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Fig. 1. (a) Overview of a closed-loop myoelectric interface that uses eye gaze for training an adaptive mapping to control an external device, such as a
computer cursor or a robotic arm. (b) The user controls a cursor (white) to track a continuous target (red) on a computer screen using high-density surface
electromyography (sEMG) on the forearm. Gaze data is collected with an eye-tracking headset and is used to train the adaptive algorithm.

Myoelectric interfaces hold promise in consumer and health applications,
but they are currently limited by variable performance across users and poor
generalizability across tasks. To address these limitations, we consider inter-
faces that continually adapt during operation. Although current adaptive
interfaces can reduce inter-subject variability, they still generalize poorly
between tasks because they make use of task-specific data during training.
To address this limitation, we propose a new paradigm to adapt myoelectric
interfaces using natural eye gaze as training data. We recruited 11 subjects
to test our proposed method on a 2D computer cursor control task using
high-density surface EMG signals measured from forearm muscles. We find
comparable task performance between our gaze-trained paradigm and the
current task-dependent method. This result demonstrates the feasibility of
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using eye gaze to replace task-specific training data in adaptive myoelectric
interfaces, holding promise for generalization across diverse computer tasks.

CCS Concepts: • Human-centered computing→ Interaction devices;
Empirical studies in HCI.

Additional KeyWords and Phrases: Myoelectric interface, Adaptive interface,
Eye tracking

1 INTRODUCTION
Interfaces that use physiological inputs – biosignal-based inter-
faces [41] – are increasingly popular in consumer and health ap-
plications due to the rich human-computer interactions they can
facilitate across diverse populations [6, 7, 65, 70]. One class of inter-
faces converts surface electromyographic (sEMG) activity, which
are electrical signals generated by muscle contractions and recorded
at the skin, into control commands for external devices such as a
computer cursor or a bionic limb [18, 19]. These myoelectric inter-
faces have strong accessibility potential as they are non-invasive
and can provide high-dimensional recordings with high control
bandwidth from a variety of muscles [4, 18, 70]. However, there are
two fundamental challenges in the design of myoelectric interfaces:
sEMG signals show large variability between subjects and within a
subject over time [4, 67], and the mapping from myographic activity
to task variables may be unintuitive.
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To address the challenges of signal variability and interface com-
plexity, it is natural to apply machine learning. For instance, offline
methods can be used to synthesize an interface to optimize perfor-
mance with respect to the distribution of subjects represented in a
set of labeled training data [39, 50, 60, 75, 76]. However, the perfor-
mance observed online with this approach consistently falls short of
that obtained during offline training [9, 15, 27, 38]. This finding is un-
surprising, since users are not stationary data sources – they adapt
to the interfaces they use and tasks they are assigned. Adapting the
interface online can potentially close this train/test performance
gap [23, 27, 41, 69], but presents a new challenge: how to obtain la-
beled training data at the same time that the interface is being used?
Current adaptive algorithms address this challenge by making use
of information about the tasks prescribed to users [25, 42, 51], but
requiring this information limits generalizability of the interface.

Our vision is to create personalized interfaces that continuously
adapt while users perform a variety of tasks, including less struc-
tured and self-paced tasks like drawing or internet browsing. Toward
this aim, we investigated the use of eye gaze as a new task-agnostic
source of training data labels for adaptive myoelectric interface
algorithms (Fig. 1a). Conventional gaze-controlled interfaces gen-
erally require users to focus their gaze to produce input, which
limits natural eye movements during everyday tasks and can lead
to fatigue [34]. Natural eye behavior, in contrast, offers insights into
user’s movement goals [35, 46], which has the potential to augment
human-computer systems with indirect signals [3]. Therefore, we
hypothesized that eye movements can replace task-based data in
training adaptive myoelectric interfaces by assuming that natural
gaze serves as a proxy for user intent and task goals. This gaze-
trained paradigm removes the constraint of task-based supervision
in adaptive algorithms, potentially enabling generalization across
diverse tasks. To our knowledge, this work has the first adaptive
myoelectric interface trained online using eye gaze data.
To demonstrate the feasibility of the new gaze-trained para-

digm, we recruited 11 naive subjects to control a computer cur-
sor using a 64-channel sEMG electrode on their forearm to follow
a 2-dimensional (2D) moving target (Fig. 1b). Previous literature
defined this cursor-tracking as a continuous task [15, 70], which
has the potential to be translated to other continuous computer or
human-device tasks, such as handwriting [32, 39], prostheses con-
trol [21, 75], or wheelchair navigation [49]. Our results demonstrate
the practical use of our gaze-trained paradigm, which worked as
effectively as the previous task-trained method when natural eye
movements were present.
The specific contributions of our work are twofold:

(1) We propose a new training paradigm to adapt myoelectric
interfaces using eye gaze as training data and highlight its
task-agnostic potential for diverse computer tasks.

(2) We show that our gaze-trained paradigm has the same effec-
tive performance as the prior task-dependent method both
with and without guided instruction to users regarding where
to fixate their gaze.

This study is an initial step in developing an out-of-the-box myoelec-
tric device that seamlessly self-calibrates to diverse users and tasks.
The findings of this study can benefit the development of wearables

in HCI applications, particularly in everyday tasks like continuous
cursor control in computers or extended reality environments.

2 RELATED WORK

2.1 Current Myoelectric and Adaptive Algorithms
Myoelectric interfaces translate high-dimensional muscle activity to
low-dimensional control of an external device. The process involves
recording and filtering raw sEMG activity, followed by the selection
of relevant features [16]. These selected features are then mapped
to low-dimensional control signals, commonly achieved through
linear dimensionality reduction (e.g, principal component analysis
or non-negative matrix factorization [13, 50]), regression [27, 41],
or classification [48, 60]. These mappings in myoelectric interfaces
are typically programmed offline, without the user in the loop [13].
For instance, prior to operating an interface, users’ muscle activity
is measured to capture specific movements or contractions, and this
recorded activity is used to program a fixed mapping. Although this
scheme has promising offline accuracy, the dynamic nature of hu-
man users in the loop and the large signal variability in sEMG [67]
often results in a mismatch between offline algorithm performance
and real-time interface usage [15, 27, 66]. Another limitation of myo-
electric interfaces in current studies is the pre-assigning gestures for
specific tasks. Many gesture recognition-based algorithms require
users to learn a specific set of gestures and then map those pre-set
gestures to device commands [8, 28, 48, 60]. However, users have
highly varied and personalized gestures that they prefer to use [69].
Thus, pre-assigning gestures limit the flexibility and accessibility of
interfaces.

Many high-dimensional inputs in brain-computer interfaces (BCI),
such as intracortical neural activities, have the same limitations as
above when operating in a closed loop. To address these limitations,
prior BCI studies have demonstrated the effectiveness of adapting
the mapping online, that is, adapting while the user is operating
the interface. Orsborn et al. [52] used a gradient-based supervised
learning algorithm to update the mapping based on real-time neural
activity. Madduri et al. [42] expanded the method and tested the al-
gorithm as naive users learned a myoelectric interface. These studies
demonstrated that online adaptation provides rapid calibration, im-
proves interface performance, accounts for signal nonstationarities,
and individualizes the interface to diverse users [14, 26, 41]. More-
over, adaptive interfaces reduce the reliance on guided instructions,
allowing users to customize their gestures and strategies at their
own pace. Users can also re-train interfaces on the fly, enhancing
long-term usability.
Adaptive interfaces are not new in the HCI community, as they

have been studied in manymachine learning use cases [15, 17]. How-
ever, adoption of adaptive algorithms is still limited in myoelectric
applications. This work builds off of an adaptive algorithm explored
in prior BCI literature [42, 52] to design an adaptive myoelectric
interface that continuously calibrates during operations. This inter-
face is specifically tailored for myoelectric use in HCI applications.
For instance, using a wearable device to perform everyday com-
puter tasks like cursor navigation. The novelty of this work is the
gaze-trained paradigm that trains the adaptive myoelectric interface
using natural gaze. This method allows users to decide their own

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 12, 2024. ; https://doi.org/10.1101/2024.04.08.588608doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.08.588608
http://creativecommons.org/licenses/by-nc-nd/4.0/


Using Eye Gaze to Train an Adaptive Myoelectric Interface • 3

strategies for myoelectric control without the need for prescribed
tasks and gestures, or guided eye movements.

2.2 Myoelectric Interfaces in HCI
Noninvasive myoelectric sensing has been explored in human-
device interaction studies, including teleoperation [20], user un-
derstanding [43], VR/AR training [55], and upper-limb [18] and
lower-limb prostheses [21], and rehabilitation [33, 47, 50, 56]. From
an HCI perspective, these studies demonstrated an accessible al-
ternative to traditional manual devices like mice and keyboards
for users with upper-limb motor impairments [70]. Additionally,
myoelectric interfaces provide always-available inputs that enable
everyday gesture detection to replace touch-based mobile inter-
faces [31, 39, 61]. This is particularly desirable when a user’s hands
are occupied or when a touch screen is not available.

Particularly, prior HCI studies have shown the promise of using
upper body (e.g., forearm) muscle signals as an input modality to a
computer device. Saponas et al. [60, 61] and Huang et al. [31] used
sEMG armbands to classify hand gestures such as thumb tapping and
finger lifting for mobile or keyboard interactions. Others have also
studied sEMG in gesture recognition for smartwatch [71] and smart
garment [5] interaction. In addition to discrete hand gestures, many
studies have demonstrated the use of sEMG for continuous cursor
navigation through hand movements or muscle contractions [37,
40, 57, 70]. CTRL-labs at Reality Labs [39] has recently reported an
sEMG decoding model trained with thousands of participants’ data
for multiple computer tasks like continuous navigation, discrete
gestures, and handwriting. They have found that their deep-learning
model can be accurately generalized across populations and sessions.

While the interfaces in these studies worked effectively for their
specific purposes, they were trained using offline data, which hin-
dered their adaptability across users and tasks when a dynamic user
is present in the loop. While CTRL-labs’ findings were exceptional,
it is challenging to replicate their model built with such large subject
sizes. This work also uses sEMG as an input modality for computer
cursor control; however, the main difference between this work and
the prior work is the continuous adaptation of the myoelectric inter-
face while users operate a task. In addition, our adaptive myoelectric
algorithm does not require a large dataset collected offline; instead,
the mapping is trained online with data from a single participant
in a trial. This can potentially avoid issues such as replicability or
biosignal data privacy.

2.3 Eye Tracking in HCI
Eye-tracking technology has found widespread applications in vir-
tual reality headsets to enrich user understanding and create more
immersive experiences. In addition, eye-tracking serves as a readily
measurable input modality to control devices without hands, and
is faster in cursor control compared to conventional mice [34, 72].
Prior studies have shown that eye inputs can augment interface
functionalities [34, 74] and enhance interface accessibility [29, 73].

Several studies in HCI have shown the advantages of integrating
interfaces with eye-tracking and upper-body movements. For in-
stance, the combination of gaze with gesture inputs enables rapid,
touch-free computer interactions [10] and can be used to enhance

user intention estimation [62]. Other studies developed multimodal
interfaces that used gaze for cursor navigation and sEMG (with
facial muscles, forehead, forearm, etc.) for discrete operations such
as selection, switching, or clicking, demonstrating performance sur-
passing that of traditional mice [44, 53]. While combining multiple
sources of biosignals enhances interactions, the potential benefits
of multiple biosignals in adaptive interfaces have not yet been fully
explored.
In this work, we extend previous research on myoelectric in-

terfaces by incorporating eye gaze data. What sets our approach
apart from other gaze-controlled devices is that we did not directly
use intentional gaze as a control input. Rather, we used natural
gaze as training data for our adaptive algorithm. Several studies
have also integrated people’s natural gaze in human-robot interac-
tion and have proved its advantages in anticipating user selections
or intentions, thus improving system efficiency and task accuracy
[1, 3, 11, 30, 63]. Aronson et al. [3] used natural gaze to predict users’
task goals and then used the predictions to improve a learning algo-
rithm for manual (joystick)-based robot manipulation. Similarly, this
study also leverages gaze to approximate the user’s desired actions.
The main distinction lies in the interface adaptation using high-
dimensional biosignal inputs, contrasting with the fixed mapping
of low-dimensional manual devices used in previous studies.

3 EYE-GAZE FACILITATED ADAPTIVE ALGORITHM
Online adaptation was used to update the matrix 𝐷 that mapped
high-dimensional sEMG signals 𝑠 to the velocity 𝑣 of a 2D cursor:

𝑣 = 𝐷 · 𝑠 . (1)

The matrix 𝐷 was adapted using a gradient-based learning algo-
rithm designed to minimize the task error with a regularization
term [42]. In prior work that used task information for training the
algorithm, it was assumed that the user would intend to move the
cursor toward the task target [25, 51]; thus, the intended goal was
the target position 𝑟 . The task error was therefore defined as the
norm difference between the intended velocity – the instantaneous
velocity of a vector between intended goal 𝑟 and cursor 𝑦 at a given
time – and the actual velocity of the cursor:

𝑐task (𝐷) = | | (𝑟 − 𝑦)/Δ𝑡 − 𝐷 · 𝑠 | |22 + 𝜆 | |𝐷 | |2𝐹 . (2)

where Δ𝑡 is the time interval, | |𝐷 | |𝐹 denotes the Frobenius norm of
the matrix 𝐷 ∈ R2𝑥𝑁 where 𝑁 is the number of EMG input features,
and 𝜆 is the weight of the regularization.
The innovation of this work is to infer the user’s intended goal

from their gaze and use gaze for training the interface. We replaced
the intended goal in the cost function to be gaze position 𝑔 in the
plane defined by the computer display:

𝑐gaze (𝐷) = | | (𝑔 − 𝑦)/Δ𝑡 − 𝐷 · 𝑠 | |22 + 𝜆 | |𝐷 | |2𝐹 . (3)

Thus, the adaptive algorithm was not explicitly given the target
information in the gaze-trained interface.
Following the method in Madduri et al. [42], the matrix 𝐷 was

updated iteratively to minimize the cost (𝑐task or 𝑐gaze) using 20-
second batches of data:

𝐷∗ = argmin
𝐷

𝑐 (𝐷) . (4)
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The 20-second batch length was selected to train data with intended
velocities spanning various directions on the computer screen.

4 METHODS

4.1 Participants
We recruited 11 participants without disabilities (5 males, 5 females,
1 non-binary; 2 left-handed, 9 right-handed; aged 19 to 32). They
were included in the study if they had normal or corrected-to-normal
eyesight and no history of upper-limb disability. Three participants
had used an EMG device before, and two participants regularly
worked with EMG devices. Participants gave their written consent
prior to the study. All procedures were approved by the University
of Washington’s Institutional Review Board (IRB #STUDY00014060).

4.2 Data Acquisition and Processing
User myoelectric activity was recorded from a high-density sEMG
64-channel electrode (5x13 rectangular electrode layout, 4mm inter-
electrode spacing from Quattrocento, Bioelectronica, Italy) that was
placed on the user’s dominant forearm, targeting the Extensor Carpi
Radialis. The electrode array was wrapped with self-adherent tape.
EMG signals were recorded using OT Bio-Light Software (Bioelet-
tronica, Italy) at 2048 Hz on Differential Mode with a built-in high-
pass filter at 10 Hz, and a low-pass filter at 150 Hz. Then, raw EMG
signals were digitally rectified and low-pass filtered by averaging
the delinearized signals with 100 ms time bins [70] to obtain an
EMG envelope that was input to the interface algorithm.
The eye data were collected using the PupilLabs Core headset

(PupilLabs, Germany) [36]. The gaze data streamed at 250 Hz using
the PupilCapture Software (PupilLabs, Germany), combining the
streaming data from the two infrared cameras in real time. Eight
AprilTags markers were placed around a 24-inch computer monitor
to define an area of interest in the PupilCapture Software (Fig. 1b).
Calibration in PupilCapture was conducted by a process where users
had to gaze at five static targets on the screen. The monitor was 27
inches in front of the participant. The heights of the monitor, table,
and chair were adjustable to maximize participants’ comfort level.
In the condition where gaze measurements were used online to train
the adaptive algorithm, the gaze data in every 20-second batch was
filtered to remove low-confidence estimations and de-biased for any
calibration errors (see Appendix A).

4.3 User Task
The experiment was described to the participants as a continuous
trajectory-tracking task. Participants were instructed to control
a cursor to stay as close to a 2D moving target as possible at all
times. We constructed target references as sums of sinusoidal signals
with random phases to create a pseudorandom target trajectory.
The sinusoidal signals were designed to be at frequencies of prime
multiples of the base frequency (0.05 Hz) below 1 Hz [58, 68]. The
signals were at 0.1, 0.25, 0.55, 0.85 Hz in the horizontal direction
and 0.15, 0.35, 0.65, 0.95 Hz in the vertical direction. We called these
frequencies the stimulated frequencies in this paper, denoted as a set
Ω. The magnitudes of stimuli were the inverse of the frequencies to
distribute signal power equally. The target and cursor positions on
the computer screen were updated at 60 Hz.

4.4 Conditions and Procedure
At the beginning of each experiment, participants conducted a base-
line trial using a computermouse to perform the continuous tracking
task. This baseline trial used the conventional mapping from the
mouse position to the cursor position, and this mapping was not
adapted.

After the baseline trial, participants performed the same tracking
task but now controlled via an adaptive myoelectric interface. They
conducted myoelectric interface control with two conditions: (1)
Task-trained: using target position as training data (Eq. 2), and
(2) Gaze-trained: using gaze position as training data (Eq. 3). Each
trial was three minutes and each condition was repeated four times
during this experiment. Participants performed four consecutive
blocks in total, each with both conditions. Participants did not know
the training mechanism of this experiment, nor which training
method was performed. The condition orders were randomized in
each block to control for order effects. Themapping𝐷 was initialized
randomly (matrix entries sampled uniformly at random in the range
[0, 10−2]) and then updated every 20 seconds during training.
To understand whether guided instruction on gaze would affect

the performance of the gaze-trained interface, we conducted two
sessions in this study–each session had two blocks–with a five-
minute break in between sessions (Fig. 2a). In Session 1, no explicit
instructions on the user’s gaze were given by the experimenter,
thus natural gaze was used as training input; while in Session 2,
participants were instructed to gaze at the target as closely as they
could in all trials (Fig. 2b).

At the end of the experiment, participants filled out a brief ques-
tionnaire to subjectively quantify their comfort with this system,
across three categories: task difficulty, interface accuracy, and effort.
We report these subjective results in Appendix B.

Fig. 2. (a) Block structure of the experiment. Participants conducted four
blocks and took a mandatory five-minute break between sessions. Session 2
had guided instruction on where to gaze. (b) Example gaze positions 𝑔 over
time in Session 1 (left) and Session 2 (right).
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4.5 Evaluation
To measure the online usability of the adaptive interface, we applied
the online evaluation method discussed in prior literature [15] and
quantified the continuous task performance as the time-domain
tracking ability [70]. Specifically, we quantified task performance
over time interval [𝑡0, 𝑡1] using the mean square error between the
2D target 𝑟 and cursor 𝑦 signals,

|𝑟 − 𝑦 |2 = 1
𝑛

∑︁
𝑡 ∈[𝑡0,𝑡1 ]

| |𝑟 (𝑡) − 𝑦 (𝑡) | |2 . (5)

where 𝑛 is the number of time samples in the interval [𝑡0, 𝑡1]. Lower
error corresponds to better task performance.
To assess how performance changed during training, we com-

pared task error from early to late periods within trials (as illustrated
in Fig. 3) across both sessions for each of three conditions: task-
trained, gaze-trained, and mouse baseline. Since the mapping was
initialized randomly and updated after 20 seconds, we removed the
initial 20 seconds of data and compared the subsequent 20 seconds
(early) with the last 20 seconds (late) of adaptation for each condi-
tion. The non-adaptive conventional mouse interface was used as
a baseline for comparison with performance achieved in the late
period of trials with our adaptive myoelectric interfaces. We verified
normality of the data using the Shapiro-Wilks test (task-trained:
𝑝 = 0.67; gaze-trained: 𝑝 = 0.89; baseline: 𝑝 = 0.80) and applied
paired t-tests and repeated measure analysis of variance (ANOVA)
test with 𝛼 = 0.05. We used paired t-tests with Bonferroni correction
as post-hoc tests. We had the following two hypotheses for interface
performance after training:

H1: Task- and gaze-trained myoelectric interface performance im-
proved significantly from early to late periods within trials.

H2: Task- and gaze-trained myoelectric interface performance in late
period was not significantly different from mouse baseline.

User performance in Session 2 may be expected to differ from
that of Session 1 for two key reasons. First, users had more expe-
rience with the interface during the second session than the first,
so although the decoders were initialized randomly the user may
have adopted a different adaptation strategy. Second, users were
explicitly instructed to fixate their gaze on the target in the second
session. Therefore we tested the effect of session order on task per-
formance achieved with the two training conditions with the last
20 seconds (late). To simultaneously assess the effect of training
condition and session on performance, we used a two-way repeated
measures ANOVA test with 𝛼 = 0.05. We used paired t-tests with
Bonferroni correction for post-hoc comparisons. We had the follow-
ing two hypotheses for assessing the effect of interface conditions
and session orders:

H3: Performance in Session 2 was better than that in Session 1.

H4: Task- and gaze-trained myoelectric interfaces performance was
not significantly different in Session 1 or Session 2.

5 RESULTS
H1: Task- and gaze-trained myoelectric interface performance im-
proved significantly from early to late periods within trials.
The tracking performance of both task-trained and gaze-trained
interfaces improved throughout the three-minute training; in the
late period, the users were able to control their cursors to approach
the target as compared to early of a trial (Fig. 3). Paired t-tests found
significant improvement in task performance from early to late
periods for both interfaces (task-trained: 𝑡 (10) = 4.93, 𝑝 < 0.001;
gaze-trained: 𝑡 (10) = 3.40, 𝑝 < 0.01). We visualized the 5th, 25th,
50th, 75th, and 95th percentiles of data distributions in boxplots
(Fig. 4).

Fig. 3. Two example trials of the continuous tracking task. Both task- and
gaze-trained interfaces had better tracking performance in the third minute
(right) compared to the first minute (left) of a trial. The early and late 20-
second windows are highlighted in rectangles with dashed borders.

Fig. 4. Boxplots (N = 11) of task performance in early and late periods,
averaged across all sessions. The boxplot of the mouse baseline performance
was shown for comparison. Lower task error corresponds to better task
performance. Significant differences were labeled with ∗ and 𝑝 values (paired
t-tests).

H2: Task- and gaze-trained myoelectric interface performance in late
period was not significantly different from mouse baseline.
A repeated-measure ANOVA test showed significant differences
across the three groups (late task-trained, late gaze-trained, and
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baseline) (Fig. 4; 𝐹2,30 = 20.64, 𝑝 < 0.001). Post-hoc tests with Bon-
feronni correction indicated significant differences between late
task-trained and baseline (𝑡 (10) = 8.34, 𝑝 < 0.001), and between late
gaze-trained and baseline (𝑡 (10) = 4.38, 𝑝 < 0.01). However, it did
not find a significant difference between late task-trained and late
gaze-trained (𝑡 (10) = −2.51, 𝑝 = 0.03), where the 𝑝 value was above
the corrected significance level.

H3: Performance in Session 2 was better than that in Session 1.
H4: Task- and gaze-trained myoelectric interfaces performance was
not significantly different in Session 1 or Session 2.
The two-way repeated measure ANOVA test (sessions × interfaces)
found a main effect for interface conditions but not session orders on
task performance (Table 1). Although the ANOVA test did not find
a significant effect on session orders, we observed that participants
exhibited slight improvements from Session 1 to Session 2 (Fig. 5).
Post-hoc tests with Bonferroni correction were then conducted to
compare the interfaces in each session. Post-hoc tests indicated no
significant difference between task- and gaze-trained interfaces in
either session, with both 𝑝 values above the corrected significance
level (Fig. 6; Session 1: 𝑡 (10) = −2.11, 𝑝 = 0.061; Session 2: 𝑡 (10) =
−2.51, 𝑝 = 0.031).

Table 1. Two-way repeated measure ANOVA (sessions × interfaces) results
for time-domain error during testing.

Factor 𝐹1,40 𝑝-value Partial 𝜂2

Sessions 1.40 0.24 0.03
Interfaces 5.17 0.028 0.11
Interaction < 0.001 0.99 < 0.001

Fig. 5. Distribution (median, interquartile, N = 11) of time-domain task error,
| |𝑟 − 𝑦 | | , of (a) Session 1 and (b) Session 2, removing the initial 20-second
ramp-up. Lower task error corresponds to better task performance. The
early and late 20-second windows are highlighted in rectangles with dashed
borders.

6 DISCUSSION
This work used eye gaze to train an adaptive myoelectric interface
for computer cursor control. The interface was adapted continuously
based on real-time sEMG inputs and gaze datawhile users performed

Fig. 6. Boxplots (N = 11) of task performance in the late period, separated
into Session 1 and Session 2. Lower task error corresponds to better task
performance. Comparisons between interfaces are shown with 𝑝 values
(paired t-tests).

a continuous tracking task. We evaluated the performance of this
adaptive myoelectric interface by comparing our novel gaze-trained
to the previous task-dependent method [42] and investigated the
effect of guided instruction on performance.

6.1 Task Performance Improved for Both Gaze-Trained
and Task-Trained Interfaces

Our results demonstrate that both gaze- and task-trained inter-
faces worked effectively for training the adaptive myoelectric inter-
face (Fig. 3; Fig. 4). This is consistent with the findings in Madduri
et al. [42] and Aronson et al. [3], where the former showed that
their task-trained adaptive interface improved tracking performance
withinminutes of training and the latter showed that natural gaze as-
sisted in goal predicting for device control. However, as expected, the
conventional mouse interface enables significantly better tracking
than both myoelectric interfaces, underscoring the challenges in de-
signing personalized myoelectric interfaces with high-dimensional
inputs. Nevertheless, this study serves as a proof-of-concept, show-
casing the feasibility of training an adaptive myoelectric interface
using a task-agnostic approach.

6.2 Gaze-Trained Interface Performed Comparably to
Task-Trained Interface

The two-way repeated measure ANOVA found a significant dif-
ference in interfaces (Table 1; 𝑝 = 0.028); while the post-hoc tests
further showed that the gaze-trained interface performed equally
well with the task-trained interface (Fig. 6). The ANOVA result is not
surprising as access to task information yields higher performance;
however, the post-hoc tests demonstrate that the gaze-trained par-
adigm holds potential for real-world deployment even when the
algorithm is not privileged with knowledge of the task. The novel
gaze-trained interface presents a task-agnostic advantage over the
previous task-trained interface, offering the potential to adapt while
users engage in diverse task operations.
A preliminary experiment suggests that the gaze-trained inter-

face is not limited to the tracking task presented in this paper. In the
Video Figure, we demonstrate the potential of training this interface
on a different class of reference signals (a sequence of stationary tar-
gets) and its potential to generalize to an unstructured handwriting
task.
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6.3 Differences in Performance with Additional Instruction
and Practice

We further investigated the effect of session orders on task per-
formance for each condition. In Session 2, participants received
additional instruction on gaze fixation and had undergone more
practice than in the first session. We observed that performances
of both interfaces improved in Session 2, with a slightly lower error
shown in Fig. 5. This improvement could be due to more consistent
user behavior as they learn a strategy to control an interface, leading
to proficient control [24, 52]. However, the ANOVA test did not find
a significant improvement in performance given the additional in-
struction or practice in Session 2; rather, the performance of the two
interfaces was more separated in this session (Fig. 6). This notable
difference in performance between the two interfaces could be due
to several factors, such as a shift in user strategy prompted by the in-
struction leading to improved task performance. Additionally, issues
such as eye-tracking headset slippage [36] could have contributed to
reduced accuracy in gaze data, as the eye-tracking headset was only
calibrated at the beginning of the experiment; these errors could
potentially accumulate over time, resulting in lower performance
in later gaze-trained trials.
Finally, the gaze-trained interface effectively operated without

guided instruction on where to look (Session 1). Although additional
studies were still needed to know whether guided instruction affects
performance, the gaze-trained interface surprisingly did not have a
pronounced improvement when natural gaze was replaced with in-
tentional gaze (Session 2). These findings highlight the robustness of
our training paradigm and suggest that instruction on where to look
might not be necessary for gaze-trained interface; instead, general
practice across sessions or guidance in strategies might be sufficient
to account for the improvement between sessions. Moreover, dif-
ferent from other gaze-controlled devices that use gaze as a direct
control input [44, 53, 64], this approach allows natural eye move-
ments during computer operations and can potentially minimize
fatigue associated with intentional eye-tracking [34].

6.4 Potential Applications in HCI
This work is a proof-of-concept of a novel method: training an
adaptive myoelectric interface with the user’s natural gaze. Imagine
a wearable device that a user can inattentively put on their arm that
automatically calibrates as they perform various tasks or switch
between tasks in a virtual environment. Our work is a step toward
realizing this vision, laying the groundwork for future investigations
into continuously adaptive high-dimensional interfaces across a
variety of HCI applications. We conclude by listing consumer and
health applications that can potentially benefit from our interface.

Wearables in Augmented/Virtual Reality. Our gaze-trained myoelec-
tric interface has the potential to enable cursor control when eye-
tracking is available, such as using hand movements to navigate tabs
in VR or swiping through slideshows in virtual presentations. For
example, consider a user controlling a continuous cursor to navigate
a web page in VR using a sEMG-based wearable device and a head-
set. Over time, the user may begin to sweat, feel fatigued and opt for
smaller movements, or switch to another task, such as writing with
the continuous cursor. Each of these scenarios leads to changes in

sEMG signals. If using a conventional myoelectric interface, the user
would need to perform another offline calibration to accommodate
such signal changes. In contrast, our interface provides continuous
adaptation on the fly, eliminating the need for offline re-calibration
or prescribed tasks. This holds promise for seamlessly transitioning
between user-led activities using user-selected hand movements.

Assistive Devices for Motor Control. While we tested our interface
with healthy participants, the insights gained from this study have
implications for assistive devices to restore motor abilities in health-
care settings. For example, our approach can potentially benefit
sEMG- or electroencephalogram (EEG)-controlled wheelchair [2].
As gaze reveals a user’s intended moving direction, we can use gaze
information to train an adaptive interface to control the continuous
navigation of a wheelchair. This can be a promising alternative to
current powered wheelchairs, which lack adaptability to individual
users. Unlike previous gaze-controlled wheelchairs [45, 64], this
approach integrates high-density biosignals to control the interface
and does not require intentional gaze.

Another potential application lies in powered prostheses or robotic
limbs controlled with high-density measurements like sEMG, EEG,
or intracortical activities. Myoelectric prostheses still face high rates
of abandonment, partly due to poor ease of use [18]. If eye infor-
mation is accessible, our gaze-trained paradigm could be used to
train an adaptive interface to control those devices, thus enhancing
the usability of myoelectric prostheses across a diverse set of users.
It is important to note that our study focused only on 2D cursor
navigation. To extend its utility to the above applications, we will
need to modify and validate the paradigm for 3D and multi-degree-
of-freedom robotic limb control. Additionally, this will require depth
information into eye-tracking data to estimate user intention in 3D.

6.5 Limitations and Future Work
Our immediate next step is to expand the preliminary experiment
showcased in the video and validate the applicability of our gaze-
trained paradigm to less structured tasks. Specifically, we plan to
train the adaptive interface while novice users engage in activities
such as browsing web pages or writing with a cursor. Another future
step is to incorporate the dynamic nature of eye movements in our
gaze-trained paradigm. Eye movements have been shown to evolve
as people learn novel sensory-motor mappings [12, 59] and are
different between novice and skilled users [22]. This suggests that
eye-tracking data will have additional benefits for adaptive inter-
faces beyond the training tested here. For instance, eye-tracking can
be particularly helpful in detecting gradual user learning or abrupt
shifts in user strategy, thereby facilitating prompt re-calibration of
our myoelectric interface.
One limitation of this study was the limited number of subjects.

Moreover, we only tested participants without disabilities. As myo-
electric and eye-tracking devices hold promise for improving device
accessibility for people with motor disabilities [69], our plan moving
forward is to test the gaze-trained interface with individuals who
have upper-limb motor disabilities, such as stroke survivors.
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7 CONCLUSION
In this work, we propose a new method for training an adaptive
myoelectric interface online using natural eye movements, treating
the user’s gaze as a proxy for the task goal. Our gaze-trained ap-
proach eliminates the need for explicit task information in training
myoelectric interfaces, offering a less supervised alternative com-
pared to other methods. This approach also does not require users
to be guided on where to focus their gaze, preventing drawbacks
associated with intentional eye-tracking. This adaptive myoelectric
interface holds the potential to extend to diverse tasks, including
less structured computer operations with undefined task goals. This
study will inform our ongoing work in developing an out-of-the-box
myoelectric interface that adapts during diverse task operations,
contributing to a more user-friendly and accessible class of inter-
faces.
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across all trials. The significant difference was labeled with ∗ and its 𝑝 value
(paired t-test with 𝛼 = 0.05).
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A EYE DATA PRE-PROCESSING
To accurately estimate the task goals or the task targets from gaze,
we pre-processed the raw gaze data using the following steps:

(1) We found that raw gaze delayed the target reference by ap-
proximately 250-300 ms and had a phase lag of 0.4 radians
below 1 Hz when a participant intentionally gazed at the
target. This roughly aligned with the human visuomotor de-
lay in a first-order tracking task [54]. To estimate the target
position from gaze position, we removed the phase lag using
the Fast Fourier Transform in the frequency domain.

(2) After an initial calibration in PupilCapture (see section 4.2),
we asked participants to fixate on nine static targets on the
computer screen to examine any bias in gaze measurements.
These biases were due to imperfect eye-tracker calibration or
inaccurate transformation from camera coordinates to screen
coordinates. We then removed biases in gaze positions in both
horizontal and vertical axes.

(3) We masked low-confidence eye measurements by removing
gaze data below a confidence threshold of 0.5, in a range from
0 to 1 given by the PupilCapture Software. Low confidence
gaze could be due to the user blinking or gazing off of the
computer screen.

The cleaned gaze data had a significantly better correlation with
the target trajectory 𝑟 compared to the raw gaze data when a user
was intentionally gazing at the target (Fig. 7).

B SUBJECTIVE USER EXPERIENCE
At the end of the experiment, participants provided subjective
inputs, including the difficulty of the system (on a scale of 1−5, with
5 being the most difficult), the accuracy of the system (1−5, with
5 being the most accurate), and how much effort did it take to use
the system (1−5, with 5 being a lot of effort). The median value of
the three indices showed that participants rated the system to have
relatively low (2) difficulty, slightly high (4) effort, and medium (3)
accuracy (Fig. 8).
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