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Abstract— Leveraging tools from the study of linear frac-
tional transformations and algebraic Riccati equations, a
local characterization of consistent conjectural variations
equilibrium is given for two player games on continuous
action spaces with costs approximated by quadratic func-
tions. A discrete time dynamical system in the space of
conjectures is derived; a solution method for computing
fixed points of these dynamics (equilibria) is given via
solving an eigenvalue problem; local stability properties
of the dynamics around the equilibria are characterized;
and conditions are given that guarantee a unique stable
equilibrium.

Index Terms— Game theory, Linear systems, Optimiza-
tion

I. INTRODUCTION

IN many multi-agent systems, agents learn about their
opponents and the environment through interaction. More-

over, agents often have bounded rationality—e.g., humans are
known to not behave rationally [1] and machines inherently
have bounded computational capabilities and are limited to
making decisions based on their prescribed algorithmic pro-
cess. Much of the literature on using game theory to model
multi-agent systems has focused on static equilibrium notions
that assume agents are rational such as Nash or correlated
equilibria. These equilibrium concepts do not capture the
dynamic nature of learning systems or cases in which agents
form opponent models.

To address these issues, several different fields have exam-
ined the use of opponent models. The following examples are
demonstrative. In machine learning, opponent modeling [2],
[3] can empirically improve the performance of reinforce-
ment learning agents in some environments. In game theory,
opponent models known as conjectural variations [4] have
been used to analyze strategic behaviors of firms in oligopoly
and electricity markets [5]–[8]. At the intersection of these
areas, in prior work, we investigated the connection between
gradient play and opponent anticipation leveraging conjectural
variations [9], empirically validated the use of conjectures in
human-machine co-adaptation experiments [10], and showed
the relationship to implicit learning algorithms in Stackelberg
games [11]. Despite existing work, there still remains several
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technical challenges in terms of characterizing the dynamic
interaction of learning agents who form opponent models.

Motivated by coupled non-cooperative learning systems
wherein decision-makers have an opponent model and opti-
mize with respect to this model, we provide a novel charac-
terization of a (consistent) conjectural variations equilibrium
((C)CVE) [12], [13]. A CVE is a non-cooperative equilibrium
concept—predating even Nash—in which each agent chooses
their most favorable action taking into account that opponent
strategies are a conjectured mapping of their own strategy.
To gain intuition, a CVE can be thought of as a double-
sided Stackelberg equilibrium. Indeed in a Stackelberg game,
the “leader” best responds to a myopic follower by solving
minx{f(x, y)| y ∈ argminy′ g(x, y′)}. When both players act
like a leader, we have a double-sided Stackelberg game. This
is a special case of a CVE wherein the conjecture is simply the
myopic best response model of the follower. Conjectures can
be more general mappings, however. Such an equilibrium is
consistent if each player’s strategy in equilibrium is consistent
with that which is conjectured by its opponent. Unlike a Nash
equilibrium, a (C)CVE handles strategic uncertainty through
the use of conjectures, and has the following interpretation
in terms of incentives: at a CVE no player has an incentive
to deviate according to their own beliefs. Our interest in this
equilibrium concept is precisely due to its aptitude for captur-
ing dynamic contexts, or situations of bounded (procedural)
rationality. In particular, as we highlight, CCVE can be seen as
arising from repeated best response given an opponent model.

Contributions. We leverage tools from the study of linear
fractional transformations, and algebraic Riccati equations
to provide a novel characterization of consistent conjectural
variations equilibria for two-player d1 × d2 continuous games
with quadratic costs; a quadratic game can also be thought
of as a local approximation of more general costs. Focusing
on conjectures that are affine in player actions, we derive a
set of coupled Riccati equations and show that CCVE exist
if these equations have solutions. Additionally, we show that
these coupled Riccati equations naturally lead to a discrete
time dynamical system when they are iterated. We give a
general solution method for computing fixed points of these
dynamics via solving an eigenvalue problem. We analyze the
local stability properties, and give conditions that guarantee a
unique, stable CCVE. An expanded version of this paper with
more details and numerical examples is given in [14].
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II. PRELIMINARIES

Consider the two-player game G = (f1, f2) such that fi ∈
C2(Rd1×Rd2 ,R) for each i ∈ {1, 2}. The function fi : Rd1×
Rd2 → R is player i’s cost, which they seek to minimize by
choosing xi ∈ Rdi . Let x = (x1, x2) ∈ Rd where d = d1+d2
is the dimension of the joint action space. Define the set of
conjectures C1 × C2 to be the set of mappings

C1 × C2 = {(c1, c2)| c1 : Rd2 → Rd1 , c2 : Rd1 → Rd2}.

Definition 1: A tuple {(xc1, xc2), (cc1, cc2)} ∈ Rd1×d2 × C1 ×
C2 constitute a consistent conjectural variations equilibrium
(CCVE) if xci = cci (x

c
−i) for each i = 1, 2, and

xci = argmin
xi

{fi(xi, x−i)| x−i = cc−i(xi)}, ∀ i = 1, 2.

Given an a priori fixed set of conjectures (c1, c2) ∈ C1×C2,
the point (xc1, x

c
2) is a generalized Nash equilibrium of the con-

strained game {minxi fi(xi, c−i(xi))| xi = ci(c−i(xi))}2i=1.
However, finding a CCVE requires finding the maps (cc1, c

c
2),

so the problem of characterizing CCVE does not immediately
reduce to a generalized Nash equilibrium problem [15].

As shown in [16], when the costs are (jointly) strictly
convex, an equivalent characterization of a CCVE in terms
of the conjectures is the following: {(xc1, xc2), (cc1, cc2)} is a
CCVE if and only if, for each i = 1, 2, we have

Dxifi(x
c)+Dx−ifi(x

c)Dxic
c
−i(x

c
i ) = 0, xci = cci (x

c
−i), (1)

where Dx is the partial derivative operator with respect to a
vector x. In the absence of joint strict convexity, these are first-
order conditions; we call solutions to (1) first-order CCVE.
A second-order CCVE is a solution to (1) with the addi-
tional condition D2

xi
fi(x

c
i , c

c
−i(x

c
i )) ≻ 0. If fi(xi, c

c
−i(xi)) is

strongly convex in xi, then solutions to (1) are a CCVE.
The focus of this paper is on characterizing CCVE and

corresponding conjectures up to first- and second-order using
a quadratic approximation of the game around the equilibrium.
When the game is quadratic, a second-order CCVE is precisely
a CCVE. Even in quadratic games, the existence of CCVE
is not guaranteed, and as we show, for affine conjectures
the question of existence boils down to finding solutions to
coupled asymmetric Riccati equations. This is analogous to
the existence of Nash equilibrium in dynamic linear quadratic
games (cf. [17], [16, Ch. 6]).

A. Quadratic Game Approximation
The local quadratic approximation of cost fi is given by

fi(xi, x−i) =
1

2

[
xi

x−i

]⊤ [
Ai B⊤

i

Bi Di

] [
xi

x−i

]
+

[
ai
bi

]⊤ [
xi

x−i

]
,

where Ai ∈ Rdi×di , Di ∈ Rd−i×d−i , Bi ∈ Rd−i×di , ai ∈ Rdi

and bi ∈ Rd−i with Ai = A⊤
i and Di = D⊤

i . Further, we
assume that Ai ≻ 0 for each i = 1, 2. The Di matrices
penalize player i based solely on x−i and may often be
negative or zero. As noted quadratic games are a useful
approximation of the behavior of more complex games around
an equilibrium.

We consider only the space of affine conjectures; analogous
to affine optimal policies in linear quadratic optimization

problems, affine conjectures are the most natural class of
conjectures for quadratic games as will be illustrated through
our analysis. In fact, it is straightforward to show that if a
player has an affine conjecture for their opponent, then the
best response for that player is itself an affine policy. With
this in mind, let player i have an affine conjecture given by
x−i = c−i(xi) = Lixi+ ℓi. This results in player i facing the
following optimization problem:

min
xi

{fi(xi, x−i)| x−i = c−i(xi) = Lixi + ℓi}.

Conditions for a first-order CCVE in affine conjectures are

0 = Dx1f1(x1, c2(x1)), 0 = Dx2f2(c1(x2), x2),

c2(x1) = L1x1 + ℓ1, c1(x2) = L2x2 + ℓ2.
(2)

Given (2), the implications for existence can be summarized
in the following proposition.

Proposition 1: Consider a quadratic game (f1, f2), and
suppose players are restricted to the class of affine conjectures
c−i(xi) = Lixi + ℓi for i = 1, 2. Suppose that there is a
solution {(Lc

1, ℓ
c
1), (L

c
2, ℓ

c
2)} to the coupled Riccati equations,

0 = L⊤
−i(Ai +B⊤

i Li) + (Bi +DiLi), (3)

0 = ℓ⊤−i(Ai +B⊤
i Li) + a⊤i + b⊤i Li, ∀ i ∈ {1, 2}, (4)

such that[
ℓc2
ℓc1

]
∈ range (L) where L :=

[
I −Lc

2

−Lc
1 I

]
. (5)

Then {(xc1, xc2), (cc1, cc2)} such that xc−i = cc−i(x
c
i ) = Lc

ix
c
i +

ℓci for each i ∈ {1, 2} is a first-order CCVE. Moreover
{(xc1, xc2), (cc1, cc2)} is a CCVE if (Lc

1, L
c
2) satisfies

Ai + (Lc
i )

⊤Bi +B⊤
i Lc

i + (Lc
i )

⊤DiL
c
i ≻ 0, i = 1, 2. (6)

Proof: The first order conditions in (2) plus affine
structure of the conjectures lead to the following equations:
0 = x⊤

i (Ai + B⊤
i Li) + x⊤

−i(Bi + DiLi) + a⊤i + b⊤i Li, and
xi = L−ix−i + ℓ−i for i = 1, 2. Plugging the latter into the
former we have that

0 = x⊤
−i(L

⊤
−i(Ai +B⊤

i Li) + (Bi +DiLi))

+ ℓ⊤−i(Ai +B⊤
i Li) + a⊤i + b⊤i Li, ∀i = 1, 2.

(7)

Observe that (7) holds if (3) and (4) hold. By assumption there
is a solution {(Lc

1, ℓ
c
1), (L

c
2, ℓ

c
2)} to (3) and (4) satisfying (5).

Hence, solving {xi = Lc
−ix−i + ℓc−i, i = 1, 2} yields a first

order CCVE {(xc1, xc2), (cc1, cc2)}.
For quadratic games, a second-order CCVE is a CCVE.

Expanding out player i’s cost, we have that

fi(xi, c−i(xi)) =
1
2x

⊤
i (Ai + L⊤

i Bi +B⊤
i Li + L⊤

i DiLi)xi

+ (a⊤i + ℓ⊤i Bi + b⊤i Li)xi + ℓ⊤i Diℓi + b⊤i ℓi.

Hence, fi is strongly convex if (6) holds at (Lc
1, L

c
2); this is

sufficient to guarantee that {(xc1, xc2), (cc1, cc2)} is a CCVE.
It is worth pointing out that (3) does not depend on (4)

and hence can be solved independently. Additionally, a more
restrictive yet simpler-to-check version of (5) is that L is
invertible or, equivalently, det

(
I −Lc

2L
c
1

)
̸= 0. Perhaps more

intuitively, supposing the inverse of (Ai+B⊤
i Li) exists, player

i’s first order condition is x⊤
i = −x⊤

−i(Bi + DiLi)(Ai +
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B⊤
i Li)

−1 − (a⊤i + b⊤i Li)(Ai +B⊤
i Li)

−1; thus the consistent
conjecture conditions are

L⊤
−i = −(Bi +DiLi)(Ai +B⊤

i Li)
−1,

ℓ⊤−i = −(a⊤i + b⊤i Li)(Ai +B⊤
i Li)

−1 ∀ i ∈ {1, 2}.
(8)

This shows that if a player has an affine conjecture for its
opponent’s play, then its best response can be written as an
affine policy.

We use (Lc
i , ℓ

c
i ) to refer to consistent conjectures—i.e.,

the solutions to the coupled Riccati equations (3) and the
corresponding affine offsets. Solutions may still exist when
the inverses in (8) do not, however, as has been shown in
special cases in the literature on CCVE such as for scalar
Bertrand games, this leads to a multiplicity of solutions and
an equilibrium selection problem (see [4], [18] and references
therein). Given page constraints, we leave the analysis of these
more nuanced cases to a future paper.

For each i = 1, 2, define the following linear fractional
transformation (LFT) update:

L+
−i = LFTi,−i(Li) = −(A⊤

i + L⊤
i Bi)

−1(B⊤
i + L⊤

i D
⊤
i ),

where the subscript (·)12 can be read as “from 1 to 2”.
The update for Li naturally defines discrete-time dynamics
in the conjecture parameter space that show how a player
should update their conjecture to be consistent with their
opponent’s current conjecture. It is also useful to think of
dynamic updates for each player separately constructed by
composing the updates as follows:

L+
i = LFT−i,i(LFTi,−i(Li)) (9)

= −
(
A⊤

−i − (Bi +DiLi)(Ai +B⊤
i Li)

−1B−i

)−1

· (B⊤
−i − (Bi +DiLi)(Ai +B⊤

i Li)
−1D⊤

−i), i = 1, 2.

Remark 1: The first order conditions in (3) guarantee that
the players have consistent conjectures. The second order
conditions (6) guarantee that given their conjecture, player i’s
cost is convex in xi. Expounding the first order conditions—
characterizing the LFT dynamics, finding fixed points by
solving (3), and characterizing their stability—is non-trivial
and is the primary focus of this paper. Our results will show
that there is a limited number of stable first-order CCVE. Once
these stable equilibria are found, the second order conditions
(6) can easily be checked. For further discussion, see Section
VI and [14].

B. LFT Matrix Representation
We will see in the subsequent section that LFTs can be

efficiently represented by matrices and their composition by
matrix manipulation. Towards this end, let us define some
useful objects that will be used throughout. Define the d× d
symmetric real valued matrices (where d = d1 + d2)

M1 =

[
A1 B⊤

1

B1 D1

]
, and M2 =

[
D2 B2

B⊤
2 A2

]
. (10)

We make the following assumption on M1 and M2.
Assumption 1: The matrices M1,M2 are invertible.

We will be directly interested in the two products
M1 = M−⊤

2 M1 and M2 = M−⊤
1 M2. Note that

M1,M2 invertible ⇐⇒ M1,M2 invertible. Let spec
(
M1

)
and spec

(
M2

)
refer to the spectra of each matrix. A simple

argument shows that spec(M1) = 1/spec(M2) where we
use 1/(·) to mean element-wise inversion. Since M1,M2 are
symmetric, M1 = M−1

2 ; however, much of the following
Riccati analysis works for asymmetric M1,M2 as well.

C. Examples
In this section, we present two illustrative quadratic games

and comment on CCVE: an open-loop dynamic game and a
repeated human vs. machine game.

1) Linear quadratic dynamic game: Consider a two player
linear quadratic dynamic game with open loop policies ui =
(ui,0, . . . , ui,T−1) for i = 1, 2:

fi(u1,u2) =
∑T−1

t=0
1
2z

⊤
t Qizt +

1
2u

⊤
i,tRiui,t + u⊤

i,tR
−i
i u−i,t

+ 1
2z

⊤
T Qi,fzT

zt+1 = Fzt +G1u1,t +G2u2,t, zt ∈ Rn.

Unfolding the dynamics and letting Z = [z⊤0 , . . . , z⊤T ]⊤, we
have that Z = W1u1 +W2u2 + Fz0 where

Wi =



0 · · · 0
Gi 0 · · · 0
FGi Gi 0 · · · 0

...
...

. . . . . .
...

FT−2Gi FT−3Gi · · · Gi 0
FT−1Gi FT−2Gi · · · FGi Gi


, i = 1, 2,

and F =
[
I F⊤ · · · (FT−1)⊤ (FT )⊤

]⊤
. Define the

following cost matrices: Qi := diag(Qi, . . . , Qi, Qi,f ) ∈
Rn(T+1)×n(T+1), Ri := diag(Ri, . . . , Ri) ∈ RdiT×diT , and
R−i

i := diag(R−i
i , . . . , R−i

i ) ∈ RdiT×d−iT . Player i’s cost is

fi(ui,u−i) =
1
2u

⊤
i Riui + u⊤

i R
−i
i u−i

+ 1
2 (W1u1 +W2u2 + Fz0)

⊤Qi(W1u1 +W2u2 + Fz0).

Expanding and regrouping this cost gives that Ai = Ri +

W⊤
i QiWi, Bi =

(
Ri,−i+W⊤

i QiW−i

)⊤
, Di = W⊤

−iQiW−i,
a⊤i = z⊤0 F⊤QiWi, and b⊤i = z⊤0 F⊤QiW−i. In a typical
LQR problem it is assumed that Ri ≻ 0 and Qi ⪰ 0 in
order for solutions to exist (there are conditions that weaken
these assumptions), and hence Ai ≻ 0. In this case Ai is non-
degenerate, and hence a sufficient condition for Mi for i =
1, 2 to each be non-degenerate is that the Schur complement
of Mi with respect to (Ri + W⊤

i QiWi) is non-degenerate;
indeed, this follows from the fact that

[det(Mi) ̸= 0 ∀i ∈ {1, 2}] ⇐⇒ [det(Mi) ̸= 0 ∀i ∈ {1, 2}].

2) Adaptive human-machine interactions: It has recently
been shown that CCVE well-model human-machine co-
adaptation [10]. In this study the human and the machine have
scalar quadratic costs,

fi(xi, x−i) =
1

2

[
xi

x−i

]⊤ [
qi ri
ri si

] [
xi

x−i

]
+

[
wi

vi

]⊤ [
xi

x−i

]
,

and series of experiments show convergence of repeated game
play to CCVE in a computer-facilitated task. Assumption 1 is
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satisfied if det(Mi) ̸= 0 ⇐⇒ qisi − r2i ̸= 0 for each i = 1, 2.
This holds for the games studied in [10]; it is shown in the
supplement of the same reference that CCVE exist in affine
conjectures for the games studied therein.

III. LFT DYNAMICS: MATRIX FORM

In this section, we give an extended analysis of the LFT
dynamics in (9). Define the blocks of the product matrices
M1 = M−⊤

2 M1 and M2 = M−⊤
1 M2 as follows:

M1 =

[
A1 B1

C1 D1

]
, and M2 =

[
D2 C2

B2 A2

]
.

Theorem 1: The composite LFT update in (9) can be writ-
ten in the compact form

L+
i =

(
Ci +DiLi

)(
Ai +BiLi

)−1
. (11)

Proof: (An expanded version of this proof is given in
[14].) We show the proof for i = 1 and −i = 2 for clarity.
Expanding M1 = M−⊤

2 M1 by using block matrix inversion
on M−⊤

2 , we deduce that

M1 =

[
S−1
2 E S−1

2 F

A−⊤
2 (B1 −B⊤

2 S−1
2 E) A−⊤

2 (D1 −B⊤
2 S−1

2 F )

]
,

with S2 = D⊤
2 − B2A

−⊤
2 B⊤

2 , E = A1 − B2A
−⊤
2 B1, and

F = B⊤
1 − B2A

−⊤
2 D1. We have specifically chosen a block

matrix inversion that requires A⊤
2 and S2 to be invertible, yet

does not require D2 to be non-singular—in many practical
cases it will not be. Proceeding from (9), we have that

L+
1 = −

(
A⊤

2 − (B1 +D1L1)(A1 +B⊤
1 L1)

−1B2

)−1

· (B⊤
2 − (B1 +D1L1)(A1 +B⊤

1 L1)
−1D⊤

2 ).

Applying the Woodbury matrix identity to the inverse and
collecting terms, we deduce that

L+
1 = −A−⊤

2 B⊤
2 +A−⊤

2 (B1 +D1L1)(A1 +B⊤
1 L1)

−1D⊤
2

−A−⊤
2 (B1 +D1L1)(E + FL1)

−1[B2A
−⊤
2 B⊤

2

−B2A
−⊤
2 (B1 +D1L1)(A1 +B⊤

1 L1)
−1D⊤

2 ]

After algebraic manipulation, the term in [·] satisfies

B2A
−⊤
2 B⊤

2 −B2A
−⊤
2 (B1 +D1L1)(A1 +B⊤

1 L1)
−1D⊤

2

= −S2 +D⊤
2 −B2A

−⊤
2 (B1 +D1L1)(A1 +B⊤

1 L1)
−1D⊤

2

= −S2 + (E + FL1)(A1 +B⊤
1 L1)

−1D⊤
2 .

Substituting this into the expression for L+
1 , we have that

L+
1 = −A−⊤

2 B⊤
2 +A−⊤

2 (B1 +D1L1)(A1 +B⊤
1 L1)

−1D⊤
2

−A−⊤
2 (B1 +D1L1)(E + FL1)

−1

· [−S2 + (E + FL1)(A1 +B⊤
1 L1)

−1D⊤
2 ].

Distributing through the last multiplicative term and canceling
out appropriate terms we have that

L+
1 = −A−⊤

2 B⊤
2 +A−⊤

2 (B1 +D1L1)(E + FL1)
−1S2

= (A−⊤
2 (B1 +D1L1)−A−⊤

2 B⊤
2 S−1

2 (E + FL1))

· (E + FL1)
−1S2

= (C1 +D1L1)(A1 +B1L1)
−1,

which concludes the proof.

We note that this update can be written as[
I
L+
1

]
= M1

[
I
L1

] [
A1 +B1L1

]−1

(12)

Starting at L1(0), iterating (12) for k steps leads to[
I

L1(k)

]
=

[
A1 B1

C1 D1

]k [
I

L1(0)

]
Πk−1

t=0 (A1 +B1L1(t))
−1

On the one hand, the evolution of L1(k) is governed by
repeated application of M1 as in a discrete time linear system.
However, the right multiplication by Πk−1

t=0 (A1 +B1L1(t))
−1

makes the evolution nonlinear. Some features of the evolution
of linear systems do apply, however. Specifically if [I;L1(0)]
initially spans an M1–invariant subspace, then [I;L1(k)] will
remain within that subspace as well for all k. This fact is at
the heart of the equilibrium analysis in the next section.

IV. EQUILIBRIUM ANALYSIS VIA INVARIANT SUBSPACES

Equilibrium points for the LFT dynamics can be found
using invariant subspaces. The following theorem defines fixed
points of the composite LFT dynamics (11) from which first
order CCVE can be directly computed.

Theorem 2 (Equilibrium Computation): Let K1 =
[Y1;X1] ∈ Cd×d1 where Y1 ∈ Cd1×d1 and X1 ∈ Cd2×d1

define an M1–invariant subspace where Y1 is square and
nonsingular. It follows that L1 = X1Y

−1
1 ∈ Cd2×d1 is fixed

point of the composite LFT dynamics (11). A completely
analogous statement holds for L2 = X2Y

−1
2 .

Proof: Select the columns of K1 to span a right-invariant
subspace of M1, so that M−⊤

2 M1K1 = K1Λ. In general, K1

can be complex leading to complex conjectures. For problems
with real parameters, however, K1 can often be chosen to be
real. Even if the invariant subspace contains conjugate pairs of
eigenvectors, K1 can be chosen to be a real basis with vectors
spanning any planes of rotation and Λ will simply be block
diagonal as opposed to diagonal. The main exception to this
is if the M1-invariant subspace contains only one complex
eigenvector from a complex conjugate pair (see Remark 2
below). Since M1 is invertible, the matrix Λ will be as well.
Hence we have that

M1

[
Y1

X1

]
=

[
Y1

X1

]
Λ =⇒

[
A1 B1

C1 D1

] [
I
L1

]
=

[
I
L1

]
H1

where we have right multiplied by Y −1
1 and plugged in L1

and H1 = Y1ΛY
−1
1 . Note that H1 is invertible.

The top equation gives
(
A1 +B1L1) = H1. Plugging this

result into the bottom equation gives C1+D1L1 = L1(A1+
B1L1) which implies L1 =

(
C1 + D1L1)(A1 + B1L1)

−1.
This verifies that L1 = X1Y

−1
1 is a fixed point of the dynamics

as claimed which completes the proof.
In the case where Y1 is not invertible, this method cannot
be used and we leave analysis of this case to future work.
While the choice of M1–invariant subspace matters for the
computation of the equilibrium, the choice of basis does not.

Proposition 2 (Invariance with respect to basis.): Let
K1 =

[
Y1; X1

]
and K ′

1 =
[
Y ′
1 ; X ′

1

]
be two different bases

for the same M1–invariant subspace with Y1, Y
′
1 square and

non-singular. Then L1 = X1Y
−1
1 = X ′

1Y
′−1
1 .
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Proof: Since K1 and K ′
1 are bases for the same space,

there exists square, non-singular W such that K ′ = KW . It
follows that X ′

1Y
′−1
1 = X1WW−1Y −1

1 = X1Y
−1
1 .

A. Alternative Computation
The equilibrium solution can be derived from (9) using an

alternative method without initially showing that the composite
LFT map is given by the formula in Theorem 1. Since the
analysis is more direct—and also provides inspiration for
Theorem 1 and a useful perspective for proofs later on—we
reproduce it here. Expanding and rearranging (9) at equilib-
rium, we get that A⊤

2 L1−(B1+D1L1)(A1+B⊤
1 L1)

−1B2L =
−B⊤

2 + (B1 +D1L1)(A1 +B⊤
1 L1)

−1D⊤
2 which implies

A⊤
2 L1 +B⊤

2 = (B1 +D1L1)(A1 +B⊤
1 L1)

−1(D⊤
2 +B2L1).

(13)
Using this form of the fixed point equations, we can solve for
the equilibrium using a similar invariant subspace argument.

Proposition 3 (Alternative Equilibrium Computation): Let
the columns of K1 =

[
Y ⊤
1 X⊤

1

]⊤
solve the generalized

eigenvalue problem M1K1 = M⊤
2 K1Λ. Then L1 = X1Y

−1
1

solves (13).
Proof: The expression M1K1 = M⊤

2 K1Λ gives[
A1 B⊤

1

B1 D1

] [
I
L1

]
=

[
D⊤

2 B2

B⊤
2 A⊤

2

] [
I
L1

]
H1 (14)

where H1 = Y1ΛY
−1
1 . This expression arises since we have

right multiplied by Y −1
1 and plugged in L1 = X1Y

−1
1 . Again,

since M1 is non-singular, H1 will be as well. The top and
bottom equation, respectively, can be rearranged to deduce
that (A1 + B⊤

1 L1)
−1(D⊤

2 + B2L1) = H−1
1 so that (B1 +

D1L1)H
−1
1 = (B⊤

2 +A⊤
2 L1). Plugging in H−1

1 leads to (13),
which concludes the proof.

Inspiration for the the composite dynamics can then be
seen by noting that for invertible M2, we see that M1K1 =
M⊤

2 K1Λ ⇐⇒ M−⊤
2 M1K1 = K1Λ.

At first pass, there are many ways to choose an M1–
invariant subspace to compute L1. Explicitly, there are

(
d
d1

)
ways to select a basis of eigenvectors. A further stability
analysis (cf. Section V) shows that there is only one way to
select an invariant subspace that leads to a stable L1 when the
eigenvalues of M1 have distinct magnitudes.

V. EQUILIBRIUM STABILITY

We next characterize the stability properties of fixed points
of (3)—which includes the set of CCVE—and show how sta-
bility is related to the matrices Mi, i = 1, 2. The local stability
of a nonlinear system can be characterized by examining the
eigenstructure of the local linearization; in particular, by the
Hartman-Grobman theorem, if the eigenvalues of the local
linearization evaluated at a fixed point of the nonlinear system
have modulus less than one, then the fixed point is a locally
asymptotically stable equilibrium of the nonlinear system.

Theorem 3 (Perturbation Dynamics): The linearized per-
turbation dynamics at fixed point (L1, L2) are ∆L+

i =
Ωi(∆Li;Li) = (Di − LiBi)∆Li(Ai +BiLi)

−1.
Proof: Perturbing the equilibrium conjectures gives L+

i +
∆L+

i = (Ci +DiLi +Di∆Li)(Ai +BiLi +Bi∆Li)
−1. At

equilibrium Li = L+
i , we have that (Li+∆L+

i )(Ai+BiLi+
Bi∆Li) = (Ci +DiLi +Di∆Li). Recall that in equilibrium
Li(Ai+BiLi)−(Ci+DiLi) = 0. Therefore, we deduce that
∆L+

i = (Di−LiBi)∆Li(Ai+BiLi+Bi∆Li)
−1. Applying

the Woodbury matrix identity to the inverse and noting limits
we further deduce that

∆L+
i =

(
Di − LiBi)∆Li(Ai +BiLi)

−1

− (Di − LiBi)∆Li(Ai +BiLi)
−1Bi

· [I +∆Li(Ai +BiLi)
−1Bi]

−1∆Li(Ai +BiLi)
−1.

Dropping higher order terms completes the proof.
Note that Ωi( · ;Li) for i = 1, 2 are linear operators in

the form of a discrete time Lyapunov equation. To understand
their stability, we recall a result from discrete time Lyapunov
theory given here without proof.

Lemma 1 (DT Lyapunov Operators): For A,B ∈ Cn×n,
the linear operator A(X) = AXB has eigenvalues of the
form λjµk where λj ∈ spec(A) and µk ∈ spec(B).
The following characterization of the spectra of Ωi( · ;Li)
follows immediately.

Theorem 4: The spectrum of the linear operator Ωi( · ;Li)
is given by spec(Ωi) =

{ λj

µk

∣∣ λj ∈ spec(Di − LiBi), µk ∈
spec(Ai +BiLi)

}
.

We now establish equivalent conditions for local stability.
Theorem 5: At a fixed point (Lc

1, L
c
2) of (9), without loss

of generality (for i = 1, 2), suppose spec(M1) can be divided
into two sets ρL(M1) and ρS(M1) with cardinality d1 and
d2 respectively, where all elements of ρL(M1) have strictly
larger magnitude than all elements of ρS(M1). The following
are equivalent:

a. The fixed point (Lc
1, L

c
2) is locally asymptotically stable

with respect to (9) for i = 1, 2.
b. Eigenvalues ξj ∈ spec(Ω1( · ;Lc

1)) satisfy |ξj | < 1 ∀ j.
c. The matrix K1 ∈ Cd×d1 from Theorem 2 (and Propo-

sition 3) is chosen to span the M1–invariant subspace
corresponding to the eigenvalues in ρL(M1).

Theorem 5 not only establishes equivalent conditions for
stability, but also shows that it is sufficient to establish stability
for one player in order to show the combined dynamics (i.e.,
(9) for i = 1, 2) are stable. However, the per player (local) rates
of convergence depend on the eigenstructure of their individual
dynamics.

Corollary 1: Players locally converge to (Lc
1, L

c
2)

with iteration complexity O(ξki,max) where ξi,max :=
maxξ∈spec(Ωi( · ;Lc

i)
|ξ| for player i = 1, 2, respectively.

Without loss of generality, the following lemma character-
izes the eigenstructure of M1 and M2.

Lemma 2: The matrices L1 computed from Theorem 1 and
L2 from (8) define the following similarity transforms on M1

and M2, respectively:[
I 0

−L1 I

] [
A1 B1

C1 D1

] [
I 0
L1 I

]
=

[
H1 B1

0 H′
1

]
, (15)[

I −L2

0 I

] [
D2 C2

B2 A2

] [
I L2

0 I

]
=

[
H′

2 0
B2 H2

]
, (16)

where H1 = A1 + B1L1, H′
1 = D1 − L1B1, H2 = A2 +

B2L2, and H′
2 = D2 − L2B2. Furthermore, the spectrum of
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the M1-invariant subspace spanned by [I;L1] is spec(H1) and
the spectrum of the M2-invariant subspace spanned by [L2; I]
is spec(H2) and we can also write

H1 = A1 +B1L1 =
(
D⊤

2 +B2L1

)−1(
A1 +B⊤

1 L1

)
H′

2 = D2 − L2B2 = (A1 +B⊤
1 L1)

−⊤(D⊤
2 +B2L1)

⊤.

and H′
2 is similar to H−⊤

1 .
Proof: (An expanded version of this lemma is given

in [14].) Each block of (15) is immediate with the zero
block coming from (11). We now derive the similarity trans-
form on M2. Observe that (8) can be rewritten as (A1 +
B⊤

1 L1)
−⊤[I L⊤

1 ]M
⊤
1 = [I − L2]. Expanding [I − L2]M2,

we get[
I − L2

]
M−⊤

1 M2 = (A1 +B⊤
1 L1)

−⊤ [
I L⊤

1

]
M2

= (A1 +B⊤
1 L1)

−⊤H−⊤
1

[
I L⊤

1

]
M⊤

1

= H′
2

[
I − L2

]
where the second line comes from (14) and H′

2 = [A1 +
B⊤

1 L1]
−⊤H−⊤

1 [A1 + B⊤
1 L1]

⊤. Note that H′
2 and H−⊤

1 are
similar. The above gives us the top row of the following:[

I −L2

0 I

] [
D2 C2

B2 A2

]
=

[
H′

2 0
B2 A2 +B2L2

] [
I −L2

0 I

]
and the bottom row is then immediate. Right multiplying by
[I L2; 0 I] gives (16). The characterization of the invariant
subspaces spanned by [I;L1] and [L2; I] follows immediately
from the block diagonal structure. The alternate characteriza-
tions of H1 and H′

2 follow from the characterization of H1

given in Proposition 3 and the definition of H′
2 above which

concludes the proof.
We now prove Theorem 5.

Proof: [Proof of Theorem 5] In the following, we will
use the fact that spec(Mi) = spec(Hi) ⊔ spec(H′

i) which
follows from the block diagonal structures in Lemma 2.
The perturbation dynamics at equilibrium for each player are
∆L+

i = Ωi(∆Li;Li) = H′
i∆LiH

−1
i . b. holds (by Thm. 4)

iff spec(H1) = ρL(M1) and spec(H′
1) = ρS(M1) which in

turn holds iff K1 is chosen corresponding to ρL(M1). Since
spec(M1) = 1/ spec(M2) and H′

2 and H−⊤
1 are similar

(cf. Lemma 2), the above holds iff spec(H′
2) = 1/ρL(M1)

and spec(H2) = 1/ρS(M1) and by Thm. 4 this is equivalent
to |ξj | < 1 for all ξj ∈ spec(Ω2( · ;Lc

2)) as well. b. and
the equivalent statement for Ω2 are then equivalent to a. by
Hartman-Grobman [19].

Remark 2: Theorem 5 implies that if the eigenvalues of M1

(and M2) clearly divide into “large” and “small” sets where all
the eigenvalues in the large set have strictly greater magnitude
than those in the small set, then there is a unique way to choose
an asymptotically stable fixed point of the composite dynamics
(9). When the eigenvalues cannot clearly be divided this way,
there may be multiple ways to construct marginally stable fixed
points. Two interesting cases are when there are eigenvalues
from the same Jordan subspace or complex eigenvalues from
the same conjugate pair in each set. In this second case, the
only (marginally) stable conjectures will be complex and any
associated real conjectures will exhibit oscillatory behavior
analogous to elliptic Möbius transformations. These interesting
cases will be examined in a subsequent paper.

VI. COMMENTS ON SECOND ORDER CONDITIONS

For stable first order CCVE, the second order conditions
(6) can be checked to see if each player’s optimization is
convex. This is not guaranteed and will depend on the relative
magnitudes of the parameters Ai, Bi, and Di. Simple analysis
shows that M1,M2 ≻ 0 is sufficient to guarantee (6); however,
this is often not true since D1, D2 might be zero, low-
rank, indefinite, or even negative-definite. Simple numerical
experiments also show that M1,M2 ≻ 0 is far too conservative
a condition and often not necessary for (6) to hold. For further
discussion and numerical examples, see [14].

VII. DISCUSSION & OPEN QUESTIONS

This paper introduces a novel analysis of CCVE by drawing
on tools from the analysis of coupled Riccati equations. There
are a number of interesting open questions including how
players might adapt their conjectural variations in repeated and
dynamic games by interacting with opponents, as well as how
players might adopt policy gradient like procedures to learn
their policies contingent on conjectures adapted over time.
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