+ �b for b. Then we have a perturbed system of equations

(A+ �A)(x+ �x0) = b+ �b

To better understand the error, we need to relate �x to that of �A and �b.
Recall our recent definitions of norms. Choose some norm k ·k (all finite dimensional norms are equivalent

in that what we can prove with one norm, we can prove with another). Suppose that

k�Ak << kAk, k�bk << kbk
To better understand the error, lets compute an upper bound on

k�xk
kxk

Dropping higher order terms, we have the approximate equation

�Ax0 +A�x = �b

Compute �x, taking norms of both sides, and using properties of the induced norm, we have

k�xk  kA�1k(k�bk+ k�Akkx0k)
Dividing by kx0k > 0, and noting that kbk  kAkkx0k, we have that

k�xk
kx0k

 kAkkA�1k
✓
k�bk
kbk +

k�Ak
kAk

◆

The number
(A) = kAkkA�1k

is the condition number of A and it depends on the norm chosen. It is always greater than or equal to one.
Matrices for which (A) is large are called ill-conditioned; for such matrices, the solution is very sensitive

to some small changes in A and in b. Since all norms on Fn are equivalent, it can be shown that if a matrix
is very ill-conditioned in some norm, it will also be ill-conditioned in any other norm.

So what does this mean for SVD? We know that

�1 = max
i

�i = max{kAxk2| kxk2 = 1} = kAk2

and
�n = min

i

�i = min{kAxk2| kxk2 = 1}

so that
kA�1k2 = 1/�n

since A
�1 = V ⌃�1

U
⇤. We define the condition number (for the 2-norm) to be

(A) =
�1

�n

Hence if �1 >> �n > 0, for some �A and �b the resulting

k�xk2
kx0k2

may be very large.
The smallest singular value �n of A is a measure of how far the nonsingular matrix A is from being

singular.
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7 Some Cool Visualization Tools/Tutorials with Applications

• Very simple introduction to svd with python:
https://lambein.xyz/blog/2018/12/20/svd-visualization.html

• Nice interactive deep learning book with a chapter on SVD (may want to check out the other chapters,
I really enjoyed them.): https://github.com/hadrienj/deepLearningBook-Notes
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Lecture 9: Least Squares and Regularized Least Squares
Lecturer: L.J. Ratli↵

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

References: Chapter 6 of Calafiore and El Ghaoui; Chapter 12 of Boyd (linked on course site).

1 Review

So far we have already in some sense discussed solutions to linear equations. In particular, we discussed
• when solutions to Ax = b exist and when they are unique in terms of surjectivity and injectivity of the
map A

• least norm solutions via projections

• SVD, which is a solution technique and a way to assess sensitivity in terms of the singular values of a
matrix (i.e., condition number).
Least squares is widely used as a method to construct a mathematical model from some data, experiments,

or observations. Suppose we have an n-vector x, and a scalar y, and we believe that they are related, perhaps
approximately, by some function

2 The Least Squares Problem

Consider the problem of finding x 2 Rn such that

Ax = b, A 2 Rm⇥n, b 2 Rm

There are several scenarios one can be in:
a. under-determined: n < m, i.e., there are more variables than equations. in general, here there

are infinitely many solutions. it is also possible that there are no solutions because the equations are
inconsistent.

b. “square”: m = n, i.e., the number of equations equals the number of variables.

c. over-determined: m > n, i.e., there are more equations than variables. The equations will be incon-
sistent in general.

In the latter case, we seek to find the solution x that solves

min
x

kAx� bk22

In the case of a., we can use least squares to assure that a solution exists, and to decide which of the many
possible solutions to choose. Here we want to find the x that minimizes

min
x

kAx� bk22 + µkxk22

This is a regularized least squares problem. We will come back to this. Alternatively, we can solve this
problem via the method of Lagrange multipliers by mapping a constrained problem to minimization of a
Lagrangian:

min
x

kxk22
s.t. Ax� b = 0

)
=) min

x
kxk22 + �>(Ax� b)

If the system is “square”, then there is exactly one solution if A is full rank.

9-1
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3 Solution Via Optimization/Calculcus

Consider
f(x) = kAx� bk22 = (Ax� b)>(Ax� b)

We know that the minimizer occurs at critical points where the derivative is zero:

@f

@xi
(x) = 0

The vector notation for this is
Df(x) = 0

3.1 A primer on derivatives

This should be review but in case it isnt I want to make sure you guys have seen it.
if you have a quadratic form f(x) = hAx, xi = x>Ax over the real numbers, there are some simple rules

for computing derivatives. The usual definition of f 0(x) when f : R ! R is

f 0(x) = lim
h!0

f(x+ h)� f(x)

h

Intuitively, f 0 represents the rate of change of f at the point x. In particular, starting at x, if you move a
distance of h and want to figure out how much f changed, you would multiply the derivative f 0(x) by the
amount of change, h, and add it to f(x) which is where you started:

f(x+ h) ' f(x) + f 0(x)h| {z }
linear approximation of f at x

This can be generalized to functions f : Rm ! Rn. The idea behind a generalized derivative is that we still
want a linear approximation to f at a point x, although now we allow x to be a vector and not just a real
number. In this case, the derivative is the so called Jacobian. The approximation form still holds:

f(x+ h) ' f(x) + J(x)|{z}
Df(x)

h

where

J(x) =

2

64

@f1
@x1

· · · @f1
@xn

...
. . .

...
@fn
@x1

· · · @fn
@xn

3

75

Suppose f : Rm ! R, then the Jacobian of f is simply one row:

J(x) = Df(x) =
h

@f
@x1

· · · @f
@xn

i

so that

f(x+ h) ' f(x) +
h

@f
@x1

· · · @f
@xn

i
2

64
h1
...

hm

3

75

The transpose of the *row vector* J(x) = Df(x) is usually called the gradient of f at x, and is denoted by
rf(x). This causes great confusion, since the matrix multiplication above no longer works if we transpose
the Jacobian, so I am not an advocate.

Starting with the linear case,

f(x) = hx, bi = b>x =
mX

k=1

bkxk
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the derivative is
Df(x) = b>

The reasoning behind this is as follows:
Now, generalizing a bit, if f(x) = Ax where A 2 Rm⇥m. Recall the classical notion of a derivative

f(x+ h) ' f(x) +Df(x)h

If f(x) = Ax, then
f(x+ h) = A(x+ h) = Ax+Ah

Hence, setting this equal to our expanded version of f , we get

Ax+Ah = f(x) +Df(x)h

Subtracting f(x) = Ax, we get that Ah = Df(x)h so that Df(x) = A.
Now, consider f(x, y(x)). How do we di↵erentiate this? Well this is the total derivative. First, expand y:

y(x+ h) ' y(x) +
@y

@x
h

We already know an expansion for f , hence we get

f(x+ h, y(x+ h)) ' f(x, y(x)) +
@f

@x
h+

@f

@y

@y

@x
h = f(x, y(x)) +

✓
@f

@x
+

@f

@y

@y

@x

◆

| {z }
Df(x)

h

Now, consider
f(x) = hx,Ax != x>Ax

Then, we can think of this as follows:

f(x, y(x)) = x>y(x), y(x) = Ax

We know that

Df(x, y(x)) =
@f

@x
+

@f

@y
y0(x)

We know that
@f

@x
= y(x)>

by above (i.e., its a linear function of x directly. Similarly,

@f

@y
= y(x)>

Further,
y0(x) = A

Combining this we get

Df(x) = y(x)> + x>A = x>A> + x>A = x>(A> +A)

If A = A>, then
Df(x) = 2x>A>

So people often write this in its transposed form

rf(x) = 2Ax

This is what is in the Boyd book for example. I am not fond of this notion of reasons noted above (its not
covariant—i.e., its components do not change in the same way as changes to scale of the reference axes, very
problematic in geometry).
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3.2 Back to Least Squares

To minimize this problem, we set the derivative to zero:

Df(x) = 2(Ax� b)>A = 0 =) x>A>A = b>A =) x = (A>A)�1A>
| {z }
pseudo-inverse

b

Now, consider
L(x,�) = kxk22 + �>(Ax� b) = �>(Ax� b) + �x>x

so that

@L

@x
(x) = �>A+2x> = 0,

@L

@�
L = x>A�b> = 0 =) x = �A>�/2, � = �2(AA>)�1b =) x = A>(AA>)�1b

Coming back to the regularized problem, we can similarly minimize

f(x) = kAx� bk22 + µkxk22

to get
xµ = (A>A+ µI)�1A>b

Hence, the regularized solution converges to the least-norm solution as µ ! 0. That is

(A>A+ µI)�1A> ! A>(AA>)�1

for “fat” A as µ ! 0. You will show this in your homework.

4 Residuals

Let’s consider the overdetermined case and the corresponding problem

min
x

kAx� bk22

We call
r = Ax� b

the residual of the problem and
kAx� bk22 = r21 + · · ·+ r2m

This is the sum of squared residuals. Note that the least squares problem is often written as Ax ' b. That
is, this is equivalent in some notations to

min
x

kAx� bk22

5 Let’s talk about fat and skinny matrices

A key property of the two scenarios in a. and c. is the shape of the “data” matrix A. Indeed, if the system
is under-determined, A is a skinny matrix. If it is full rank, then A has a left inverse given by

(A>A)�1A>

If the system is over-determined then A is a fat matrix. If it is full rank, then A has a right inverse given by

A>(AA>)�1

This operator should look familiar to you as you already showed on your exam that when A is surjective,
AA> is invertible, that A>(AA>)�1A is a projection onto R(A>), and finally that I � A>(AA>)�1A is
a projection onto N (A). It turns out in the “skinny” case, A(A>A)�1A> is a projection onto R(A) and
I �A(A>A)�1A> is a projection onto N (A>) (you should be able to prove this on your own now).
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6 Intuition

Solving Ax = b is an attempt to represent b in m-dimensional space with a linear combination of the n
columns of A But those columns only give an n-dimensional plane inside the much larger m-dimensional
space if m > n as in the overdetermined case. The vector b is unlikely to lie in that plane, so Ax = b is
unlikely to be solvable. The vector Ax⇤ is the “nearest” to the point b in the plane. The error vector or
residual vector r is orthogonal to the plane (i.e. the column space of A). That is

a>i r = 0, i = 1, . . . , n () A>r = 0

where r = b�Ax⇤.

The error vector r = b�Ax⇤ is perpendicular to the column space:

2

64
a>1
...
a>n

3

75 r =

2

64
0
...
0

3

75

This geometric equation A>r = 0 finds x⇤: the projection ŷ = Ax⇤ (the combination of columns that is
closest to b) It also gives us the so called normal equation for x⇤:

A>r = A>(b�Ax⇤) = 0 =) A>Ax⇤ = A>b

where
x⇤ = (A>A)�1A>b

and
ŷ = Ax⇤ = A(A>A)�1A>

| {z }
P : projection

b = Pb

Here, Ax = b has no solution but Ax = ŷ has one solution x⇤. That is measurements are inconsistent in
Ax = b but consistent in Ax⇤ = ŷ.

Now, P = A(A>A)�1A> is symmetric, P 2 = P and P 2 Rm⇥m but has rank of N .
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7 Example

Consider

A =

2

4
2 0
�1 1
0 2

3

5 , b =

2

4
1
0
�1

3

5

The over-determined set of three equations in two variables Ax = b has no solution. Indeed, from the first
equation 2x1 = 1, we get that x1 = 1/2 and from the last equation 2x2 = �1 we get that x2 = �1/2 but
this means the second equation �x1 + x2 = 0 doesn’t hold.

Thus, to find an approximate solution we formulate the least squares problem:

min(2x1 � 1)2 + (�x1 + x2)
2 + (2x2 + 1)2

If you find the solution, you will see that x⇤ = (1/3,�1/3) and the residuals are

r = Ax⇤ � b = (�1/3,�2/3, 1/3)

This solution is the linear combination of the columns of A that is closest to b:

1

3

2

4
2
�1
0

3

5� 1

3

2

4
0
1
2

3

5 =

2

4
2/3
�2/3
�2/3

3

5

8 Least Squares Via SVD

Note: the singular vectors are real if A is real. SVD is a common tool for solving least squares. Indeed,

kAx� bk22 = kU⌃V >x� bk
= kU⇤(U⌃V >x� b)k22 since U is orthogonal

= k⌃V >x� U⇤bk22
= k⌃y � U>bk22

Now the goal is to find y that minimizes

k⌃y � U>bk22 = kdiag(�1, . . . ,�r, 0, . . . , 0)y � zk22

So, pick

yi =

(
zi
�i
, �i 6= 0

0, �i = 0

Then, set x = V y.
The SVD solution is the most stable computation of x⇤. This is in part because we reduce the problem

to only taking into consideration the singular values in the form of a singular matrix.
One of the important aspects of SVD is it allows us to assess the sensitivity of solutions of Ax = b to

sources of noise or error. Let A 2 Fn⇥n and suppose that det(A) 6= 0, b 6= 0, and A = U⌃V ⇤. Then,
x0 = A�1b is the solution. Suppose that as a result of noisy measurements, round-o↵ errors, etc. we only
have an approximate value A+ �A for A and b+ �b for b. Then we have a perturbed system of equations

(A+ �A)(x+ �x0) = b+ �b

To better understand the error, we need to relate �x to that of �A and �b.
Recall our recent definitions of norms. Choose some norm k ·k (all finite dimensional norms are equivalent

in that what we can prove with one norm, we can prove with another). Suppose that

k�Ak << kAk, k�bk << kbk
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To better understand the error, lets compute an upper bound on

k�xk
kxk

Dropping higher order terms, we have the approximate equation

�Ax0 +A�x = �b

Compute �x, taking norms of both sides, and using properties of the induced norm, we have

k�xk  kA�1k(k�bk+ k�Akkx0k)

Dividing by kx0k > 0, and noting that kbk  kAkkx0k, we have that

k�xk
kx0k

 kAkkA�1k
✓
k�bk
kbk +

k�Ak
kAk

◆

The number
(A) = kAkkA�1k

is the condition number of A and it depends on the norm chosen. It is always greater than or equal to one.
Matrices for which (A) is large are called ill-conditioned; for such matrices, the solution is very sensitive

to some small changes in A and in b. Since all norms on Fn are equivalent, it can be shown that if a matrix
is very ill-conditioned in some norm, it will also be ill-conditioned in any other norm.

So what does this mean for SVD? We know that

�1 = max
i

�i = max{kAxk2| kxk2 = 1} = kAk2

and
�n = min

i
�i = min{kAxk2| kxk2 = 1}

so that
kA�1k2 = 1/�n

since A�1 = V ⌃�1U⇤. We define the condition number (for the 2-norm) to be

(A) =
�1

�n

Hence if �1 >> �n > 0, for some �A and �b the resulting

k�xk2
kx0k2

may be very large.
The smallest singular value �n of A is a measure of how far the nonsingular matrix A is from being

singular.

9 Recursive Least Squares: A dynamical perspective

In o↵-line or batch identification, data up to some t = N is first collected, then the model parameter vector
x̂ is computed.

In on-line or recursive identification, the model parameter vector x̂t is required for every t = n < N .
Consider data {�0, . . . ,�n�1, y1, . . . , yn} and suppose that we believe

yk+1 ' �>
k ✓, k = 0, . . . , n� 1
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Here �i and yi are scalars. The least squares method as we have seen is to choose ✓ to minimize

Vn(✓) =
n�1X

k=0

(yk+1 � �>
k ✓)

2

One can show that by setting @Vn(✓)/@✓ = 0, Vn is minimized by

✓̂n =

 
n�1X

k=0

�k�
>
k

!�1 n�1X

k=0

�kyk+1

assuming the inverse exists.
Let Yn = (y1, . . . , yn)> and X>

n = [�0,�1, . . . ,�n�1]. With this notation we can write

(X>
n Xn)✓̂n = X>

n Yn

and ✓̂n above is the solution to this equation (check your self).
Moreover, every solution minimizes

kYn �Xn✓k2 =
n�1X

k=0

(yk+1 � �>
k ✓)

2

This ✓̂n is the LSE.
Note that the LSE does not require any probability structure; it is just the result of fitting a linear model

to data in a certain way.
Let’s see the recursive version. Suppose one more datum (yn+1,�n) becomes available so that we now

have Yn+1 = (Y >
n , yn+1)> and X>

n+1 = [X>
n ,�n]. Then we have a new LSE

✓̂n+1 = (X>
n+1Xn+1)

�1X>
n+1Yn+1

assuming again that the inverse exists. We can also obtain ✓̂n+1 from ✓̂n as follows.
First, verify that the LSE can be written as

✓̂n+1 = ✓̂n +R�1
n �n(yn+1 � �>

n ✓̂n), Rn+1 = Rn + �n�
>
n
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References: Solutions to ODEs: Chapter 3 [C&D]; Jordan Form: Chapter 4 [C&D]; Chapter 8.D [Ax]

1 Solutions to Autonomous LTI Systems

Recall from your basic ODE class that scalar ODE problems have solutions of the form:

ẋ =
dx

dt
= ax(t), x(t0) = x0 =) x(t) = x0e

a(t�t0)

1.1 Fundamental Theorem for ODEs

Consider the general ODE
ẋ = f(x, t)

The function f must satisfy two assumptions:
(A1) Let D be a set in R+ which contains at most a finite number of points per unit interval. D is

the set of possible discontinuity points; it may be empty. For each fixed, x 2 Rn, the function
t 2 R+\D ! f(x, t) 2 Rn is continuous and for any ⌧ 2 D, the left-hand and right-hand limits
f(x, ⌧�) and f(x, ⌧+), respectively, are finite vectors in Rn.

(A2) There is a piecewise continuous function k(·) : R+ ! R+ such that

kf(⇠, t)� f(⇠0, t)k  k(t)k⇠ � ⇠0k 8 t 2 R+, 8⇠, ⇠0 2 Rn

This is called a global Lipschitz condition because it must hold for all ⇠ and ⇠0.

Theorem. (Fundamental Theorem of Existence and Uniqueness.) Consider

ẋ(t) = f(x, t)

where initial condition (t0, x0) is such that x(t0) = x0. Suppose f satisfies (A1) and (A2). Then,
1. For each (t0, x0) 2 R+ ⇥ Rn there exists a continuous function � : R+ ! Rn such that

�(t0) = x0

and
�̇(t) = f(�(t), t), 8t 2 R+\D

2. This function is unique. The function � is called the solution through (t0, x0) of the di↵erential
equation.

1.2 Applying it to Linear Time Varying Systems

Recall

ẋ(t) = A(t)x(t) +B(t)u(t) (state DE)

y(t) = C(t)x(t) +D(t)u(t) (read-out eqn.)

with initial data (t0, x0) and the assumptions on A(·), B(·), C(·), D(·), u(·) all being PC:

10-1
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• A(t) 2 Rn⇥n

• B(t) 2 Rn⇥m

• C(t) 2 Rp⇥n

• D(t) 2 Rp⇥m

The input function u(·) 2 U , where U is the set of piecewise continuous functions from R+ ! Rm.
This system satisfies the assumptions of our existence and uniqueness theorem. Indeed,
1. For all fixed x 2 Rn, the function t 2 R+\D ! f(x, t) 2 Rn is continuous where D contains all the

points of discontinuity of A(·), B(·), C(·), D(·), u(·)
2. There is a PC function k(·) = kA(·)k such that

kf(⇠, t)� f(⇠0, t)k = kA(t)(⇠ � ⇠0)k  k(t)k⇠ � ⇠0k 8t 2 R+, 8⇠, ⇠0 2 Rn

Hence, by the above theorem, the di↵erential equation has a unique continuous solution x : R+ ! Rn which
is clearly defined by the parameters (t0, x0, u) 2 R+ ⇥ Rn ⇥ U .

Theorem. (Existence of the state transition map/flow.) Under the assumptions and notation above, for
every triple (t0, x0, u) 2 R+ ⇥ Rn ⇥ U , the state transition map

x(·) = ⇠(·, t0, x0, u) : R+ ! Rn

is a continuous map well-defined as the unique solution of the state di↵erential equation

ẋ(t) = A(t)x(t) +B(t)u(t)

with (t0, x0) such that x(t0) = x0 and u(·) 2 U .

1.3 Zero-State and Zero-Input Maps

The state transition function of a linear system is equal to its zero-input state transition function and its
zero-state state transition map:

⇠(t, t0, x0, u) = ⇠(t, t0, x0, 0)| {z }
zero-input state trans. func.

+ ⇠(t, t0, 0, u)| {z }
zero-state state trans. func.

Due to the fact that the state transition map and the response map are linear , they have the property that
for fixed (t, t0) 2 R+ ⇥ R+ the maps

⇠(t, t0, ·, 0) : Rn ! Rn : x0 7! ⇠(t, t0, x0, 0)

Hence by the Matrix Representation Theorem, they are representable by matrices. Therefore there exists a
matrix �(t, t0) 2 Rn⇥n such that

⇠(t, t0, x0, 0) = �(t, t0)x0, 8x0 2 Rn

(State transition matrix.) �(t, t0) is called the state transition matrix .
Consider the matrix di↵erential equation

Ẋ = A(t)X, X(·) 2 Rn⇥n

Let X(t0) = X0.

The state transition matrix �(t, t0) is defined to be the solution of the above matrix di↵erential equation
starting from �(t0, t0) = I. That is,

@

@t
�(t, t0) = A(t)�(t, t0)

and �(t0, t0) = I.

1.4 State Transition Matrix
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Definition. (LTI State transition matrix.) The state transition matrix for

ẋ = Ax, x 2 Rn, A 2 Rn⇥n

is the matrix exponential eAt defined to be

eAt = I +
At

1!
+

A2t2

2!
+ · · ·

where I is the n⇥ n identity matrix.

Proof. It is easy to verify that
�(t, 0) = eAt and �(t, t0) = eA(t�t0)

by checking that
x(t) = eA(t�t0)x0

satisfies the di↵erential equation
ẋ = Ax, x(t0) = x0

Indeed, by the fact that �(t, t0) satisfies the ODE (by definition) we know that

@

@t
�(t, t0) = A�(t, t0)

and
@

@t
exp(A(t� t0))x0 = A exp(A(t� t0))x0

In addition, �(t0, t0) = I and exp(A(t0 � t0)) = I. Hence, �(t, t0) and exp(A(t� t0)) satisfy the same ODE
so they are equal.

Hence, the matrix exponential is our friend and we need computational approaches for expressing this
little monster.

2 The Matrix Exponential

First, we note that the matrix exponential has several important properties.
• e0 = I

• eA(t+s) = eAteAs

• e(A+B)t = eAteBt () AB = BA

• (eAt)�1 = e�At

• d
dte

At = AeAt = eAt ·A
• Let z(t) 2 Rn⇥n. Then the solution to

ż(t) = Az(t)

with z(0) = I is
z(t) = eAt

Recall that

exp(x) =
1X

k=0

xk

k!

This is also true for the matrix exponential—i.e.

exp(At) =
1X

k=0

(At)k

k!
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Fact. Note also that Cayley-Hamilton implies that the matrix exponential is expressible as a polynomial
of order n� 1!

Using the series representation of eAt to compute eAt is di�cult unless, e.g., the matrix A is nilpotent in
which case the series yields a closed form solution.

Definition. (Nilpotent) A nilpotent matrix is such that Ak = 0 for some k.

Example. Consider

A =


0 1
0 0

�

Then

A2 =


0 0
0 0

�

so that

eAt = I +At =


1 t
0 1

�

Hence we need an alternative method to compute it.

2.1 Review of Laplace

Definition. (Laplace Transform)

Lf(t) =
Z 1

0
f(t)e�st dt

The Laplace transform has the following properties:
• Linearity:

L(af(t) + bg(t)) = aF (s)|{z}
Lf(t)

+bG(s)|{z}
Lg(t)

• Time Delay: Let u be a step function.

a0 t

u(t� a)

f(t� a)u(t� a)
L�! e�asF (s)

• First derivative (technically should be t = 0�):

Lḟ(t) = sF (s)� f(0)

• Integration:

L
✓Z 1

0�
f(⌧) d⌧

◆
=

F (s)

s
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2.2 Computation of eAt
via Laplace

Use the Laplace transform of Ẋ = AX, X 2 Rn⇥n, X(0) = I:

sX̂(s)�X(0) = AX̂(s)

so that
sX̂(s)�AX̂(s) = I =) X̂(s) = (sI �A)�1

We know (from property 6) that X(t) = eAt so that

eAt = X(t) = L�1(X̂(s)) = L�1
�
(sI �A)�1

�

Example. Consider the same example above with

A =


0 1
0 0

�

so that

(sI �A) =


s �1
0 s

�

Recall that the inverse of a 2⇥ 2 matrix

A =


a b
c d

�

is

A�1 =
1

ad� bc


d �b
�c a

�
.

Now,

(sI �A)�1 =
1

s2


s 1
0 s

�
=


1
s

1
s2

0 1
s

�

where we recall that L(f(t)) = F (s)
s so that L(1) = 1

s ; it is also easy to show that the ramp function
transforms to 1

s2 . Hence,

eAt = L�1


1
s

1
s2

0 1
s

�
=


1 t
0 1

�

Example. Consider

A =


1 1
0 1

�

Then

(sI �A)�1 =


s� 1 �1
0 s� 1

��1

=
1

(s� 1)2


s� 1 1
0 s� 1

�

where we recall that Leat = 1
s�a , s > a which can be verified by direct integration. Hence,

eAt = L�1

 1
s�1

1
(s�1)2

0 1
s�1

�
=


et tet

0 et

�

3 Computing the Matrix Exponential

Computation of the matrix exponential is important for expressing the solution of a autonomous or controlled
linear time invariant dynamical system. So we need ways to compute it that are tractable.

4 Distinct Eigenvalues
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If matrix A 2 Rn⇥n (or 2 Cn⇥n) has m distinct eigenvalues (�i 6= �j , i 6= j) then it has (at least) m
linearly independent eigenvectors.

If all eigenvalues of A are distinct then A is diagonalizable.

Q: do you remember what diagonalizable means?

Diagonalizable. An n⇥ n matrix A is diagonalizable i↵ the sum of the dimensions of its eigenspaces is
n—aka there exists a matrix P such that

A = P⇤P�1

where ⇤ = diag(�1, . . . ,�n),
P =

⇥
v1 · · · vn

⇤

with
Avi = �ivi

(i.e. col vectors of P are right eigenvectors of A)

Proof. Proof of Prop. 4 (By contradiction) Assume �i, i 2 {1, . . . ,m} are distinct and vi, i = 1, . . . ,m are
linearly dependent. That is, there exists ↵i such that

mX

i=1

↵ivi = 0

where all ↵i are not zero. We can assume w.l.o.g that ↵1 6= 0. Multiplying on the left by (�mI �A),

0 = (�mI �A)
mX

i=1

↵ivi = (�mI �A)
m�1X

i=1

↵ivi + ↵m(�mI �A)vm =
m�1X

i=1

↵i(�m � �i)vi

since Avi = �ivi. Then multiply by (�m�1I �A) to get that

0 = (�m�1I �A)
m�1X

i=1

↵i(�m � �i)vi =
m�2X

i=1

↵i(�m�1 � �i)(�m � �i)vi = 0

Repeatedly multiply by (�m�kI �A), k = 2, . . . ,m� 2 to obtain

↵
mY

i=2

(�i � �1)vi = 0

As �1 6= �i, i = 2, . . . ,m, the above implies that ↵1 = 0 which is a contradiction.

For each n⇥ n complex matrix A, define the exponential of A to be the matrix

exp(A) =
1X

k=0

Ak

k!

It is not di�cult to show that this sum converges for all complex matrices A of any finite dimension. But
we will not prove this here.

If A is a 1⇥ 1 matrix [t], then eA = [et], by the Maclaurin series formula for the function y = et. More
generally, if D is a diagonal matrix having diagonal entries d1, d2, . . . , dn, then we have

eD = I +D +
1

2!
D2 + · · · =

2

64
1 · · · 0
...

. . .
...

0 · · · 1

3

75+ diag(d1, . . . , dn) + diag

✓
d21
2!
,
d21
2!
, . . . ,

d21
2!

◆
= diag

�
ed1 , . . . , edn

�

The situation is more complicated for matrices that are not diagonal. However, if a matrix A happens to be
diagonalizable, there is a simple algorithm for computing eA, a consequence of the following lemma.
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Let A and P be complex n⇥ n matrices, and suppose that P is invertible. Then

exp(P�1AP ) = P�1 exp(A)P

Proof. Recall that, for all integers m � 0, we have (P�1AP )m = P�1AmP . The definition for exponential
then yields

exp(P�1AP ) = I + P�1AP +
1

2!
(P�1AP )2 + · · ·

= I + P�1AP +
1

2!
P�1A2P + · · ·

= P�1

✓
I +A+

A2

2!
+ · · ·

◆
P

= P�1 exp(A)P

If a matrix A is diagonalizable, then there exists an invertible P so that A = PDP�1, where D is a
diagonal matrix of eigenvalues of A, and P is a matrix having eigenvectors of A as its columns. In this case,
eA = PeDP�1.

Let A denote the matrix

A =


5 1
�2 2

�

You can asily verify that 4 and 3 are eigenvalues of A, with corresponding eigenvectors

w1 =


1
�1

�
and w2 =


1
�2

�

It follows that

A = PDP�1 =


1 1
�1 2

� 
4 0
0 3

� 
2 1
�1 �1

�

so that

exp(A) =


1 1
�1 2

� 
e4 0
0 e3

� 
2 1
�1 �1

�
=


2e4 � e3 e4 � e3

2e3 � 2e4 2e3 � e4

�

The definition of the exponential as a sum immediately reveals many other familiar properties. The
following proposition is easy to prove:

Let A 2 Cn⇥n.
1. If 0 denotes the zero matrix, then e0 = I.

2. AmeA = eAAm for all integers m

3. (eA)T = e(A
T )

4. If AB = BA then AeB = eBA and eAeB = eBeA.

Unfortunately not all familiar properties of the scalar exponential function y = et carry over to the matrix
exponential. For example, we know from calculus that es+t = eset when s and t are numbers. However this
is often not true for exponentials of matrices. In other words, it is possible to have n⇥ n matrices A and B
such that eA+B 6= eAeB . Exactly when we have equality, eA+B = eAeB , depends on specific properties of
the matrices A and B. What do you think they are?

Let A and B be complex n⇥ n matrices. If AB = BA then eA+B = eAeB .

Proof. DIY exercise
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5 Generalized Eigenvectors

Last time we talked about the case when A had distinct eigenvalues and we said you could simply diagonalize
as A = P⇤P�1 and then write

exp(At) = Pdiag(exp(�1t), . . . , exp(�nt))P
�1

Question: What about when A is not diagonalizable?
First, some preliminaries. Consider a vector space (V, F ) and a linear map A : V ! V .

Definition. (Invariant Subspaces.) A subspace M ⇢ V is said to be A–invariant or invariant under A if
given x 2M , Ax 2M . This is often written as A[M ] ⇢M or even AM ⇢M .

Example.
1. N (A) is A–invariant.

2. R(A) is A–invariant.

3. N (A� �iI) where �i 2 �(A) is A–invariant.

4. If
p(A) = Ak + ↵1A

k�1 + · · ·+ ↵k�1A+ ↵kI

then, N (p(A)) is A–invariant.

5. Let the subspaces M1 and M2 be A–invariant. Let

M1 +M2 = {x 2 V : x = x1 + x2, xi 2Mi for i = 1, 2}

Then, M1 \M2 and M1 +M2 are A–invariant.

Definition. (Generalized Eigenvectors) Suppose � is an eigenvalue of the square matrix A. We say that
v is a generalised eigenvector of A with eigenvalue �, if v is a nonzero element of the null space of
(A� �I)j—i.e. N (A� �I)j—for some positive integer j.

Fact. Null spaces eventually stabilize—that is, the null spaces N (A��I)j are increasing with j and there
is a unique positive integer k such that N (A� �I)j = N (A� �I)k for all j � k.

Definition. (Generalized Eigenspace) Consider A 2 Fn⇥n with spectrum �(A) = {�1, . . . ,�k}. Define the
generalized eigenspace pertaining to �i by

E�i = {x 2 Cn| (A� �iI)nx = 0}

Intuition: Observe that all the eigenvectors pertaining to �i are in E�i . For a given E�i , we can interpret
the spaces in a hierarchical viewpoint. We know that E�i contains all the eigenvectors pertaining to �i. Call
these eigenvectors the first order generalized eigenvectors. If the span of these is not equal to E�i , then
there must be a vector x 2 E�i for which y = (A � �iI)2x = 0 but (A � �iI)x 6= 0. That is to say y is an
eigenvector of A pertaining to �i. Call such vectors second order generalized eigenvectors. In general, we
call an x 2 E�i a generalized eigenvector of order p if y = (A � �iI)px = 0 but (A � �iI)p�1x 6= 0. For
this reason we will call E�i the space of generalized eigenvectors.

Fact. Let A 2 Cn⇥n with spectrum �(A) = {�1, . . . ,�k} and invariant subspaces E�i , i 2 {1, . . . , k}.
1. Let x 2 E�i be a generalized eigenvector of order p. Then the vectors

x, (A� �iI)x, (A� �iI)2x, . . . , (A� �iI)p�1x (1)

are linearly independent.

2. The subspace of Cn generated by the above vectors is an invariant subspace of A.

Example. Consider

A =

2

4
1 1 0
0 1 2
0 0 3

3

5
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•
�A(�) = (�� 3)(�� 1)2

• eigenvalues: � = 1, 3

• eigenvectors:
�1 = 3 : v1 = (1, 2, 2)
�2 = 1 : v2 = (1, 0, 0)

• The last generalized eigenvector will be a vector v3 6= 0 such that

(A� �2I)2v3 = 0

but
(A� �2I)v3 6= 0

Pick v3 = (0, 1, 0). Note that (A� �2I)v3 = v2.
Tip. How many powers of (A��I) do we need to compute in order to find all of the generalized eigenvectors
for �?

If A is an n ⇥ n matrix and � is an eigenvalue with algebraic multiplicity k, then the set of generalized
eigenvectors for � consists of the nonzero elements of N (A� �I)k . In other words, we need to take at most
k powers of A� �I to find all of the generalized eigenvectors for �.
Yet another example. Determine generalized eigenvectors for the matrix

A =

2

4
1 2 0
1 1 2
0 �1 1

3

5

• single eigenvalue of � = 1

• single eigenvector v1 = (�2, 0, 1)
• now we look at

(A� I)2 =

2

4
2 0 4
0 0 0
�1 0 �2

3

5

to get generalized eigenvector v2 = (0, 1, 0).

• Finally, (A� I)3 = 0 so that v3 = (1, 0, 0).

6 Jordan Normal Form

To get some intuition for why we can find a form that looks like the Jordan form (i.e. a block diagonal
decomposition) let us recall the following result.

First, recall the definition of the direct sum of subspaces:

Definition. (Direct Sum.) V is the direct sum of M1,M2, . . . ,Mk, denoted as

V = M1 �M2 � · · ·�Mk

if for all x 2 V , 9! xi 2Mi, i = 1, . . . , k such that

x = x1 + x2 + · · ·+ xk

Fact. The direct sum is the generalization of linear independence; e.g., check that if V = M1 � · · ·�Mk,
then Mi \Mj = {0}.
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Theorem. (Second Representation Theorem.) Let A : V ! V be a linear map. Let V = M1 �M2 where
dimV = n, dimM1 = k, and dimM2 = n� k be a finite dimensional vector space. If M1 is A–invariant,
then A has a representation of the form

A =


A11 A12

0 A22

�

where A11 2 F k⇥k, A12 2 F k⇥(n�k), A22 2 F (n�k)⇥(n�k). Moreover, if both M1 and M2 are A–invariant
then

A =


A11 0
0 A22

�

Proof. Let {b1, b2, . . . , bk} be a basis for M1 and let {bk+1, . . . , bn} be a basis for M2. By assumption
V = M1 �M2 so that {bi}ni=1 is a basis for V and any x 2 V has a unique representation as

x =
nX

i=1

⇠ibi

Moreover, A has a matrix representation A = (aij) dictated by

Abj =
nX

i=1

aijbi 8 j (2)

Now for all j = 1, . . . , k, bj 2 M1 which is A–invariant so that Abj 2 M1 with basis {bi}ki=1. Thus by (2),
for all j 2 {1, . . . , k}

Abj =
kX

i=1

aijbi

i.e. Aij = 0 for all i = k + 1, . . . , n, for all j = 1, . . . , k.

Essentially what this is saying is that since M1 is A–invariant, if I apply A to a basis vector in M1 it has
to stay in M1 so any vector x 2 M1 written as x =

Pk
i=1 ⇠ibi is such that Ax 2 M1 with Ax =

Pk
i=1 ⌘ibi

and no non-zero basis vectors are coming from the basis of M2.
Why useful? We can use the second representation theorem applied to

Cn = N(A� �1I)m1 � N(A� �2I)m2 � · · ·� N(A� �pI)mp

to write A via similarity transform into a matrix that has ’nice structure’ (Jordan blocks) so that with
respect to this structure eAt is easy to compute.

We are also going to use this result quite a bit in terms of decomposition of controllable and observable
subspaces. So keep it in your pocket.

6.1 Minimal Polynomial

In order to show this decomposition, we need to revisit the characteristic polynomial and its cousin the
minimal polynomial.

We know that
det(sI �A) = �A(s) (characteristic polynomial)

We can write
�A(s) = (s� �1)d1(s� �2)d2 · · · (s� �p)dp

where d1, . . . , dp are the multiplicities of �1, . . . ,�p 2 C, respectively and

pX

i=1

di = n
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By Cayley-Hamilton, we know that
�A(A) = 0n⇥n

Let  A(s) be the polynomial of least degree such that

 A(A) = 0n⇥n

Definition. (Minimal Polynomial.) Given a matrix A 2 Cn⇥n, we call minimal polynomial of A the
annihilating polynomial  of least degree. The minimal polynomial is of the form

 A(s) = (s� �1)m1 · · · (s� �p)mp

for some integers mi  di.

Proposition.  A(s) divides �A(s)

That is,
�A(s)

 A(s)
= q(s)

for some polynomial q(s).
Example.
1. Consider

A1 =

2

4
�1 0 0
0 �1 0
0 0 �2

3

5

Then,
�A(s) = (s� �1)2(s� �2) and  A(s) = (s� �1)(s� �2)

2. Consider

A2 =

2

4
�1 1 0
0 �1 0
0 0 �1

3

5

Then,
�A(s) = (s� �1)3 and  A(s) = (s� �1)2

 A(A) = (A� �1I)(A� �1I) = A2 � 2�1A+ �21I = 0

where

A2 =

2

4
�21 2�1 0
0 �21 0
0 0 �21

3

5

3. Consider

A =

2

4
3 0 0
1 3 0
0 0 4

3

5

Then
�A(s) = (s� 3)2(s� 4)

The minimal polynomial is either
(s� 3)(s� 4)

or
(s� 3)2(s� 4)

It cannot be the former since (A� 3I)(A� 4I) 6= 0.
That is,  A(s) is the least degree polynomial such that  A(A) = 0.



Lecture 10: Solutions to Autonomous ODEs 10-12

Theorem (Decomposition)

Cn = N (A� �1I)m1 �N (A� �2I)m2 � · · ·� N(A� �pI)mp

Proof.
1

 A(s)
=

1

(s� �1)m1 · · · (s� �p)mp
=

n1(s)

(s� �1)m1
+ · · ·+ np(s)

(s� �p)mp

so that
1 = n1(s)q1(s) + · · ·np(s)qp(s)

where

qi(s) =
 A(s)

(s� �i)mi

Thus,
I = n1(A)q1(A) + · · ·+ np(A)qp(A)

so that
x = n1(A)q1(A)| {z }

x1

x+ · · ·+ np(A)qp(A)
| {z }

x1

x

which in turn implies that

xi = ni(A)qi(A) = ni(A)
 A(A)

(A� �iI)mi

so that
(A� �iI)mixi = 0n =) xi 2 N(A� �iI)mi

To show the decomposition is unique, we argue by contradiction. Let

xi 2 N(A� �iI)mi

so that
x1 + · · ·+ xp = 0n

and wlog assume x1 6= 0. Then
x1 = �x2 � x3 � · · ·� xp

so that
(A� �2I)m2 · · · (A� �pI)mpx1 = 0n

But q1(s) and (s� �1)m1 are co-prime meaning that

h1(s)q1(s) + h2(s)(s� �1)m1 = 1

This implies that
h1(A) q1(A)x1| {z }

0

+h2(A) (A� �1I)m1x1| {z }
0

= x1 =) x1 = 0 ! 

Definition. (Multiplicities)
1. The geometric multiplicity of an eigenvalue � is the dimension of E�.

2. The algebraic multiplicity of an eigenvalue � is the number of times � appears as a root of �A(�).

Note. In general, the algebraic multiplicity and geometric multiplicity of an eigenvalue can di↵er. How-
ever, the geometric multiplicity can never exceed the algebraic multiplicity.
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Fact. If for every eigenvalue of A, the geometric multiplicity equals the algebraic multiplicity, then A is
said to be diagonalizable.

If the minimal polynomial is

 A(�) =
kY

i=1

(�� �i)mi

with 1  mi  di and di the algebraic multiplicity, then

Ni = N ((A� �iI)mi)

is the algebraic eigenspace andN (A��iI) is the geometric eigenspace with dim(Ni) the algebraic multiplicity
and dim(N (A� �iI)) the geometric multiplicity.

Proposition. dimN(A� �iI)mi = di

Proof. see C& D, p.115

6.2 Jordan Form Details

Definition. (Jordan Block.) Let � 2 C. A Jordan block Jk(�) is a k ⇥ k upper triangular matrix of the
form

Jk(�) =

2

66666664

� 1 0 · · · 0

0 � 1
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . . � 1
0 · · · · · · 0 �

3

77777775

A Jordan matrix is any matrix of the form

J = diag(Jn1(�1), . . . , Jnk(�k))

where the matrices Jn1 are Jordan blocks. If J 2 Cn⇥n, then n1 + n2 + · · ·+ nk = n.

Recall that
�A(s) = det(sI �A) = (s� �1)n1 · · · (s� �k)nk

When eigenvalues are distinct, ni = 1 so that A is diagonalizable.

Theorem. (semisimple system) A square complex n ⇥ n matrix is semisimple if and only if there exists
a nonsingular complex n⇥ n matrix T�1 and diagonal complex n⇥ n matrix ⇤ for which

A = T�1⇤T

or equivalently
⇤ = TAT�1

The columns ei 2 Cn of T�1 organized as

T�1 =

2

4
| | |
e1 e2 · · · en
| | |

3

5 2 Cn⇥n

and the diagonal entries �i 2 C of ⇤ organized as

⇤ = diag(�1,�2, . . . ,�n) 2 Cn⇥n

may be taken as n eigenvectors associated according to (1) with n eigenvalues �i of A that form a spectral
list.
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Note: We call spectral list of A any n–tuple (�i)
n
i=1 of eigenvalues that is complete as a list of roots of the

characteristic polynomial �A

In other words, A 2 Cn⇥n is semisimple i↵ A is diagonalizable by a similarity transformation.

Example 1. Modal Decomposition. Consider

ẋ = Ax+Bu

y = Cx

Define z = Tx. Then

ż = TAT�1z + TBu

y = CT�1z

Now consider the case where we have a single input/single output (SISO, e.g., m = 1 = p). Define

TB =

2

6664

b̃1
b̃2
...
b̃n

3

7775
, CT�1 =

⇥
c̃1 c̃2 · · · c̃n

⇤

Then

C(sI �A)�1b =
c̃1b̃1
s� �1

+ · · ·+ c̃nb̃n
s� �n

=
nX

i=1

c̃ib̃i
s� �i

which is called the modal decomposition.

b̃1

b̃2

b̃n

u

1
s��1

1
s��2

1
s��n

c̃1

c̃2

c̃n

⌃ y

Note: c(sI � A)�1b is called the transfer function. If c̃i or b̃i is zero, then the transfer function does not
contain the term 1/(s� �i).

Theorem. (Jordan Normal Form.) Let A 2 Cn⇥n. Then there is a non-singular matrix P such that

A = Pdiag(Jn1(�1), . . . , Jnk(�k))P
�1 = PJP�1

where Jni(�i) is a Jordan block and
Pk

i=1 ni = n. The Jordan form J is unique up to permutations of
the blocks. The eigenvalues �1, . . . ,�k are not necessarily distinct. If A is real with real eigenvalues, then
P can be taken as real.

Suppose that
P�1AP = J = diag(J1, . . . , Jk)

where Ji = Jni(�i). Express P as
P =

⇥
P1 · · · Pk

⇤

where Pi 2 Cn⇥ni are the columns of P associated with i–th Jordan block Ji. We have that

APi = PiJi
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Let Pi = [vi1 vi2 · · · vini ] so that
Avi1 = �ivi1

that is, the first column of each Pi is an eigenvector associated with eigenvalue �i. For j = 2, . . . , ni,

Avij = vij�1 + �ivij

These vi1, . . . , vini are the generalized eigenvectors.

Example. Let A be an n by n square matrix. If its characteristic equation �A(t) = 0 has a repeated root
then A may not be diagonalizable, so we need the Jordan Canonical Form. Suppose � is an eigenvalue of
A, with multiplicity r as a root of �A(t) = 0. The vector v is an eigenvector with eigenvalue � if Av = �v
or equivalently

(A� �I)v = 0

The trouble is that this equation may have fewer than r linearly independent solutions for v. So we
generalize and say that v is a generalized eigenvector with eigenvalue � if

(A� �I)kv = 0

for some positive k. Now one can prove that there are exactly r linearly independent generalized eigenvec-
tors. Finding the Jordan form is now a matter of sorting these generalized eigenvectors into an appropriate
order.
To find the Jordan form carry out the following procedure for each eigenvalue � of A.
1. First solve (A� �I)v = 0, counting the number r1 of linearly independent solutions.

2. If r1 = r good, otherwise r1 < r and we must now solve

(A� �I)2v = 0.

There will be r2 linearly independent solutions where r2 > r1.

3. If r2 = r good, otherwise solve
(A� �I)3v = 0

to get r3 > r2 linearly independent solutions, and so on.

4. Eventually one gets r1 < r2 < · · · < rN�1 < rN = r.

Fact. The number N is the size of the largest Jordan block associated with �, and r1 is the total
number of Jordan blocks associated to �. If we define s1 = r1, s2 = r2 � r1, s3 = r3 � r2, . . . ,
sN = rN � rN�1 then sk is the number of Jordan blocks of size at least k by k associated to �.

5. Finally put m1 = s1 � s2, m2 = s2 � s3, . . . , mN�1 = sN�1 � sN and mN = sN . Then mk is the
number of k by k Jordan blocks associated to �. Once we’ve done this for all eigenvalues then we’ve
got the Jordan form!

To find P such that J = P�1AP we need to do more work. We do the following for each eigenvalue �:
1. First find the Jordan block sizes associated to � by the above process. Put them in decreasing order

N1 � N2 � · · · � Nk.

2. Now find a vector v1,1 such that (A� �I)N1v1,1 = 0 but (A� �I)N1�1v1,1 6= 0.

3. Define v1,2 = (A � �I)v1,1, v1,3 = (A � �I)v1,2 and so on until we get v1,N1 . We can’t go further
because (A� �I)v1,N1 = 0.

4. If we only have one block we’re OK, otherwise we can find v2,1 such that (A � �I)N2v2,1 = 0, and
(A� �I)N2�1v2,1 6= 0 and AND v2,1 is not linearly dependent on v1,1, . . . , v1,N1 .

5. Define v2,2 = (A� �I)v2,1 etc.

6. keep going if you have more blocks, otherwise you will have r linearly independent vectors
v1,1, . . . , vk,Nk . Let

P� =
⇥
vk,Nk · · · v1,1

⇤

be the n by r matrix.

7. do this for all �’s then stack the P�’s up horizontally to get P
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6.3 Functions of a matrix

Definition. (Functions of a matrix.) Let f̂(s) be any function of s analytic on the spectrum of A and
p̂(s) be a polynomial such that

f̂k(�`) = p̂k(�`)

for 0  k  m` � 1 and 1  `  �. Then
f̂(A) = p̂(A)

In fact, if m =
P�

i=1 mi then

p̂(s) = a1s
m�1 + a2s

m�2 + · · ·+ ams�

where a1, a2, . . . , an are functions of

(f̂(�1), f̂
1(�1), f̂

2(�1), . . . , f̂
m1(�1), f̂(�2), . . .)

and hence

f̂(A) = a1A
m�1 + · · ·+ amA0 =

�X

`=1

m`�1X

k=0

pk`(A)fk(�`)

where pk`’s are polynomials independent of f .
Example. Define

J2(�, ") =


� 1
0 �+ "

�

with eigenvalues �1 = � and �2 = �+ ". For any " 6= 0, J2(�, ") is diagonalizable. Computing eigenvector

[�1I � J2(�, ")]v1 =


0 �1
0 �"

�
v1 = 0 =) v1 =


1
0

�

⇥
�2I � J2(�, ")

⇤
v2 =


" �1
0 0

�
v2 = 0 =) v1 =


1
"

�

and

T =
⇥
v1 v2

⇤
=


1 1
0 "

�
, T�1 =


1 �1/"
0 1/"

�

we can evaluate

f(J2(�, ")) = Tf(⇤)T�1 =


1 1
0 "

� 
f(�) 0
0 f(�+ ")

� 
1 �1/"
0 1/"

�
=


f(�) (f(�+ ")� f(�))/"
0 f(�+ ")

�

As J2(�, ")! J2(�) as "! 0 and f is continuous, if f is also di↵erentiable at �

f(J2(�, ")) = lim
"!0

f(J2(�, ")) =


f(�) f 0(�)
0 f(�)

�

6.4 Functions of a matrix (repeated eigenvalues)

Theorem. (General Form of f(A)) Let A 2 Cn⇥n have a minimal polynomial  A given by

 A(s) =
�Y

k=1

(s� �k)mk

Let the domain � contain �(A), then for any analytic function f : �! C. we have

f(A) =
�X

k=1

mk�1X

`=0

f (`)(�k)pk`(A)
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where pk`’s are polynomials independent of f .

Consider

J =

2

66666664

� 1 0 · · · 0

0 �
. . . · · ·

...
...

. . .
. . .

. . .
...

...
. . .

. . .
. . . 1

0 · · · · · · 0 �

3

77777775

2 Fn⇥n

Claim:

f(J) =

2

666664

f(�) f 0(�) · · · f(n�1)(�)
(n�1)!

0
. . .

. . . · · ·
...

. . .
. . . f1(�)

0 · · · · · · f(�)

3

777775

Proof. the minimum polynomial is (s� �)n. Thus,

f(J) =
n�1X

`=0

f (`)(�)p`(J)

Choose
f1(s) = 1 =) f1(J) = I = f (0)

1 p0(J) =) p0(J) = I

f2(s) = s� � =) f2(J) = J � �I = f (1)
2 (�)p1(J) =) p1(J) = J � �I

f3(s) = (s� �)2 =) f3(J) = (J � �I)2 = f (2)
3 (�)p2(J) =) 2p2(J) = (J � �I)2

Hence

p0(J) = I

p1(J) = J � �I

p2(J) =
1

2
(J � �I)2

Thus,

f(J) =

2

666666664

f(�) f 0(�) f 00(�)
2 · · · f(n�1)(�)

(n�1)!

0
. . .

. . .
. . .

...
... · · ·

. . .
. . . f 00(�)

2
... · · ·

. . .
. . . f 0(�)

0 · · · · · · · · · f(�)

3

777777775

Hence we have

Theorem. (Spectral Mapping Theorem.)

�(f(J)) = f(�(J)) = {f(�), f(�), . . . , f(�)}

and more generally that
�(f(A)) = f(�(A))
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Example.

eJi(�t) =

2

666666664

e�t te�t t2

2! e
�t · · · ti�1

(i�1)!e
�t

. . .
. . .

. . .
...

. . .
. . . t2

2! e
�t

. . . te�t

0 e�t

3

777777775

What does this mean? Well more generally if we had

J = diag

8
<

:

2

4
�1 1 0
0 �1 1
0 0 �1

3

5 ,


�1 1
0 �1

�
,


�2 1
0 �2

�
,�2

9
=

;

Recall that this Jordan form my be obtained from A by the similarity transform

J = TAT�1

where
T�1 =

⇥
e1 v1 w1 e2 v2 e3 v3 e4

⇤

where e1, . . . , e4 are eigenvectors and the rest are generalized eigenvectors. Then

f(A) = f(T�1JT ) = T�1f(J)T

where

f(J) = diag

8
<

:

2

4
f(�1) f 0(�1)

f 00(�1)
2

0 f(�1) f 0(�1)
0 0 f(�1)

3

5 ,


f(�1) f 0(�1)
0 f(�1)

�
,


f(�2) f 0(�2)
0 f(�2)

�
, f(�2)

9
=

;

Example. Compute eAt for

A =


0 2
�1 �2

�

Eigenvalues:

det(�I �A) =

����


� �1
1 �2

����� = �2 + 2�+ 1 = (�+ 1)2 = 0 =) �1 = �2 = �1

Eigenvector:

(1I �A)v1 =


�1 �1
1 1

�
v1 = 0, =) v1 =


1
01

�

Generalized eigenvector:

v11 = v1, (A� 1I)v12 =


1 1
�1 �1

�
v12 =


1
�1

�
v11, =) v12 =


1
0

�

Jordan form:

T =
⇥
v11 v12

⇤
=


1 1
�1 0

�
, T�1 =


0 �1
1 1

�
, J =


�1 1
0 �1

�

Matrix exponential:

eAt = TeJ2(�t)T�1 =


1 1
�1 0

� 
e�t te�t

0 e�t

� 
0 �1
1 1

�
=


(t+ 1)e�t te�t

�te�t (1� t)e�t

�
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References: Jordan Form: Chapter 4 [C&D]; Chapter 8.D [Ax]

1 Generalized Eigenvectors

Last time we talked about the case when A had distinct eigenvalues and we said you could simply diagonalize
as A = P⇤P�1 and then write

exp(At) = Pdiag(exp(�1t), . . . , exp(�nt))P
�1

Definition. (Multiplicities)
1. The geometric multiplicity of an eigenvalue � is the dimension of E�.

2. The algebraic multiplicity of an eigenvalue � is the number of times � appears as a root of �A(�).

In general, the algebraic multiplicity and geometric multiplicity of an eigenvalue can di↵er. However, the
geometric multiplicity can never exceed the algebraic multiplicity.

Fact. If for every eigenvalue of A, the geometric multiplicity equals the algebraic multiplicity, then A is
said to be diagonalizable.

Question: What about when A is not diagonalizable?

Definition. (Generalized Eigenvectors) Suppose � is an eigenvalue of the square matrix A. We say that
v is a generalised eigenvector of A with eigenvalue �, if v is a nonzero element of the null space of
(A� �I)j—i.e. N (A� �I)j—for some positive integer j.

Fact. Null spaces eventually stabilize—that is, the null spaces N (A��I)j are increasing with j and there
is a unique positive integer k such that N (A� �I)j = N (A� �I)k for all j � k.

Fact. The number of generalized eigenvectors associated to an eigenvalue �i is equal to the di↵erence
between the algebraic multiplicity di and the geometric multiplicity mi; indeed,

dim(N (A� �iI)) = mi =) 9 mi L.I. vectors spanning N (A� �iI)

and di is the number of times �i is a root of the characteristic polynomial. So, there is at least di �mi

generalized eigenvectors. Further, if di = mi, then there are no generalized eigenvectors.

Definition. (Generalized Eigenspace) Consider A 2 Fn⇥n with spectrum �(A) = {�1, . . . ,�k}. Define the
generalized eigenspace pertaining to �i by

E�i = {x 2 Cn| (A� �iI)nx = 0}

Intuition: Observe that all the eigenvectors pertaining to �i are in E�i . For a given E�i , we can interpret
the spaces in a hierarchical viewpoint.
a. We know that E�i contains all the eigenvectors pertaining to �i. Call these eigenvectors the first order

generalized eigenvectors.

11-1
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b. If the span of these is not equal to E�i , then there must be a vector x 2 E�i for which y = (A��iI)2x = 0
but (A� �iI)x 6= 0. That is to say y is an eigenvector of A pertaining to �i. Call such vectors second
order generalized eigenvectors.

c. In general, we call an x 2 E�i a generalized eigenvector of order p if y = (A � �iI)px = 0 but
(A� �iI)p�1x 6= 0.

For this reason we will call E�i the space of generalized eigenvectors.

Fact. Let A 2 Cn⇥n with spectrum �(A) = {�1, . . . ,�k} and invariant subspaces E�i , i 2 {1, . . . , k}.
1. Let x 2 E�i be a generalized eigenvector of order p. Then the vectors

x, (A� �iI)x, (A� �iI)2x, . . . , (A� �iI)p�1x (1)

are linearly independent.

2. The subspace of Cn generated by the above vectors is an invariant subspace of A.

Example. Consider

A =

2

4
1 1 0
0 1 2
0 0 3

3

5

•
�A(�) = (�� 3)(�� 1)2

• eigenvalues: � = 1, 3

• eigenvectors:
�1 = 3 : v1 = (1, 2, 2)
�2 = 1 : v2 = (1, 0, 0)

• The last generalized eigenvector will be a vector v3 6= 0 such that

(A� �2I)2v3 = 0

but
(A� �2I)v3 6= 0

Pick v3 = (0, 1, 0). Note that (A� �2I)v3 = v2.

Tip on computation. Q. How many powers of (A� �I) do we need to compute in order to find all of the
generalized eigenvectors for �?

A. At most d, where d is the algebraic multiplicity of �. Indeed, if A is an n⇥n matrix and � is an eigenvalue
with algebraic multiplicity d, then the set of generalized eigenvectors for � consists of the nonzero elements
of N (A � �I)d . In other words, we need to take at most d powers of A � �I to find all of the generalized
eigenvectors for �.

Example. Determine generalized eigenvectors for the matrix

A =

2

4
1 2 0
1 1 2
0 �1 1

3

5

• single eigenvalue of � = 1

• single eigenvector v1 = (�2, 0, 1)
• now we look at

(A� I)2 =

2

4
2 0 4
0 0 0
�1 0 �2

3

5
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to get generalized eigenvector v2 = (0, 1, 0).

• Finally, (A� I)3 = 0 so that v3 = (1, 0, 0).

2 Jordan Normal Form

To get some intuition for why we can find a form that looks like the Jordan form (i.e. a block diagonal
decomposition) let us recall the following result.

First, recall the definition of the direct sum of subspaces:

Definition. (Direct Sum.) V is the direct sum of M1,M2, . . . ,Mk, denoted as

V = M1 �M2 � · · ·�Mk

if for all x 2 V , 9! xi 2Mi, i = 1, . . . , k such that

x = x1 + x2 + · · ·+ xk

Fact. The direct sum is the generalization of linear independence; e.g., check that if V = M1 � · · ·�Mk,
then Mi \Mj = {0}.

Theorem. (Second Representation Theorem.) Let A : V ! V be a linear map. Let V = M1 �M2 where
dimV = n, dimM1 = k, and dimM2 = n� k be a finite dimensional vector space. If M1 is A–invariant,
then A has a representation of the form

A =


A11 A12

0 A22

�

where A11 2 F k⇥k, A12 2 F k⇥(n�k), A22 2 F (n�k)⇥(n�k). Moreover, if both M1 and M2 are A–invariant
then

A =


A11 0
0 A22

�

Proof. Let {b1, b2, . . . , bk} be a basis for M1 and let {bk+1, . . . , bn} be a basis for M2. By assumption
V = M1 �M2 so that {bi}ni=1 is a basis for V and any x 2 V has a unique representation as

x =
nX

i=1

⇠ibi

Moreover, A has a matrix representation A = (aij) dictated by

Abj =
nX

i=1

aijbi 8 j (2)

Now for all j = 1, . . . , k, bj 2 M1 which is A–invariant so that Abj 2 M1 with basis {bi}ki=1. Thus by (2),
for all j 2 {1, . . . , k}

Abj =
kX

i=1

aijbi

i.e. Aij = 0 for all i = k + 1, . . . , n, for all j = 1, . . . , k.

Essentially what this is saying is that since M1 is A–invariant, if I apply A to a basis vector in M1 it has
to stay in M1 so any vector x 2 M1 written as x =

Pk
i=1 ⇠ibi is such that Ax 2 M1 with Ax =

Pk
i=1 ⌘ibi

and no non-zero basis vectors are coming from the basis of M2.
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Why useful? We can use the second representation theorem applied to

Cn = N (A� �1I)m1 �N (A� �2I)m2 � · · ·�N (A� �pI)mp

to write A via similarity transform into a matrix that has ’nice structure’ (Jordan blocks) so that with
respect to this structure eAt is easy to compute.

We are also going to use this result quite a bit in terms of decomposition of controllable and observable
subspaces. So keep it in your pocket.

2.1 Minimal Polynomial

In order to show the decomposition

Cn = N (A� �1I)m1 �N (A� �2I)m2 � · · ·�N (A� �pI)mp

we need to revisit the characteristic polynomial and its cousin the minimal polynomial.
We know that

det(sI �A) = �A(s) (characteristic polynomial)

We can write
�A(s) = (s� �1)d1(s� �2)d2 · · · (s� �p)dp

where d1, . . . , dp are the algebraic multiplicities of �1, . . . ,�p 2 C, respectively and

pX

i=1

di = n

By Cayley-Hamilton, we know that
�A(A) = 0n⇥n

Let  A(s) be the polynomial of least degree such that

 A(A) = 0n⇥n

Definition. (Minimal Polynomial.) Given a matrix A 2 Cn⇥n, we call minimal polynomial of A the
annihilating polynomial  of least degree. The minimal polynomial is of the form

 A(s) = (s� �1)m1 · · · (s� �p)mp

for some integers mi  di.

Proposition.  A(s) divides �A(s). That is,

�A(s)

 A(s)
= q(s)

for some polynomial q(s).

Example.
1. Consider

A1 =

2

4
�1 0 0
0 �1 0
0 0 �2

3

5

Then,
�A(s) = (s� �1)2(s� �2) and  A(s) = (s� �1)(s� �2)
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2. Consider

A2 =

2

4
�1 1 0
0 �1 0
0 0 �1

3

5

Then,
�A(s) = (s� �1)3 and  A(s) = (s� �1)2

 A(A) = (A� �1I)(A� �1I) = A2 � 2�1A+ �21I = 0

where

A2 =

2

4
�21 2�1 0
0 �21 0
0 0 �21

3

5

3. Consider

A =

2

4
3 0 0
1 3 0
0 0 4

3

5

Then
�A(s) = (s� 3)2(s� 4)

The minimal polynomial is either
(s� 3)(s� 4)

or
(s� 3)2(s� 4)

It cannot be the former since (A� 3I)(A� 4I) 6= 0.
That is,  A(s) is the least degree polynomial such that  A(A) = 0.

Theorem (Decomposition)

Cn = N (A� �1I)m1 �N (A� �2I)m2 � · · ·�N (A� �pI)mp

Proof.
1

 A(s)
=

1

(s� �1)m1 · · · (s� �p)mp
=

n1(s)

(s� �1)m1
+ · · ·+ np(s)

(s� �p)mp

so that
1 = n1(s)q1(s) + · · ·np(s)qp(s)

where

qi(s) =
 A(s)

(s� �i)mi

Thus,
I = n1(A)q1(A) + · · ·+ np(A)qp(A)

so that
x = n1(A)q1(A)| {z }

x1

x+ · · ·+ np(A)qp(A)
| {z }

x1

x

which in turn implies that

xi = ni(A)qi(A) = ni(A)
 A(A)

(A� �iI)mi

so that
(A� �iI)mixi = 0n =) xi 2 N (A� �iI)mi
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To show the decomposition is unique, we argue by contradiction. Let

xi 2 N (A� �iI)mi

so that
x1 + · · ·+ xp = 0n

and wlog assume x1 6= 0. Then
x1 = �x2 � x3 � · · ·� xp

so that
(A� �2I)m2 · · · (A� �pI)mpx1 = 0n

But q1(s) and (s� �1)m1 are co-prime meaning that

h1(s)q1(s) + h2(s)(s� �1)m1 = 1

This implies that
h1(A) q1(A)x1| {z }

0

+h2(A) (A� �1I)m1x1| {z }
0

= x1 =) x1 = 0 ! 

If the minimal polynomial is

 A(�) =
pY

i=1

(�� �i)mi

with 1  mi  di and di the algebraic multiplicity, then

N ((A� �iI)mi)

is the algebraic eigenspace and N (A� �iI) is the geometric eigenspace with dim(N ((A� �iI)mi)) equal to
the algebraic multiplicity and dim(N (A� �iI)) equal to the geometric multiplicity.

Proposition.
dim(N ((A� �iI)mi)) = di.

Proof. see C& D, p.115

2.2 Jordan Form Details

Definition. (Jordan Block.) Let � 2 C. A Jordan block Jk(�) is a k ⇥ k upper triangular matrix of the
form

Jk(�) =

2

66666664

� 1 0 · · · 0

0 � 1
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . . � 1
0 · · · · · · 0 �

3

77777775

A Jordan matrix is any matrix of the form

J = diag(Jn1(�1), . . . , Jnp(�p))

where the matrices Jn1 are Jordan blocks. If J 2 Cn⇥n, then n1 + n2 + · · ·+ np = n.

Recall that
�A(s) = det(sI �A) = (s� �1)d1 · · · (s� �p)dp

When eigenvalues are distinct, di = 1 for each i so that A is diagonalizable.
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Theorem. (semisimple system.) A square complex n ⇥ n matrix is semisimple if and only if there exists
a nonsingular complex n⇥ n matrix T�1 and diagonal complex n⇥ n matrix ⇤ for which

A = T�1⇤T

or equivalently
⇤ = TAT�1

The columns ei 2 Cn of T�1 organized as

T�1 =

2

4
| | |
e1 e2 · · · en
| | |

3

5 2 Cn⇥n

and the diagonal entries �i 2 C of ⇤ organized as

⇤ = diag(�1,�2, . . . ,�n) 2 Cn⇥n

may be taken as n eigenvectors associated according to (1) with n eigenvalues �i of A that form a spectral
list.

Note: We call spectral list of A any n–tuple (�i)
n
i=1 of eigenvalues that is complete as a list of roots of the

characteristic polynomial �A

In other words, A 2 Cn⇥n is semisimple i↵ A is diagonalizable by a similarity transformation.

Example.Modal Decomposition. Consider

ẋ = Ax+Bu

y = Cx

Define z = Tx. Then

ż = TAT�1z + TBu

y = CT�1z

Now consider the case where we have a single input/single output (SISO, e.g., m = 1 = p). Define

TB =

2

6664

b̃1
b̃2
...
b̃n

3

7775
, CT�1 =

⇥
c̃1 c̃2 · · · c̃n

⇤

Then

C(sI �A)�1b =
c̃1b̃1
s� �1

+ · · ·+ c̃nb̃n
s� �n

=
nX

i=1

c̃ib̃i
s� �i

which is called the modal decomposition.

b̃1

b̃2

b̃n

u

1
s��1

1
s��2

1
s��n

c̃1

c̃2

c̃n

⌃ y

Note: c(sI � A)�1b is called the transfer function. If c̃i or b̃i is zero, then the transfer function does not
contain the term 1/(s� �i).
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Theorem. (Jordan Normal Form.) Let A 2 Cn⇥n. Then there is a non-singular matrix P such that

A = Pdiag(Jn1(�1), . . . , Jnk(�p))P
�1 = PJP�1

where Jni(�i) is a Jordan block and
Pp

i=1 ni = n. The Jordan form J is unique up to permutations of
the blocks. The eigenvalues �1, . . . ,�p are not necessarily distinct. If A is real with real eigenvalues, then
P can be taken as real.

Suppose that
P�1AP = J = diag(J1, . . . , Jp)

where Ji = Jni(�i). Express P as
P =

⇥
P1 · · · Pk

⇤

where Pi 2 Cn⇥ni are the columns of P associated with i–th Jordan block Ji. We have that

APi = PiJi

Let Pi = [vi1 vi2 · · · vini ] so that
Avi1 = �ivi1

that is, the first column of each Pi is an eigenvector associated with eigenvalue �i. For j = 2, . . . , ni,

Avij = vij�1 + �ivij

These vi1, . . . , vini are the generalized eigenvectors.

3 How to compute the Jordan Form

Let A be an n⇥n square matrix. If its characteristic equation �A(s) = 0 has a repeated root then A may not
be diagonalizable, so we need the Jordan Canonical Form. Suppose � is an eigenvalue of A, with multiplicity
r as a root of �A(s) = 0. The vector v is an eigenvector with eigenvalue � if

Av = �v () (A� �I)v = 0

The trouble is that this equation may have fewer than r linearly independent solutions for v. So we generalize
and say that v is a generalized eigenvector with eigenvalue � if

(A� �I)kv = 0

for some positive k.
Now one can prove that there are exactly r linearly independent generalized eigenvectors. Finding the

Jordan form is now a matter of sorting these generalized eigenvectors into an appropriate order.

3.1 Jordan Form Procedure

To find the Jordan form carry out the following procedure.
Step 1: Compute Jordan Blocks for �. For each �i an eigenvalue of A, let di be the algebraic multiplicity.
Then, do the following:
1. First solve (A� �iI)v = 0, counting the number r1 of linearly independent solutions.

2. If r1 = di good, otherwise r1 < di and we must now solve

(A� �iI)2v = 0.

There will be r2 linearly independent solutions where r2 > r1.

3. If r2 = di good, otherwise solve
(A� �iI)3v = 0

to get r3 > r2 linearly independent solutions, and so on. . .
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4. Eventually, one gets r1 < r2 < · · · < rN�1 < rN = di.

The number N is the size of the largest Jordan block associated with �i, and r1 is the total number of
Jordan blocks associated to �i. Define

s1 = r1, s2 = r2 � r1, s3 = r3 � r2, . . . , sN = rN � rN�1

so that sk is the number of Jordan blocks of size at least k ⇥ k associated to �i.

5. Finally, put
m1 = s1 � s2, m2 = s2 � s3, . . . ,mN�1 = sN�1 � sN , mN = sN .

Then mk is the number of k ⇥ k Jordan blocks associated to �.
Once we’ve done this for all eigenvalues then we’ve got the Jordan form!

Step 2: Compute the similarity transform matrix P . To find P such that

J = P�1AP,

for each eigenvalue � do
1. First find the Jordan block sizes associated to � by the above process. Put them in decreasing order

N1 � N2 � · · · � Np.

2. Now find a vector v1,1 such that (A� �I)N1v1,1 = 0 but (A� �I)N1�1v1,1 6= 0.

3. Define v1,2 = (A��I)v1,1, v1,3 = (A��I)v1,2 and so on until we get v1,N1 . We can’t go further because
(A� �I)v1,N1 = 0.

4. If we only have one block we’re OK, otherwise we can find v2,1 such that (A � �I)N2v2,1 = 0, and
(A� �I)N2�1v2,1 6= 0 and AND v2,1 is not linearly dependent on v1,1, . . . , v1,N1 .

5. Define v2,2 = (A� �I)v2,1 etc.

6. keep going if you have more blocks, otherwise you will have r linearly independent vectors v1,1, . . . , vp,Np .
Let

P� =
⇥
vp,Np · · · v1,1

⇤

be the n by r matrix.
Do this procedure for all �’s and then stack the P�’s up horizontally to get P . voila!

3.2 Examples

What easier way to learn something than through doing!
Example 1. Consider

A =

2

66664

1 �1 1 �1 1
0 1 1 1 1
1 0 1 0 0
0 0 0 1 0
0 0 0 0 1

3

77775

2

66664

1 1 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1

3

77775

2

66664

�1 �1 2 0 2
�1 0 1 �1 1
1 1 �1 0 �2
0 0 0 1 0
0 0 0 0 1

3

77775
=

2

66664

�1 �1 2 �1 2
1 2 �1 0 �1
�1 0 2 �1 1
0 0 0 1 1
0 0 0 0 1

3

77775

Then,

det(sI �A) = det

0

@

2

4
s+ 1 1 �2
�1 s� 2 1
1 0 s� 2

3

5

1

A det

✓
s� 1 �1
0 s� 1

�◆
= (s� 1)5 =) � = 1, d = 5

Step 1: Computing the J-form by way of eigenspaces.
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a. Find N (A� I). 2

66664

�2 �1 2 �1 2
1 1 �1 0 �1
�1 0 1 �1 1
0 0 0 0 1
0 0 0 0 0

3

77775

2

64
x1
...
x5

3

75 = 0

Row reduction makes this set of linear equations equivalent to
2

66664

1 0 �1 1 0
0 1 0 �1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

3

77775

2

64
x1
...
x5

3

75 = 0 =) x =

2

66664

x3 � x4

x4

x3

x4

0

3

77775
=) N (A� I) = span

0

BBBB@

2

66664

1
0
1
0
0

3

77775
,

2

66664

�1
1
0
1
0

3

77775

1

CCCCA

Hence, r1 = 2 < d = 5.

b. Find N ((A� I)2).

(A� I)2x = 0 =)

2

66664

1 1 �1 0 �2
0 0 0 0 0
1 1 �1 0 �2
0 0 0 0 0
0 0 0 0 0

3

77775

2

66664

x1

x2

x3

x4

x5

3

77775
= 0 =)

2

66664

�x2 + x3 + x5

x2

x3

x4

x5

3

77775
= 0

Hence,

N (A� I)2 = span

0

BBBB@

2

66664

�1
1
0
0
0

3

77775
,

2

66664

1
0
1
0
0

3

77775
,

2

66664

0
0
0
1
0

3

77775
,

2

66664

2
0
0
0
1

3

77775

1

CCCCA

hence, r2 = 4 < d = 5.

c. Find N ((A� I)3). Note that (A� I)3 = 0. Hence,

N ((A� I)3) = span (e1, e2, e3, e4, e5)

where ei’s are the standard basis vectors. Hence, r3 = d = 5 so we are done.

d. N = 3 in the procedure so this is the size of the largest Jordan block, and r1 = 2 is the total number of
Jordan blocks. Define

s1 = r1 = 2, s2 = r2 � r1 = 4� 2 = 2, s3 = r3 � r2 = 1

And,
m1 = s1 � s2 = 0, m2 = s2 � s3 = 1, m3 = 1

so that mk is the number of k ⇥ k J-blocks associated to � = 1.
Step 2: Get P .
a. J-block sizes associated to � = 1 are

N1 = 3 � N2 = 2

b. Find v1,1 s.t.
(A� I)3v1,1 = 0, (A� I)2v1,1 6= 0

Let v1,1 = e3 since

(A� I)v1,1 =

2

66664

�1
0
�1
0
0

3

77775
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Then, define

v1,2 = (A� I)v1,1 =

2

66664

2
�1
1
0
0

3

77775
, v1,3 = (A� I)v1,2 =

2

66664

�1
0
�1
0
0

3

77775

c. Find v2,1 s.t.
(A� I)2v2,1 = 0, (A� I)v2,1 6= 0, v2,1 L.I. from {v1,1, v1,2, v1,3}

There are many possible solutions. Try

v2,1 =

2

66664

2
0
0
0
1

3

77775

Indeed,

(A� I)2v2,1 = 0, (A� I)v2,1 =

2

66664

�2
1
�1
1
0

3

77775

and v2,1 is linearly independent from {v1,1, v1,2, v1,3} which can easily be seen by the fact that none of
the vectors in the first chain have an element in the fourth entry. Then,

v2,2 = (A� I)v2,1 =

2

66664

�2
1
�1
1
0

3

77775

d. Now

P =
⇥
v1,3 v1,2 v1,1 v2,2 v2,1

⇤
=

2

66664

�1 2 0 �2 2
0 �1 0 1 0
�1 1 1 �1 0
0 0 0 1 0
0 0 0 0 1

3

77775

and

J =

2

66664

1 1 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1

3

77775

4 Functions of a matrix

We need to understand how to compute functions of a matrix more generally so that we can compute

f(A) = exp(A)

when A is not diagonalizable. We know that for any A = PJP�1 where J is a Jordan form for A,

exp(A) = exp(PJP�1) = P exp(J)P�1

But since J is not diagonal, we need to understand how to compute it.
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4.1 Short cut for f(·) = exp(·)
The exponential function has some nice properties in that it can be expressed as an infinite series

exp(A) = I +A+
A2

2!
+

A3

3!
+ · · ·

We also know that we can write a Jordan form J as

J = D +N

where D is a diagonal matrix and N is a nilpotent matrix (cf. Theorem 14 page 118 [C&D]). Then, let m
be the power of N such that Nm = 0. Using the property of the matrix exponential which says

exp(A+B) = exp(A) exp(B)

we can then deduce that

exp(J) = exp(D +N) = exp(D) exp(N) = exp(D)

 
mX

k=0

Ak

k!

!

For nilpotent matrices with small m, this is a fine approach to computing the function exp(·) where the
argument is a non-diagonalizable matrix A.

What about more generally?

4.2 Analytic functions of a matrix

An analytic function is a function that is locally given by a convergent power series—i.e., f is real analytic
on an open set U in the real line if for any x0 2 U one can write

f(x) =
1X

n=0

an(x� x0)
n

where an 2 R for each n and the series is convergent to f(x) for xin a neighborhood of x0.
We can view exp(At) as the analytic function f(�t) in which A has been replaced by �; this ”substitution”

requires clarification. However in the case of polynomials, the procedure is almost obvious and we have seen
it before with Cayley Hamilton:

p(�) = �3 + 3�2 + 5�+ 2 () p(A) = A3 + 3A2 + 5A+ 2I

Let A 2 Cn⇥n and let �(A) denote the spectrum of A (containing distinct eigenvalues of A) with
p = |�(A)|. The minimal polynomial of A is given as above by

 A(�) =
pY

i=1

(�� �i)mi

Definition. (Functions of a matrix.) Let f(s) be any function of s analytic on the spectrum of A and q(s)
be a polynomial such that

f (k)(�`) = q(k)(�`)

for 0  k  m` � 1 and 1  `  p. Then
f(A) = q(A)

In fact, if m =
Pp

i=1 mi then

q(s) = a1s
m�1 + a2s

m�2 + · · ·+ amsp
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where a1, a2, . . . , an are functions of

(f(�1), f
(1)(�1), f

(2)(�1), . . . , f
(m1)(�1), f(�2), . . .)

and hence

f(A) = a1A
m�1 + · · ·+ amA0 =

pX

`=1

m`�1X

k=0

qk,`(A)f (k)(�`)

where qk,`’s are polynomials independent of f .
This leads to the following theorem.

Theorem. (General Form of f(A).) Let A 2 Cn⇥n have a minimal polynomial  A given by

 A(s) =
pY

k=1

(s� �k)mk

Let the domain � contain �(A), then for any analytic function f : �! C. we have

f(A) =
pX

k=1

mk�1X

`=0

f (`)(�k)qk,`(A)

where qk,`’s are polynomials independent of f .

Example. (Demonstrating the limit definition for derivatives in functions of matrix.) Define

J2(�, ") =


� 1
0 �+ "

�

with eigenvalues �1 = � and �2 = �+ ". For any " 6= 0, J2(�, ") is diagonalizable. Computing eigenvector

[�1I � J2(�, ")]v1 =


0 �1
0 �"

�
v1 = 0 =) v1 =


1
0

�

⇥
�2I � J2(�, ")

⇤
v2 =


" �1
0 0

�
v2 = 0 =) v1 =


1
"

�

and

T =
⇥
v1 v2

⇤
=


1 1
0 "

�
, T�1 =


1 �1/"
0 1/"

�

we can evaluate

f(J2(�, ")) = Tf(⇤)T�1 =


1 1
0 "

� 
f(�) 0
0 f(�+ ")

� 
1 �1/"
0 1/"

�
=


f(�) (f(�+ ")� f(�))/"
0 f(�+ ")

�

Suppose J2(�, ")! J2(�) as "! 0 and f is continuous, then if f is also di↵erentiable at �

f(J2(�, ")) = lim
"!0

f(J2(�, ")) =


f(�) f 0(�)
0 f(�)

�

Now more generally. . . Consider

J =

2

66666664

� 1 0 · · · 0

0 �
. . . · · ·

...
...

. . .
. . .

. . .
...

...
. . .

. . .
. . . 1

0 · · · · · · 0 �

3

77777775

2 Fn⇥n
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Claim:

f(J) =

2

666664

f(�) f (1)(�) · · · f(n�1)(�)
(n�1)!

0
. . .

. . . · · ·
...

. . .
. . . f (1)(�)

0 · · · · · · f(�)

3

777775

Proof. The minimum polynomial is (s� �)n so that

f(J) =
n�1X

`=0

f (`)(�)q`(J)

(that is, we can drop the inner sum since m = 1). Recall that the q`’s are independent of the f . Hence, we
can determine what they have to be by cleverly choosing and f and solving for the q’s. Indeed, choose

f1(s) = 1 =) f1(J) = I = f (0)
1 q0(J) =) q0(J) = I

f2(s) = s� � =) f2(J) = J � �I = f (1)
2 (�)q1(J) =) q1(J) = J � �I

f3(s) = (s� �)2 =) f3(J) = (J � �I)2 = f (2)
3 (�)q2(J) =) 2q2(J) = (J � �I)2

Hence

p0(J) = I

p1(J) = J � �I

p2(J) =
1

2
(J � �I)2

so that

f(J) =

2

666666664

f(�) f 0(�) f 00(�)
2 · · · f(n�1)(�)

(n�1)!

0
. . .

. . .
. . .

...

0
. . .

. . .
. . . f 00(�)

2
...

. . .
. . .

. . . f 0(�)
0 · · · 0 0 f(�)

3

777777775

Theorem. (Spectral Mapping Theorem.)

�(f(J)) = f(�(J)) = {f(�), f(�), . . . , f(�)}

and more generally that
�(f(A)) = f(�(A))

For some Jordan block J of size k,

eJ(�t) =

2

666666664

e�t te�t t2

2! e
�t · · · tk�1

(k�1)!e
�t

0
. . .

. . .
. . .

...

0
. . .

. . .
. . . t2

2! e
�t

...
. . .

. . .
. . . te�t

0 · · · 0 0 e�t

3

777777775

What does this mean? Well more generally if we had

J = diag

8
<

:

2

4
�1 1 0
0 �1 1
0 0 �1

3

5 ,


�1 1
0 �1

�
,


�2 1
0 �2

�
,�2

9
=

;
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Recall that this Jordan form may be obtained from A by the similarity transform

J = P�1AP

where
P =

⇥
e1 v1 w1 e2 v2 e3 v3 e4

⇤

where e1, . . . , e4 are eigenvectors and the rest are generalized eigenvectors. Then

f(A) = f(PJP�1) = Pf(J)P�1

where

f(J) = diag

8
<

:

2

4
f(�1) f 0(�1)

f 00(�1)
2

0 f(�1) f 0(�1)
0 0 f(�1)

3

5 ,


f(�1) f 0(�1)
0 f(�1)

�
,


f(�2) f 0(�2)
0 f(�2)

�
, f(�2)

9
=

;

Example. Compute eAt where

A =


0 1
�1 �2

�

Eigenvalues:

det(�I �A) = det

✓
� �1
1 �+ 2

�◆
= �2 + 2�+ 1 = (�+ 1)2 = 0 =) �1 = �2 = �1

Since we have repeated eigenvalues, we need to check the dimension of N (A+ I). Indeed,

A+ I =


1 1
�1 �1

�
=) rank(A+ I) = 1

Since there is only one eigenvector, there must be a generalized eigenvector.
Generalized eigenvectors: Goal is to find v1,2 2 N ((A+ I)2) where (A+ I)v1,2! = 0:

(A+ I)2 = 0 =) N ((A+ I)2) = span(e1, e2)

Let’s try e1. That is,

(A+ I)2e1 = 0, (A+ I)e1 =


1
�1

�
=) v1,2 = e1, v1,1 =


1
�1

�

Jordan form:

P =
⇥
v1,1 v1,2

⇤
=


1 1
�1 0

�
, P�1 =


0 �1
1 1

�
, J =


�1 1
0 �1

�

Matrix exponential:

eAt = PeJ(�t)P�1 =


1 1
�1 0

� 
e�t te�t

0 e�t

� 
0 �1
1 1

�
=


(t+ 1)e�t te�t

�te�t (1� t)e�t

�
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References: Chapter 7 [C&D]

1 Stability

Recall that the solution to a linear time varying ODE ẋ(t) = A(t)x(t), x(t0) = x0 is given by

x(t) = �(t, t0)x0

where �(t, t0) is the state transition matrix.
Equilibrium point:

x0 = ✓n =) x(t) = ✓n 8t

xe = ✓n is called the equilibrium point.
Q: When is an equilibrium point stable? For some intuition, let us consider

ẋ = ��x, x(0) = x0, � > 0

2 4 6 8 10

-0.5

0.0

0.5

1.0

1.5

2 4 6 8 10
0

1

2

3

� = �1 � = 1

Definition 1. (Stable Equilibrium (Eq.)) xe = ✓n is stable () 8 x0 2 Rn, 8t0 2 Rn the map t 7! x(t) =
�(t, t0)x0 is bounded for all t � t0.

Definition 2. Asymptotic xe = ✓n is asymptotically stable () x0 = ✓n is stable and t 7! x(t) = �(t, t0)x0

tends 0 as t ! 1.

Definition 3. Exponential xe = ✓n is exponentially stable () 9M,↵ > 0 such that

kx(t0)k  M exp(�↵(t� t0))kx0k

Theorem 1. (necessary and su�cient conditions.) x0 = 0 is asymptotically stable () �(t, 0) ! 0 as t ! 1

Proof. ((=)
x(t) = �(t, t0)x0 = �(t, 0)�(0, t0)x0

since �(t, 0) ! 0 as t ! 1 then k�(t, 0)k ! 0 as t ! 1 and

kx(t)k  k�(t, 0)kk�(0, t0)kkx0k

12-1
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thus x(t) ! 0 as t ! 1.
(=)) By contradiction; assume that t ! �(t, 0) does not tend to zero as t ! 1, i.e. 9 i, j such that

�ij(t, 0) 6! 0 as t ! 1

choose

x0 =

2

66666666664

0
...
0
1
0
...
0

3

77777777775

with 1 in the j–th spot. Thus,
xi(t) = �ij(t, 0) 6! 0 as t ! 1

contradicting the asymptotic stability of 0.

1.1 Two stability results

From the above derivation of functions of matrices, we can show that

exp(tA) =
�X

k=1

mk�1X

`=0

t` exp(�kt)pk`(A)

This gives rise to the following stability condition:

Proposition 1. Consider the di↵erential equation ẋ = Ax, x(0) = x0. From the above expression:

{exp(At) ! 0 as t ! 1} () {8�k 2 �(A), Re(�k) < 0}

and

{t 7! exp(At) is bounded on R+} ()
⇢

8�k 2 �(A), Re(�k) < 0 &
mk = 1 when Re(�k) = 0

�

We have a similar situation for discrete time systems:

8 ⌫ 2 N, A⌫ =
�X

k=1

mk�1X

`=1

⌫(⌫ � 1) · · · (⌫ � `+ 1)�⌫�`
k pk`(A)

The above gives rise to the following stability condition:

Proposition 2. Consider the discrete time system x(k + 1) = Ax(k), k 2 N, with x(0) = x0. Then for
k 2 N, x(k) = Akx0. From the above equation, we have that

�
Ak ! 0 as k ! 1

 
() {8 �i 2 �(A), |�i| < 1}

and
�
k ! Ak is bounded on N+

 
()

⇢
8�i 2 �(A), |�i|  1 &
mi = 1 when |�i| = 1

�
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1.2 LTI

remark: for the time-invariant case, asymptotic stability is equivalent to exponential stability.

Theorem 2. exponential stability the system ẋ = Ax is exponentially stable i↵ all of the eigenvalues of A
are in the open left half plane.

Proof. Follows from properties of matrix exponential. (proof pg 185 of C& D; proof not provided in hespanha)

Theorem 3. Theorem 8.1 Hespanha The system ẋ = Ax is
1. marginally stable if and only if all the eigenvalues of A have negative or zero real parts and all the

Jordan blocks corresponding to eigenvalues with zero real parts are 1⇥ 1

2. asymptotically stable if and only if all the eigenvalues of A have strictly negative real parts

3. exponentially stable if and only if all the eigenvalues of A have strictly negative real parts, or

4. unstable if and only if at least one eigenvalue of A has a positive real part or zero real part, but the
corresponding Jordan block is larger than 1⇥ 1.

Note: When all the eigenvalues of A have strictly negative real parts, all entries of eAt converge to zero
exponentially fast, and therefore eAt converges to zero exponentially fast (for every matrix norm); i.e., there
exist constants c,� > 0 such that

keAtk  ce��t, 8t 2 R

In this case, for a sub-multiplicative norm, we have

kx(t)k = keA(t�t0)x0k  keA(t�t0)kkx0k  ce��(t�t0)kxk0, 8t 2 R

This means asymptotic stability is equivalent to exponential stability for LTI systems.

2 Lyapunov Stability LTI Systems

Consider an LTI system

ẋ = Ax, x(t0) = x0

The results in previous lectures about matrix exponentials provides us with simple conditions to classify
the continuous-time homogeneous LTI system—since the state transition matrix is eA(t�t0)—in terms of its
Lyapunov stability, without explicitly computing the solution to the system.

The following result (see, e.g., Theorem 8.1 Hespanha) summarizes how to characterize Lyapunov stability
in terms of the eigenvalues of A.

Theorem 4. The system ẋ = Ax is
1. marginally stable if and only if all the eigenvalues of A have negative or zero real parts and all the

Jordan blocks corresponding to eigenvalues with zero real parts are 1⇥ 1

2. asymptotically stable if and only if all the eigenvalues of A have strictly negative real parts (i.e. in open
left half plane),

3. exponentially stable if and only if all the eigenvalues of A have strictly negative real parts (i.e. in open
left half plane), or

4. unstable if and only if at least one eigenvalue of A has a positive real part or zero real part, but the
corresponding Jordan block is larger than 1⇥ 1.

The proof of the above results can be found in C&D page 185.

Note: When all the eigenvalues of A have strictly negative real parts, all entries of eAt converge to zero
exponentially fast, and therefore eAt converges to zero exponentially fast (for every matrix norm); i.e., there
exist constants c,� > 0 such that

keAtk  ce��t, 8t 2 R
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In this case, for a sub-multiplicative norm, we have

kx(t)k = keA(t�t0)x0k  keA(t�t0)kkx0k  ce��(t�t0)kxk0, 8t 2 R

This implies the following fact.

For the time-invariant case, asymptotic stability is equivalent to exponential stability.

Why J-block 1x1? Recall from last time that

exp(At) =
pX

i=1

mk�1X

`=0

t` exp(�kt)pk`(A)

where
Cn = N (A� �1I)

m1 � · · ·�N (A� �pI)
mp

Hence, if Re(�k) = 0 and mk > 1, then there are terms in the sum with t in them, which means the solution
will be unbounded.

The conditions of the above theorem do not generalize to time-varying systems, even if the eigenvalues
of A(t) do not depend on t. One can find matrix-valued signals A(t) that are stability matrices for every
fixed t � 0, but the time-varying system ẋ = A(t)x is not even stable.

2.1 Lyapunov Equation for Characterizing Stability

Recall the definition of a positive definite matrix.

Definition 4. Positive Definite Matrix A symmetric matrix Q 2 Rn⇥n is positive definite if

xTQx � 0, 8 x 2 Rn/{0}

The Lyapunov stability theorem provides an alternative condition to check whether or not the continuous-
time homogeneous LTI system

ẋ = Ax (1)

is asymptotically stable.

Theorem 5. The following five conditions are equivalent:
1. The system (1) is asymptotically (equiv. exponentially) stable

2. All the eigenvalues of A have strictly negative real parts

3. For every symmetric positive definite matrix Q, there exists a unique solution P to the following Lya-
punov equation

ATP + PA = �Q

Moreover, P is symmetric and positive-definite.

4. There exists a symmetric positive-definite matrix P for which the following Lyapunov matrix inequality
holds:

A⇤P + PA < 0

Proof. Proof Sketch. We have already seen that 1 and 2 are equivalent. To show that 2 implies 3, we need
to show that

P =

Z 1

0
eA

T tQeAt dt

is the unique solution to ATP + PA = �Q. This can be done by showing that i) the integral is well-defined
(i.e. finite), ii) P as defined solves ATP + PA = �Q, iii) P as defined is symmetric and positive definite,
and lastly, iv) no other matrix solves the equation. Indeed,
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i) This follows from exponential stability—i.e.

keA
T tQeAtk ! 0

exponentially fast as t ! 1. Hence, the integral is absolutely convergent.

ii) We simply need to compute by direct verification

ATP + PA =

Z 1

0
AT eA

T tQeAt + eA
T tQeAtA dt

But,
d

dt

⇣
eA

T tQeAt
⌘
= AT eA

T tQeAt + eA
T tQeAtA

so that

ATP + PA =

Z 1

0

d

dt

⇣
eA

T tQeAt
⌘

dt

=
⇣
eA

T tQeAt
⌘ ���

1

t=0

=
⇣
lim
t!1

eA
T tQeAt

⌘
� eA

T 0QeA0

And, the right-hand side is equal to �Q since limt!1 eAt = 0 (by asymptotic stability) and eA0 = I.

iii) this follows by direct computation. Symmetry easily follows:

PT =

Z 1

0
(eA

T tQeAt)T dt =

Z 1

0

�
eAt

�T
QT

⇣
eA

T t
⌘T

dt =

Z 1

0
eA

T tQeAt dt = P

To check positive definiteness, pick an arbitrary vector z and compute:

zTPz =

Z 1

0
zT eA

T tQeAtz dt =

Z 1

0
w(t)TQw(t) dt

where w(t) = eAtz. Since Q is positive definite, we get that zTPz � 0. Moreover

zTPz = 0 =)
Z 1

0
w(t)TQw(t) dt = 0

which only happens if w(t) = eAtz = 0 for all t � 0, from which one concludes that z = 0, because eAt

is non-singular (recall all state transition matrices are!). Thus P is positive definite.

iv) prove by contradiction. assume there is some P̄ that solves it:

ATP + PA = �Q, and AT P̄ + P̄A = �Q

Then
AT (P � P̄ ) + (P � P̄ )A = 0

Multiplying by eA
T t and eAt on the left and right, respectively, we conclude that

eA
T tAT (P � P̄ )eAt + eA

T t(P � P̄ )AeAt = 0, 8 t � 0

Yet,
d

dt

⇣
eA

T t(P � P̄ )eAt
⌘
= eA

T tAT (P � P̄ )eAt + eA
T t(P � P̄ )AeAt = 0

implying that eA
T t(P � P̄ )eAt must be constant. But,because of stability, this quantity must converge

to zero as t ! 1, so it must be always zero. Since eAt is nonsingular, this is possible only if P = P̄ .
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The implication that condition 3 =) condition 4 follows immediately, because if we select Q = �I in
condition 3, then the matrix P that solves the Lyapunov equation also satisfies ATP + PA < 0.

Now to complete the proof we need to show that condition 4 implies condition 2. Let P be a symmetric
positive-definite matrix for which

ATP + PA < 0 (2)

holds and define
Q = �(ATP + PA)

Consider an arbitrary solution to the LTI system and define the scalar time-dependent map

v(t) = xT (t)Px(t) � 0

Taking derivatives, we have

v̇ = ẋTPx+ xTPẋ = xT (ATP + PA)x = �xTQx  0

Thus, v(t) is nonincreasing and we conclude that

v(t) = xT (t)Px(t)  v(0) = xT (0)Px(0)

But since v = xTPx � �min(P )kxk2 we have that

kxk2  xT (t)Px(t)

�min(P )
=

v(t)

�min(P )
 v(0)

�min(P )

which means that the system is stable. To verify that it is actually exponentially stable, we go back to the
derivative of v, and using the facts that xTQx � �min(Q)kxk2 and v = xTPx  �max(P )kxk2, we get that

v̇ = �xTQx  ��min(Q)kxk2  � �min(Q)

�max(P )
v, 8 t � 0

Applying the fact that for some constant µ 2 R,

v̇  µv(t), 8t � t0 =) v(t)  eµ(t�t0)v(t0), 8t � t0

we get that

v(t)  e��(t�t0)v(t0), 8t � 0, � = � �min(Q)

�max(P )

which shows that v(t) converges to zero exponentially fast and so does kx(t)k.

There are discrete time versions of the above results. Indeed, consider

xk+1 = Axk

then we have a similar theorem.

Theorem 6. The following four conditions are equivalent:
1. The DT LTI system is asymptotically (exponentially) stable.

2. All the eigenvalues of A have magnitude strictly smaller than 1.

3. For every symmetric positive definite Q, there exists a unique solution P to the following Stein equation
(aka the discrete-time Lyapunov equation):

ATPA� P = �Q

Moreover, P is symmetric and positive-definite.

4. There exists a symmetric positive-definite matrix P for which the following Lyapunov matrix inequality
holds:

ATPA� P < 0
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