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3

Abstract4

Despite the growing prevalence of adaptive systems in daily life, methods for anal-5

ysis and synthesis of these systems are limited. Here we find theoretical obstacles to6

creating optimization-based algorithms that co-adapt with people in the presence of dy-7

namic machines. These theoretical limitations motivate us to conduct human subjects8

experiments with adaptive interfaces, where we find an interface that decreases human9

effort while improving closed-loop system performance during interaction with a machine10

that has complex dynamics. Finally, we conduct computational simulations and find a11

parsimonious model for the human’s adaptation strategy in our experiments, providing12

a hypothesis that can be tested in future studies. Our results highlight major gaps in13

understanding of co-adaptation in dynamic human-machine interfaces that warrant fur-14

ther investigation. New theory and algorithms are needed to ensure interfaces are safe,15

accessible, and useful.16

With practice and effort, people can learn to control dynamic systems like vehicles,1–3 tele-17

and co-robots,4–6 prostheses,7–9 exoskeletons,10–12 or brain-computer interfaces.13–15 To facil-18

itate and shape this learning, it is tempting to inject intelligence into the interface between19

the human and dynamic machine.16 But since people continually adapt to their sensorimotor20

context,17,18 introducing an adaptive interface into this closed-loop interaction creates a two21

learner problem19,20 wherein the human and interface co-adapt .21 Understanding how to ana-22

lyze and synthesize these systems is critically important in current and emerging applications23

including driver assistance,22 surgical robotics,23 rehabilitative robotics,24 active prosthetics,824

and neural interfaces (both invasive13 and non-invasive25).25
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Motivated by the optimal feedback hypothesis for human motor control,26–29 we model26

the interaction between a human, adaptive interface, and dynamic machine using a robust27

control framework.30 In particular, we assume the human and interface both solve optimal28

control problems to determine their behavior. By analyzing the equilibrium behavior of such29

systems, we find a fundamental theoretical limitation neglected in prior work,31,32 where it30

was assumed that the human and interface had noise-free observations of the machine’s state31

vector, which we regard as unrealistic in real-world applications. For example, in the context32

of neuroprosthetics, where a neural interface seeks to help a person control a dynamic machine,33

intrinsic stochasticity of neural signals33 injects noise into the system, precluding access to full34

information. This finding leads us to conduct experimental and simulation studies to discover35

and model how people behave when interacting with adaptive interfaces and dynamic machines36

under the realistic condition where measurements are noisy.37

We consider systems where the machine M has dynamics, that is, where the dimension of38

the machine’s state vector – the system order [34, Sec. 2.2] – is greater than or equal to 1;39

the zero-dimensional case was studied in prior work.35–37 In our theoretical analysis, we allow40

arbitrarily-large system orders. In our experiments and simulations, we test interfaces that41

are 0th-, 1st-, and 2nd-order with a specific 2nd-order dynamic machine that is fundamentally42

challenging to control2 – a nonminimum phase 2nd-order system. The interface orders we test43

correspond to the position-, velocity-, and acceleration-based dynamics routinely encountered44

in daily life.145

A model of co-adaptation in dynamic human-machine interfaces46

We model dynamic human-machine interfaces (HMI) using the block diagrams in Fig. 1, where:47

H represents the human “in-the-loop”, M the machine that is being controlled, and I the48

interface we seek to synthesize. These diagrams specify the flow of information, with signals49

illustrated by arrows and transformations of signals illustrated by blocks. When the blocks50

H, M , and I are linear time-invariant (LTI) transformations [38, Lec. 3], these diagrams are51

not solely conceptual – they provide precise mathematical specifications of the closed-loop52

transformation from input disturbance w to output error z. Although humans are generally53

nonlinear, they can behave remarkably linearly when interacting with finite-order LTI machine-54

and-interface dynamics.1 These observations motivate us in what follows to focus on the finite-55

order LTI case where there exists a comprehensive toolkit for analysis and synthesis of feedback56

systems.30,34,3857

The field of robust control theory30 provides methods for synthesizing the interface I in Fig. 1
(conventionally termed the controller) to optimize a performance criterion with respect to
fixed models of human H and machine M (and, optionally, uncertainty in the models). The
performance criteria of interest in robust control are induced norms [30, Ch. 4] that quantify
how much signal power is transferred from input disturbance w to output error z. In this robust
control paradigm, the interface I is synthesized by solving an optimization problem

min
I

∥H/M/I∥I (1)
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Figure 1: Block diagram models for human-machine interfaces (HMI). (a) This diagram spec-
ifies that the human H transforms signal p to signal q, i.e. the human observes output p from
machine M and provides control input q to the machine. Similarly, the interface I transforms
machine output y to control input u, and the machine M transforms both of the control inputs
q, u and an external input w to produce outputs p, z, y. The external input w can contain a
disturbance to reject (e.g. measurement or process noise) or a reference to track (e.g. a trajec-
tory or stationary point). (b) This diagram shows a simplification of (a) that obscures details
about the interconnection between H, M , and I, instead denoting the transformation H/M/I
resulting from this interconnection. The block H/M/I is defined so that (a,b) both specify the
same transformation from w to z.

where the induced norm ∥·∥I encodes what components of z the interface seeks to make as small58

as possible. Under appropriate restrictions on the choice of norm ∥·∥I , models of human H and59

machine M , and statistics of input w and output z, a solution I∗ to the optimization problem60

in (1) exists30 and can be computed using efficient numerical algorithms.39 As an example, the61

well-known linear-quadratic Gaussian (LQG) regulator [38, Lec. 24] is obtained by solving (1)62

when: the disturbance w is Gaussian; the error z consists of (linear transformations of) the state63

of the machine x and the control input u; the human-machine transformation H/M defined64

in Fig. 2 is stabilizable and observable [38, Lec. 14, 15]; and ∥·∥I is the induced 2-norm.65

If the statistics of the human H and machine M in Fig. 1 are stationary regardless of the66

implemented interface I (e.g. if H and M are given as fixed transformations or distributions of67

transformations), then the preceding paragraph describes a remarkably flexible framework for68

synthesizing an optimal interface I∗.30,40 However, although it may be reasonable to assume or69

ensure machine dynamics are stationary, ample evidence suggests that the human will naturally70

adapt to any perceived change in the interface, and moreover that this adaptation will not be71

random – rather, the human’s transformation will be strongly influenced by the interface.1,2, 25,4172

Therefore if the interface I∗ is synthesized by solving (1) with respect to an initial guess or73

estimate of the human’s transformation H, it is reasonable to expect the human will adapt74

its transformation from H to H̃ when the interface changes from I to I∗. Unfortunately, the75

synthesized interface I∗ is not optimal with respect to the adapted human transformation H̃.76
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In fact, implementing I∗ in-the-loop with H̃ could yield arbitrarily bad performance.4277

The preceding observations motivate the study of interfaces that co-adapt with the human
and, hence, regard the human H and interface I as two learners19,20 playing a dynamic game43

through their interaction with the machine M . As a starting point for modeling this inter-
action, prior work suggests the human may play this game by solving their own optimization
problem26–29

min
H

∥H/M/I∥H (2)

where the norm ∥·∥H encodes what components of z the human seeks to make as small as pos-78

sible. Other than in the special case where the goals of the human and interface are perfectly79

aligned so that ∥·∥I = ∥·∥H, the outcome of the game defined by simultaneously considering80

the optimization problems in (1) and (2) will generally represent a compromise between the81

player’s conflicting goals. One such outcome considered in prior work on human-machine inter-82

faces19,31,32,35 is a Nash equilibrium43,44 defined by a pair of transformations H∗, I∗ such that83

H∗ minimizes ∥H∗/M/I∗∥H and I∗ minimizes ∥H∗/M/I∗∥I .84

Results85

Theory results86

This section provides theoretical analysis of the dynamic game defined in the preceding section
that is played by a human H and interface I interacting with a machine M , where we assume
H, M , and I are linear time-invariant (LTI) transformations. The game is specified by the
coupled optimization problems

min
H

∥H/(M/I)∥H (3a)

min
I

∥(H/M)/I∥I (3b)

where ∥·∥H, ∥·∥I denote the utility functions of the human and interface, respectively, and87

the closed-loop transformations H/(M/I) = H/M/I = (H/M)/I are defined in Fig. 2. The88

simplified block diagrams in Fig. 2 are useful to illustrate (i) the combined machine-interface89

system (M/I) the humanH interacts with and (ii) the combined human-machine system (H/M)90

the interface I interacts with.91

Given LTI transformations M and I, the solution H∗ of the optimization problem in (3a) is92

an LTI transformation [30, Thm 14.7] that can be computed using efficient algorithms.39 With93

the exception of the special cases considered in prior work31,32 (termed full information and94

full control in30,45), the number of state variables in the dynamics of H∗ is equal to the sum of95

the number of state variables in M and I; if we let #(T ) denote the number of state variables96

in the LTI transformation T , this property can be written #(H) = #(M) + #(I). Similarly,97

given LTI transformations H and M , the solution I∗ of the optimization problem in (3b) is an98

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2023. ; https://doi.org/10.1101/2023.07.14.549053doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.14.549053
http://creativecommons.org/licenses/by-nc-nd/4.0/


H

M/I wz

p q

y u
I

a

b
wz

H/M

Figure 2: Block diagrams from human and machine perspectives. Given LTI transformations
H, M , and I, the blocks M/I and H/M are defined so that the diagrams in (a, b) specify the
same transformation from w to z as the diagrams in Fig. 1. Mathematically, the U/L operation
is defined as the linear fractional transformation [30, Ch. 3, 10] between blocks U and L. These
simplified diagrams are conceptually useful when reasoning from the individual perspectives of
the human H and interface I as they jointly interact with the machine M . Indeed, H interacts
with the interconnection M/I between M and I as illustrated in (a), whereas I interacts with
the interconnection H/M between H and M as in (b).

LTI transformation, and the number of state variables in I∗ equals the sum of the number of99

state variables in H and M : #(I) = #(H) + #(M).100

We will show in the Theorem below that the game in (3) generally has no Nash equilibrium101

when M has dynamics, i.e., #(M) ≥ 1. To see why this may be the case, consider the102

co-adaptive interaction wherein H and I alternately solve their optimization problems ((3a)103

and (3b), respectively). Even starting from an interface with #(I) = 0, solving (3a) with respect104

to given M and I yields solution H∗ with #(H) = #(M) ≥ 1, so subsequently solving (3b)105

with respect to given H∗ and M yields solution I∗ with #(I) = #(H) +#(M) = 2#(M) ≥ 2.106

Iterating this process yields a sequence of H and I with ever-increasing numbers of state107

variables, preventing the existence of a stationary point for (3) in the sense of Nash.108

Theorem: Suppose M is a linear time-invariant (LTI) transformation with dynamics so that109

#(M) ≥ 1. Then the dynamic game in (3) can have a Nash equilibrium H∗, I∗ only if the110

transformations H∗/M and M/I∗ are full-information or full-control.30,45111

Proof (by contradiction): Suppose there exists a Nash equilibrium H∗, I∗ for (3). If either112

H∗/M or M/I∗ are not full-information or full-control, then [30, Thm. 14.7] implies #(H∗) =113

#(M)+#(I∗) and #(I∗) = #(H∗)+#(M). Substituting the second equation from the preceding114

sentence into the first and simplifying yields 0 = 2#(M). But since #(M) ≥ 1, this equation115

is a contradiction.116
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Figure 3: Experiment design. (a) Human subjects provide response uH using a 1-dimensional
manual device. (b) The subjects are instructed to change their response to make a cursor on
a computer display as close as possible to a reference position in the middle of the screen. (c)
The human H, machine M , and interface I are connected in series, with the human viewing
output y from the machine M and producing response uH that is input to the interface I.
The interface’s response uI is corrupted by an external disturbance d before being input to the
machine.

Remark: The co-adaptation games studied in prior work19,31,32,35 consider only the full-information117

case, where it is assumed that the state of the machine M is observed by both the human H and118

interface I with no measurement noise. In this case, the game can admit a Nash equilibrium119

defined in terms of static state feedback transformations for H and I [43, Sec. 6.2.2].120

Example: The neuroprosthetic example from the introduction illustrates why full-information121

or full-control assumptions are unrealistic. Indeed, full-information would require both adaptive122

agents – human and interface – have noise-free measurements of all system states, including123

those internal to the other adaptive agent. Similarly, full-control would imply both agents can124

directly influence all system states; although it might be possible in principle to give the brain125

full control over the machine and interface, it seems implausible (and perhaps undesirable)126

for the interface to have full control over the human’s neural state. Either assumption seems127

inconsistent with our understanding of neural dynamics.33128

Experiment results129

We tested the effect of co-adaptation on HMI performance in the presence of the machine
with dynamics in (6), where neither the human or the interface have full-information or full-
control. Participants in our human subjects experiment completed a continuous disturbance-
rejection task using a one-dimensional manual input device1,3 as shown in Fig. 3. We assessed
performance using three metrics: how well the HMI rejected the input disturbance, quantified
using the transformation norm ∥H/M/I∥2; how much effort the human exerted, quantified
as ∥H∥2; and how much effort the interface exerted, quantified as ∥I∥2. In each case, we
used the induced 2-norm of the transformation. The interface adapted by minimizing a linear
combination of task performance and interface effort,

cI(H, I) = ∥H/M/I∥2 + λI∥I∥2, (4)
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with λI = 10−4.130

We recruited eleven participants, all of whom were daily computer users. Participants131

completed the co-adaptive disturbance-rejection task over a sequence of 21 trials in each of132

three conditions presented in random order: i) 0th-order interface; ii) 1st-order interface; iii)133

2nd-order interface (Figure 4a). Each condition started with a randomized interface initial-134

ization, and the interface was adapted every three trials by estimating a model of the human135

transformation H̃ and minimizing cI(H̃, I) with respect to I. Between each condition, par-136

ticipants completed three baseline trials where the interface was set to a constant unity gain137

(passthrough, I = 1). Participants were asked to keep the randomly disturbed cursor as close138

to the center of the screen as possible (see Fig. 3b).139

We found that the co-adaptive 1st-order interface improved both the task performance and140

human effort metrics: ∥H/M/I∥2 and ∥H∥2 decreased significantly relative to baseline (Fig-141

ure 4b,c top; ∗P < 0.05; Wilcoxon signed-rank test). The interface effort increased significantly142

relative to baseline (Figure 4e top; ∗P < 0.05; Wilcoxon signed-rank test), but this increase143

was compensated by the decrease in ∥H/M/I∥2 so that the interface’s cost in (4) decreased144

significantly (Figure 4d; P = 0.04; Wilcoxon signed-rank test). We also found that the task145

performance after co-adaptation with the 1st-order interface was indistinguishable from the146

baseline performance with the 0th-order interface (Figure S1 top row; P = 0.23; Wilcoxon147

signed-rank test) but significantly better than the 2nd-order interface (Figure S1 top row;148

∗P = 0.03; Wilcoxon signed-rank test).149

Observing the spectral density plots more carefully, we found there was no statistically sig-150

nificant difference between co-adaptation and baseline at each individual tested frequency for151

task performance (Figure 4b, bottom; P > 0.05; Wilcoxon signed-rank test). However, the152

median of the baseline was higher after co-adaptation at low frequencies below the crossover153

frequency 0.25 Hz where prior work has shown humans adapt significantly.1,3 Similarly, human154

effort was lower after co-adaptation compared to baseline at lower frequencies (below crossover)155

but not at higher frequencies (Figure 4c; ∗P < 0.05; Wilcoxon signed-rank test). The inter-156

face had higher effort at all stimulated frequencies with co-adaptation compared to baseline157

(Figure 4e; ∗P < 0.05; Wilcoxon signed-rank test). These findings are consistent with prior158

work that demonstrates the human operator’s ability to reject disturbances falls off rapidly for159

frequencies above crossover,1,3 whereas adaptive interfaces do not have such frequency-based160

restrictions. Together, these results show that the co-adaptive 1st-order interface improved161

disturbance-rejection task performance while decreasing human effort and increasing interface162

effort.163

Simulation results164

Based on the preceding theory and experiment results, we conducted a simulation study to
obtain a parsimonious computational model of the human and 1st-order interface co-adaptation.
Our goal was to determine human parameters that approximated our experimental results.
Since our theory results show that there can be no Nash equilibrium when the order of the
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Figure 4: Experiment results (N=11 participants). (a) Baseline and adapted interface pa-
rameters. The 0th-, 1st-, and 2nd-order adaptive interfaces converged to a range of different
parameters (left, middle, and right, respectively). Baseline interface (I = 1) shown by cross (x);
final adapted interfaces shown by open circles (◦) for each participant. (b-d) Distributions of
performance metrics for baseline and adapted interfaces shown using box plots (top; 0th, 25th,
50th, 75th, and 100th percentiles) and spectral density plots (bottom; median and interquar-
tile): task performance ∥H/M/I∥2 in (b); human effort ∥H∥2 in (c); interface cost cI(H, I)
in (d); interface effort ∥I∥2 in (e). Statistically significant differences between baseline and
final adapted interfaces shown with horizontal lines in box plots and with asterisk (∗) spectral
density plots (P < 0.05, Wilcoxon signed-rank test); significant differences between initial and
final adapted interfaces shown with dagger (†) in spectral density plots (P < 0.05, Wilcoxon
signed-rank test).
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Figure 5: Simulation results (N=100 random initializations). (a) Gain parameter (b) from
co-adaptation simulation outcomes for human (top) and interface (bottom) transformations
over human penalty parameter λH ; human model H is 2nd-order, interface I is 1st-order.
Intensity denotes percentage of simulation outcomes. (b-d) Distributions of differences between
performance metrics for baseline and adapted HMI shown using mean +/- standard deviation:
task performance ∥H/M/I∥2 in (b); human effort ∥H∥2 in (c); interface effort ∥I∥2 in (d).
Baseline indicated with grey dashed line. A negative value indicates that the simulated co-
adaptation magnitude was lower than the baseline magnitude. A positive value indicates that
the simulated co-adaptation magnitude was higher than the baseline magnitude.

human and interface dynamics are unbounded, we only simulate low-order dynamics for both.
Following prior work,35,36 we assumed that the human adapted their parameters by minimizing
a linear combination of task performance and human effort:

cH(H, I) = ∥H/M/I∥2 + λH∥H∥2, (5)

where we again used induced 2-norms. We simulated the human and interface co-adaptation165

for human penalty parameters λH ranging from 10−8 to 10−1. The 2nd-order machine M had166

the same parameterization as in the experiment, (6). We only simulated co-adaptation with the167

1st-order interface, since that was the only experimental condition that resulted in significant168

changes in task performance.169

To simulate human and interface co-adaptation, we randomly initialized the human and 1st-170

order interface within the parameter ranges tested in the experiments. Then, we synthesized171

the optimal human model H∗ for the optimization problem in (5). Next, we held the human172

model constant and synthesized the optimal interface I∗ for the optimization problem in (4).173

We continued alternating optimizing for the human and interface until parameter convergence.174

We repeated the random parameter initialization and alternating optimization 100 times to175

determine whether initialization location affected the final parameters after co-adaptation. We176

additionally performed the same optimization but solely for the human model, holding the177

interface constant at Î = 1 to obtain how the human model adapted for a baseline interface.178

A 2nd-order human model with a penalty in the middle of the range we tested (λH = 10−4)179

yields simulation outcomes that qualitatively correspond to our experimental results, where180

we found co-adaptation improved task performance, decreased human effort, and increased181
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interface effort relative to baseline (Figure 5b-d). In contrast, simulation outcomes with 0th-182

and 1st-order human models were inconsistent with one or more of our experimental results183

across all tested human penalty parameters (Figure S3). With a 2nd-order human model,184

both the interface and human had multiple Nash equilibria across all human penalties tested185

(Figure 5a). Lower human penalty resulted in higher human and interface gains, whereas higher186

human penalty resulted in lower human and interface gains.187

Discussion188

Our experiment results demonstrate potential advantages – and potential drawbacks – of de-189

ploying adaptive interfaces in-the-loop with humans and dynamic machines. We found co-190

adaptation with a 1st-order interface significantly improved task performance while lowering191

human effort and decreasing interface cost relative to baseline (Figure 4b,c,d). The decrease192

in interface cost was obtained despite an increase in interface effort (Figure 4e), represent-193

ing a compromise between the interface’s opposing goals of improving task performance with194

minimum effort, (4). Game-theory methods for co-adaptation that explicitly consider strate-195

gic interests of two intelligent decision-making agents may enable the interface designer to196

systematically explore this tradeoff.37197

The performance improvements in our experiments were achieved using interfaces that were198

tailored to the individual (Figure 4a); it is unclear whether similar improvements would have199

obtained by optimizing a single interface for the entire population of human subjects. However,200

the improvements we observed were by no means guaranteed, as co-adaptation between intel-201

ligent decision-making agents may yield worse outcomes for all or fail to converge entirely.21,46202

Indeed, the fact that we did not observe significant improvements for 0th- and 2nd-order in-203

terfaces demonstrates the influence of the adaptive interface’s parameterization on outcomes.204

Additionally, prior results highlight the importance of giving people sufficient time to learn.3,41205

Our simulation results (Figure 5) corroborate the longstanding observation that humans206

themselves have dynamics.1–3,41 Coupled with our theory result, that co-adaptation between207

optimal agents generally has no Nash equilibrium when system orders are unconstrained, this208

simulation finding implies that humans do not implement the theoretically-optimal feedback209

controller26–29 when interacting with machines that have complex dynamics. By restricting the210

generally ill-posed game in (3) to finite-order human and interface transformations, we found211

one or more Nash equilibria in our simulations (Figure S2), and one particular parameterization212

of the human transformation and cost that yielded outcomes consistent with our experimental213

results. Our simulation framework may prove useful to test hypotheses and inform interface214

design in future studies.215

Finally, our theory result brings to light a fundamental limitation in current understanding216

of how to analyze and synthesize interfaces that co-adapt in-the-loop with a human and dynamic217

machine. Importantly, real-world co-adaptive systems will generally be neither full-information218

or full-control due to noise in sensory-and-motor channels and inability of the interface to219
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directly control all system states – especially those of the human’s dynamics. So we claim that220

our theory result has broad practical implications. As an avenue for future exploration, it is221

important to note that our results concerned only Nash equilibria, but dynamic games can yield222

a rich variety of outcomes depending on the information structure, order of play, and strategy223

employed by players.37 A new paradigm is needed to ensure safety,47,48 accessibility,49,50 and224

utility51–53 of co-adaptation between humans and intelligent interfaces.225

Conclusion226

Our work highlights limitations in prior theory, experiment, and simulation work on co-adaptation227

between humans and intelligent interfaces interacting in closed loop with dynamic machines in228

real-world conditions. We demonstrate that a Nash equilibrium does not exist under standard229

assumptions of optimal adaptation, and explore in experiment and simulation how a human and230

interface with bounded rationality54 adapt to improve performance in a disturbance-rejection231

task. Understanding how to analyze and synthesize co-adaptive systems, where both human232

and algorithmic agents adapt to control dynamic systems like vehicles, robots, and prostheses233

is critically important in current and emerging applications including driver assistance, rehabil-234

itation robotics, and neuroprosthetics. We contribute new theory, experiment, and simulation235

results that will inform creation of these systems for real-world deployment.236

Materials and methods237

Data and analyses to reproduce the results reported here are available in a permanent publicly-238

accessible repository.55239

Human subjects240

All participants provided informed consent according to the University of Washington, Seattle’s241

Institutional Review Board (IRB #00000909). The goal of this experiment was to determine242

the effects of human and interface co-adaptation on final interface dynamics, task performance,243

and human and interface effort. This was a pilot study to determine whether and how the HMI244

co-adapt and how the co-adaptation affects HMI performance and human and interface effort245

compared to baseline. Eleven participants were recruited for the study (age: 28 ± 7 years246

(mean ± standard deviation); gender: 8 women, 3 men, 1 non-binary (some identified with247

multiple genders); hand dominance: 11 right-hand dominant). All were daily computer users.248

Task249

Participants were tasked with controlling a cursor on the screen with a one-dimensional slider,250

which was built from a 35×12×22 mm (width×height×depth) rectangular handle attached to251
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a slide potentiometer with a 10 cm extent (Figure 3a). Following prior work,3,56 unpredictable252

disturbance signals d were constructed as a sum of sinusoidal signals with the first eight prime253

multiples of a base frequency of 1/20 Hz (Ω = [0.10, 0.15, 0.25, 0.35, 0.55, 0.65, 0.85, 0.95] Hz).254

Each frequency component’s magnitude was normalized by the frequency squared to ensure255

constant signal power, and the phase of each frequency component was randomized in each256

trial to produce pseudorandom time-domain signals. The disturbances perturbed the cursor in257

an unpredictable fashion, and participants were asked to keep the cursor as close to the center258

of the screen as possible. Each trial was 40 seconds after a 5-second ramp-up.259

Human response uH were transformed through a fixed non-minimum phase second-order
machine M to produce output y to increase the complexity of the task:2

ÿ + 3.6ẏ + 4 = 2(u̇I + 2.2uI) + d,

M̂(s) =
2(s+ 2.2)

s2 + 3.6s+ 4
,

(6)

where ẋ represents the time-domain signal x differentiated by time t, and M̂(s) represents the260

Fourir transform of machine M(t). As the updates to the cursor position y occurred at 60 Hz,261

the machine was discretized prior to implementation.262

Conditions263

We tested three interface conditions (0th-, 1st-, and 2nd-order; Table 1). As the updates264

to the interface response uI occurred at 60 Hz, discrete dynamics were used to update the265

interface output from one time point to the next. Each condition started with three trials of266

a baseline where the human response uH was unaffected by the interface dynamics (uI [t] =267

uH [t − 1], Îbaseline(z) = 1), followed by 21 trials of co-adaptation for each condition (∼30268

minutes per condition). The condition order was randomized for each participant. After all269

three conditions were completed, the participants performed three more baseline trials. All270

participants were encouraged to take breaks between the 45-second trials, and participants271

were asked to take at least a one-minute break after each condition.272

Table 1: 0th-, 1st-, and 2nd-order interfaces tested in experiments.

time domain frequency domain

0th uI [t] = buH [t− 1] Î0(z) = b

1st uI [t] = auI [t− 1] + bu[t− 1] Î1(z) =
b

z−a

2nd
uI [t] = (a1 + a2)uI [t− 1]
−a1a2uI [t− 2] + bu[t− 1]

Î2(z) =
b

(z−a1)(z−a2)

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2023. ; https://doi.org/10.1101/2023.07.14.549053doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.14.549053
http://creativecommons.org/licenses/by-nc-nd/4.0/


Signal processing273

Prior work demonstrated that when humans are tasked with tracking references r and rejecting
additive disturbances d through a linear time-invariant (LTI) [34, Ch. 3, pg. 4] system M ,
humans behave approximately like LTI transformations for a range of reference and disturbance
signals.1,3, 56 As such, we can analyze our system in Figure 3c using the frequency-domain
representations [57, Ch. 5] of signals and LTI systems; we will adorn signal x and transformation

T with a “hat” ·̂ to denote the Fourier transform x̂, T̂ . Therefore, for a given prescribed
and measured signals and transformations d̂, ŷ, Î , M̂ , we can apply block diagram algebra [34,
Sec. 2.2] to transcribe Figure 3c into equations that can then be manipulated to express the

empirical and prescribed transfer functions T̂uHd = ûH

d̂
as a function of the unknown human

transfer function Ĥ(ω):

ûH(ω) =
−Ĥ(ω)M̂(ω)

1 + Ĥ(ω)M̂(ω)Î(ω)︸ ︷︷ ︸
T̂uHd(ω)

d̂(ω), (7)

where ω ∈ Ω. We can then estimate the human’s controller Ĥ(ω) at specific stimulus frequencies
ω as:

Ĥ(ω) = −M̂−1(ω)
T̂uHd(ω)

1 + Î(ω)T̂uHd(ω)
(8)

We can additionally apply block diagram algebra to obtain the human- and interface-
controlled cursor position ŷ as a function of prescribed and measured signals and transfer
functions:

ŷ(ω) =
M̂(ω)

1 + Ĥ(ω)M̂(ω)Î(ω)
d̂(ω) (9)

Lastly, we define our performance metric and corresponding cost function cI in (4) for our
specific task at hand:

∥H/M/I∥ =

∥∥∥∥
ŷ

d̂

∥∥∥∥ (10)

where ∥·∥ represents the induced 2-norm.274

Interface adaptation275

The interface update occurred every three trials for a total of 21 trials for each condition.276

This was to ensure that participants had sufficient exposure to the new interface and adapt,277

and was based on results obtained from pilot studies (not shown). Interface Î(ω) parameters278

were restricted such that 0.2 < b < 7, −0.95 < a, a1, a2 < 0.7 and and initially randomly279

assigned within those ranges. We initially restricted the poles to have any magnitude less than280

1 to ensure a stable interface, but found during pilot studies that poles smaller than −0.95 or281
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larger than 0.7 resulted in an uncontrollable interface. In addition, we initially did not restrict282

the 2nd-order interface poles to be solely real numbers, but found during pilot studies that283

participants were only converging to real values and so chose to only search over real poles.284

The interface updates occurred in four steps. First, three trials of the disturbance rejection
task were completed by the participant. Next, the human model Ĥ in (8) was estimated by
solely using the data from the last two trials. Subsequently, a grid search over the ranges of
a, b were conducted to minimize the cost cI in (4) with λI = 10−4, and the resulting minimizing

interface Î∗ was noted. The grid search was initialized with 100 equidistant points between
the ranges noted above. Lastly, to ensure gradual changes between interfaces from trial to
trial and slower changes with increasing trial numbers, Smooth Batch13 was implemented. The
subsequent interface Î+ was defined as a weighted combination of the prior interface Î− and
the computed optimal interface Î∗:

Î+ = αÎ− + (1− α)Î∗. (11)

The parameter α was used to adjust the weighting of the prior interface and computed optimal285

interface and linearly increased from 0 (i.e., subsequent interface is solely the optimal interface)286

to 1 (i.e., the subsequent interface is solely the prior interface) as the number of trials increased287

from 0 to 21 trials. This ensured that the interface would update rapidly initially, and then288

more slowly as the number of trials increased.289

Statistical analysis290

Our primary outcomes of interest were performance differences between the final co-adaptation291

and baseline and between the initial and final co-adaptation. To determine whether the differ-292

ences were statistically significant, we computed the average magnitude of each performance293

metric of interest (task performance: ∥H/M/I∥2, (10); human effort: ∥H∥2, (8); interface ef-294

fort: ∥I∥2, (3b); cost: cI(Ĥ, Î), (4)) with the Wilcoxon signed-rank test [58, Sec. 5.7]. The295

Wilcoxon signed-rank test was chosen because the residuals of our dataset was not normally296

distributed (P > 0.05; Shapiro Wilk test). Due to an experimenter error, only 10 out of the 11297

participants were analyzed for the 2nd-order interface.298

Simulation methods299

The goal of the simulation was to develop a predictive model of human co-adaptation with300

a 1st-order interface and establish simulation parameters that approximate our experimental301

results. Towards this goal, we tested co-adaptation of three human model parameterizations302

(0th-, 1st-, and 2nd-order) with a 1st-order adaptive interface and 2nd-order fixed machine for303

various human penalty terms λH ranging from 10−8 to 10−1. The 2nd-order fixed machine M304

had the same parameterization as in the experiment, (6), and was defined as a non-minimum305

phase 2nd-order dynamical system.306
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Co-adaptation and baseline simulations307

We sequentially optimized the human and interface for their respective cost functions. We first308

randomly initialized the human and interface within the parameter bounds tested experimen-309

tally (Table 1; 0.2 < b < 7,−0.95 < a, a1, a2 < 0.7). Next, we synthesized the optimal human310

model H∗ by minimizing the human cost cH(Ĥ, Î) in (5). After, we held the human model311

constant and synthesized the optimal interface I∗ by minimizing the interface cost cI(Ĥ, Î)312

in (4). We used the same interface penalty term used in the experiment (λI = 10−4). We re-313

peated the alternating optimization of the human and interface parameters until convergence.314

To determine how parameter initialization affects the final human and interface parameters315

after co-adaptation, we repeated the randomized initialization and convergence 100 times. We316

additionally performed the same optimization but solely for the human model, holding the317

interface constant at Î = 1 to obtain how the human model adapted for a baseline interface.318

Simulation analysis319

Using the final human and interface parameters for each of the 100 initializations and tested320

human penalty λH , we computed performance metric (task performance: ∥H/M/I∥2, (10);321

human effort: ∥H∥2, (8); interface effort: ∥I∥2, (3b)) for baseline and co-adaptation. We322

compared the spread between the co-adaptation and baseline performance by assuming that323

the two distributions were normally distributed and taking the difference. For each performance324

metric, we determined the range of human penalty λH that fit our experimental results.325
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Extended data figures493
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Figure S1: Experiment results for all interface conditions. Distributions of performance met-
rics for baseline and adaptive interfaces shown using box plots (0th, 25th, 50th, 75th, and
100th percentiles) from top to bottom: task performance ∥H/M/I∥2; human effort ∥H∥2; cost
cI(H, I) = ∥H/M/I∥2+λI ∥I∥2; interface effort ∥I∥2. Each column represents the performance
for the 0th-, 1st-, and 2nd-order interface. Statistically significant differences denoted with hor-
izontal lines (P < 0.05, Wilcoxon signed-rank test). N=11 participants for 0th- and 1st-order
interface; N=10 participants for 2nd-order interface.
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Figure S2: Simulation results for all interface conditions – Nash equilibria parameters. Nash
equilibria parameters for co-adaptive human (top) and 1st-order interface (bottom) transfor-

mations over human penalty parameters λH ; 0th-, 1st-, and 2nd-order human models Ĥ (left
to right) are tested. Intensity denotes percentage of simulation outcomes (N=100 random ini-
tializations). For the 0th- and 1st- order human (left and middle, respectively), all simulations
resulted in a single Nash equilibria for each tested human penalty λH , indicated by the black
bar. For the 2nd-order human (right), simulation outcomes diverged depending on the initial-
ization location, indicated by the bars of varying intensities.
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Figure S3: Simulation results for all interface conditions – performance. Distributions of
differences between performance metrics for baseline and adapted HMI shown using mean +/-
standard deviation: (1st row) cost cI ; (2nd row) task performance ∥H/M/I∥2; (3rd row) human
effort ∥H∥2; (4th row) interface effort ∥I∥2. The dashed grey line represents the same simulation
performance for baseline and adapted HMI. A negative value indicates that the simulated co-
adaptation magnitude was lower than the baseline magnitude. A positive value indicates that
the simulated co-adaptation magnitude was higher than the baseline magnitude.
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