Dimension Reduction Near Periodic Orbits of Hybrid Systems

Sam Burden*, Shai Revzen[†], S. Shankar Sastry*

* Department of Electrical Engineering and Computer Sciences University of California, Berkeley, CA, USA

† Department of Electrical and Systems Engineering University of Pennsylvania, Philadelphia, PA, USA

Dec 14, 2011

Hybrid periodic orbits model interesting physical systems

biochemistry: chemical reaction networks Elowitz and Leibler 2000, Alur et al. 2001

biomechanics: terrestrial locomotion Holmes et al. 2006, Revzen 2009

smooth dynamical system

Feedback linearization Sastry 1999 Symmetric reduction Marsden and Ratiu 1999 Averaging theory Guckenheimer and Holmes 1983

hybrid dynamical system

Hybrid zero dynamics Westervelt et al. 2003 Reduction in mechanical systems Ames et al. 2006 Averaging for neuromechanical systems Proctor et al. 2010

smooth dynamical system

Feedback linearization

Sastry 1999

Symmetric reduction

Marsden and Ratiu 1999

Averaging theory

Guckenheimer and Holmes 1983

hybrid dynamical system

Hybrid zero dynamics

Westervelt et al. 2003

Reduction in mechanical systems

Ames et al. 2006

Averaging for neuromechanical systems Proctor et al. 2010

smooth dynamical system

Feedback linearization Sastry 1999 Symmetric reduction Marsden and Ratiu 1999 Averaging theory Guckenheimer and Holmes 1983

hybrid dynamical system

Hybrid zero dynamics Westervelt et al. 2003 Reduction in mechanical systems Ames et al. 2006 Averaging for neuromechanical systems Proctor et al. 2010

smooth dynamical system

Feedback linearization Sastry 1999 Symmetric reduction Marsden and Ratiu 1999 Averaging theory Guckenheimer and Holmes 1983

hybrid dynamical system

Hybrid zero dynamics Westervelt et al. 2003 Reduction in mechanical systems Ames et al. 2006 Averaging for neuromechanical systems Proctor et al. 2010

Generalizing tools from smooth dynamical systems theory

Open problem

Can arbitrary tools be generalized from smooth systems to hybrid systems?

Generalizing tools from smooth dynamical systems theory

Open problem

Can arbitrary tools be generalized from smooth systems to hybrid systems?

Our contribution

We provide a sufficient condition under which hybrid dynamics **exactly** reduce to a smooth dynamical system near a periodic orbit.

Overview of this talk

Motivation

hybrid periodic orbits model physical phenomena

Reduction

model reduction near a hybrid periodic orbit

Smoothing

smoothing reduced-order hybrid system

Example

model reduction in a mechanical hybrid system

Conclusion

generalizing tools from smooth systems theory

Hybrid dynamical system

Trajectory for a hybrid dynamical system

Periodic orbit γ for a hybrid dynamical system

Assumptions on hybrid periodic orbit γ

Assumptions on hybrid periodic orbit γ

Assumption (transversality)

periodic orbit γ passes transversely through each guard G_j

Assumptions on hybrid periodic orbit γ

Assumption (transversality)

periodic orbit γ passes transversely through each guard G_j

Assumption (dwell time)

 $\exists \varepsilon > 0$: periodic orbit γ spends at least ε time units in each domain D_j

hybrid dynamical system

hybrid dynamical system

Theorem (Hirsch and Smale 1974, Grizzle et al. 2002)

The Poincaré map P is smooth in a neighborhood of ξ .

Rank of the Poincaré map P with fixed point $P(\xi) = \xi$

hybrid dynamical system

Rank of the Poincaré map P with fixed point $P(\xi) = \xi$

$\operatorname{rank} DP(\xi) = \dim D - 1$ Hirsch and Smale 1974

hybrid dynamical system

Rank of the Poincaré map P with fixed point $P(\xi) = \xi$

$\operatorname{rank} DP(\xi) = \dim D - 1$ Hirsch and Smale 1974

hybrid dynamical system

 $\operatorname{rank} DP(\xi) \leq \min_j \dim D_j - 1$ Wendel and Ames 2010

Example (rank-deficient Poincaré map)

Example (rank-deficient Poincaré map)

Example (rank-deficient Poincaré map)

If $A \in \mathbb{R}^{n \times n}$ nilpotent (i.e. $A^n = 0_{n \times n}$) then rank $DP^n = 0$.

Invariant submanifold of Poincaré map

Invariant submanifold of Poincaré map

Invariant submanifold of Poincaré map

Lemma

Let $n = \min_j \dim D_j$. If DP^n has constant rank r near ξ , then $S = P^n(\Sigma)$ is an r-dimensional submanifold near ξ and $P|_S$ is a diffeomorphism of S near ξ .

Theorem

Let $n = \min_j \dim D_j$.

If DP^n has constant rank r near ξ , then after a finite amount of time all trajectories starting near γ collapse to a collection of hybrid invariant (r+1) dimensional submanifolds $M_j \subset D_j$.

Corollary

The submanifolds M_i determine a hybrid system with periodic orbit γ .

Corollary

The submanifolds M_j determine a hybrid system with periodic orbit γ . γ is asymptotically stable in the original hybrid system $\iff \gamma$ is asymptotically stable in the reduced hybrid system.

Lemma (Hirsch 1976)

Let F_j be a smooth vector field on *n*-dimensional manifold M_j , $j \in \{1, 2\}$. If $R : \partial M_1 \to \partial M_2$ is a diffeomorphism, F_1 points outward on ∂M_1 , and F_2 points inward on ∂M_2 , then the quotient $\widehat{M} = \frac{M_1 \cup M_2}{\partial M_1 \simeq \partial M_2}$ is a smooth manifold, $M_j \subset \widetilde{M}$ is a smooth submanifold, and the vector field $\widetilde{F}(x) = \begin{cases} F_1(x), & x \in M_1; \\ F_2(x), & x \in M_2; \end{cases}$ is smooth on \widetilde{M} .

Corollary

The topological quotient $\widetilde{M} = \frac{\bigcup_j M_j}{(G_j \cap M_j) \cong R_j (G_j \cap M_j)}$ is a smooth manifold, $M_j \subset \widetilde{M}$ is a smooth submanifold, and the vector field $\widetilde{F}(x) = \begin{cases} F_1(x), & x \in M_1; \\ \vdots & \vdots \\ F_j(x), & x \in M_j; \\ \vdots & \vdots \end{cases}$ is smooth on \widetilde{M} .

Vertical Hopper

Example (vertical hopper)

vertical hopper

With parameters

$$m = 1, \mu = 2, k = 10, b = 5, \ell_0 = 2, a = 20, \omega = 2\pi, g = 2$$

With parameters

 $m=1, \mu=2, k=10, b=5, \ell_0=2, a=20, \omega=2\pi, g=2$

Numerically linearizing Poincaré map P on ground

With parameters

 $m=1, \mu=2, k=10, b=5, \ell_0=2, a=20, \omega=2\pi, g=2$

Numerically linearizing Poincaré map P on ground we find $DP(\xi)$ has eigenvalues $\simeq -0.25\pm0.70j$ therefore DP^2 is constant rank

With parameters

 $m=1, \mu=2, k=10, b=5, \ell_0=2, a=20, \omega=2\pi, g=2$

Numerically linearizing Poincaré map P on ground we find $DP(\xi)$ has eigenvalues $\simeq -0.25\pm0.70j$ therefore DP^2 is constant rank

Theorem \implies after one cycle, dynamics collapse to 1-DOF hopper

Discussion & Questions — Thanks for your time!

Our contribution

We provide a sufficient condition under which hybrid dynamics **exactly** reduce to a smooth dynamical system near a periodic orbit.

Discussion & Questions — Thanks for your time!

Our contribution

We provide a sufficient condition under which hybrid dynamics **exactly** reduce to a smooth dynamical system near a periodic orbit.

Enables generalization of first-order tools for parameter identification Burden, Ohlsson, Sastry, Submitted to IFAC SysID 2012

Partially explains empirically-observed dimension loss in animals

Full and Koditschek 1999, Revzen 2009

