Reduction and Robustness via Intermittent Contact

Sam Burden

Department of Electrical Engineering and Computer Sciences University of California, Berkeley, CA, USA

Dec 14, 2012

Motivation

Dynamic interaction involves intermittent contact

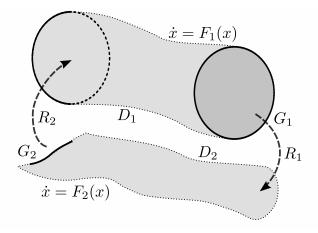
Nao humanoid robot

video courtesy of Aldeberan Robotics, http://www.aldebaran-robotics.com/en/

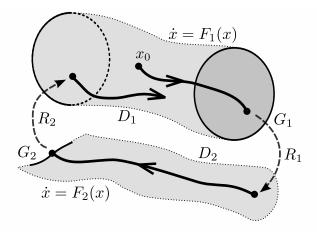
Sam Burden

Reduction & Robustness via Contact

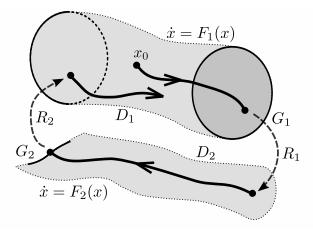
Contact yields a hybrid dynamical system



Contact yields a *hybrid* dynamical system

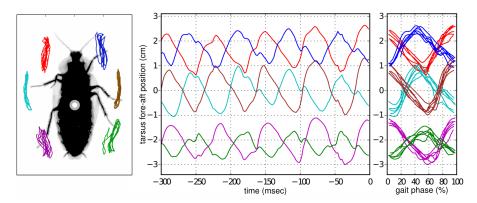


Contact yields a hybrid dynamical system



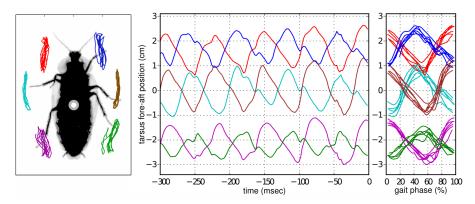
Combinatorial # of discrete modes, each generally possessing nonlinear dynamics

Focus on rhythmic behaviors



Animals utilize rhythmic behaviors for locomotion & manipulation Grillner, Science 1985

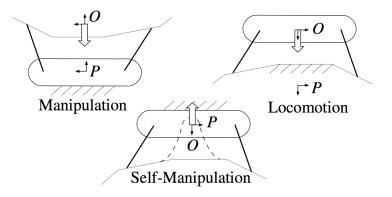
Focus on rhythmic behaviors



Animals utilize rhythmic behaviors for locomotion & manipulation Grillner, Science 1985

Represented by periodic orbits in hybrid dynamical system

Focus on locomotion



Note that locomotion is self-manipulation

Johnson, Haynes, & Koditschek, IROS 2012

Overview of this talk

Motivation

interaction with environment involves intermittent contact

Reduction

low-dimension subsystem appears near hybrid periodic orbit

Robustness

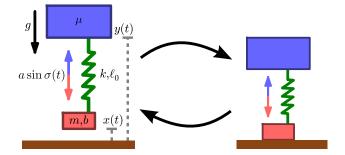
simultaneous hybrid transitions yield robust stability

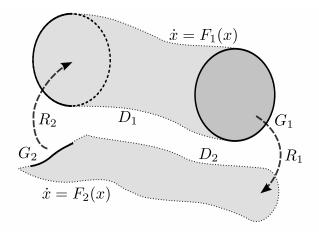
Applications

identification of neuromechanical control architecture in animals design and optimization of gaits and maneuvers for robots

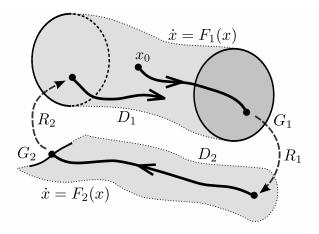
Reduction

Example (vertical hopper)

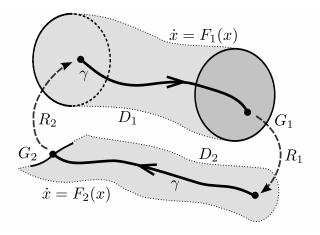




Trajectory for a hybrid dynamical system

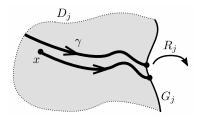


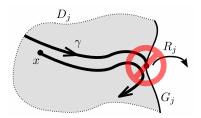
Periodic orbit γ for a hybrid dynamical system



Assumptions on hybrid periodic orbit γ

Assumptions on hybrid periodic orbit γ

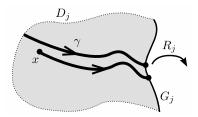


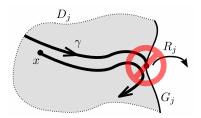


Assumption (transversality)

periodic orbit γ passes transversely through each guard G_j

Assumptions on hybrid periodic orbit γ



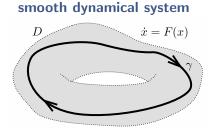


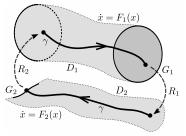
Assumption (transversality)

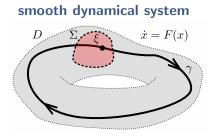
periodic orbit γ passes transversely through each guard G_j

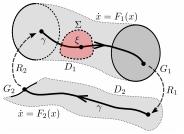
Assumption (dwell time)

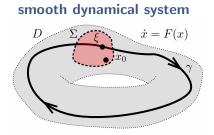
 $\exists \varepsilon > 0$: periodic orbit γ spends at least ε time units in each domain D_j

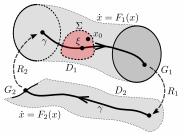


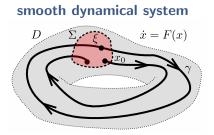


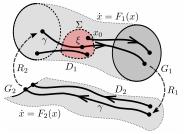


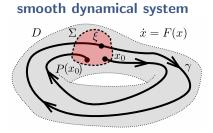


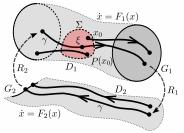


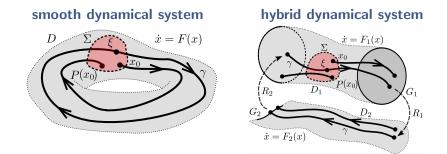








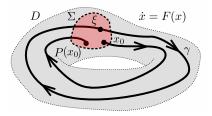




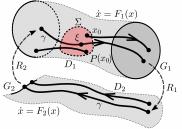
Theorem (Hirsch and Smale 1974, Grizzle et al. 2002)

The Poincaré map P is smooth in a neighborhood of ξ .

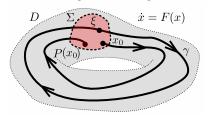
Rank of Poincaré map P with fixed point $P(\xi) = \xi$



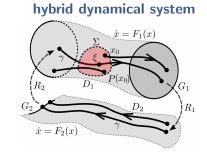
smooth dynamical system



Rank of Poincaré map P with fixed point $P(\xi) = \xi$



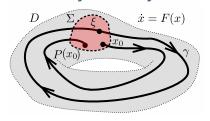
smooth dynamical system



$\operatorname{rank} DP(\xi) = \dim D - 1$

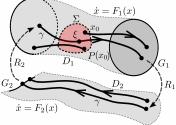
Hirsch and Smale 1974

Rank of Poincaré map P with fixed point $P(\xi) = \xi$



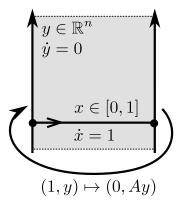
smooth dynamical system

hybrid dynamical system

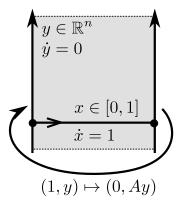


rank $DP(\xi) = \dim D - 1$ Hirsch and Smale 1974 $\operatorname{rank} DP(\xi) \le \min_j \dim D_j - 1$ Wendel and Ames 2010

Example (rank-deficient Poincaré map)

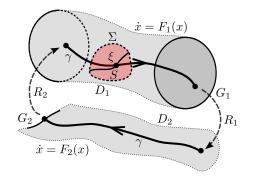


Example (rank-deficient Poincaré map)

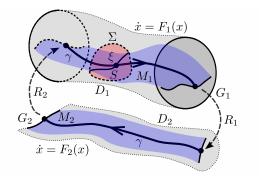


If $A \in \mathbb{R}^{n \times n}$ is nilpotent (i.e. $A^n = 0_{n \times n}$), then rank $DP^n = 0$.

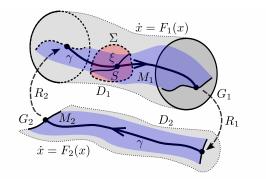
Exact model reduction near hybrid periodic orbit γ



Exact model reduction near hybrid periodic orbit γ

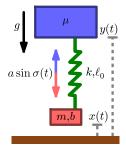


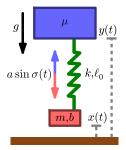
Exact model reduction near hybrid periodic orbit γ



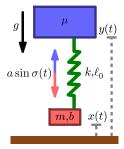
Theorem (Burden, Revzen, Sastry CDC 2011)

Let $n = \min_j \dim D_j$. If rank $DP^n = r$ near ξ , then trajectories starting near γ contract to a collection of hybrid-invariant (r+1)-dimensional submanifolds $M_j \subset D_j$ in finite time.



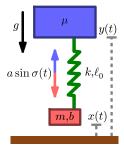


Numerically linearizing Poincaré map P on ground, we find $DP(\xi)$ has eigenvalues $\simeq -0.25 \pm 0.70j$, therefore DP^2 is constant rank near ξ .



Numerically linearizing Poincaré map P on ground, we find $DP(\xi)$ has eigenvalues $\simeq -0.25 \pm 0.70j$, therefore DP^2 is constant rank near ξ .

Theorem \implies dynamics collapse to 1-DOF hopper



Numerically linearizing Poincaré map P on ground, we find $DP(\xi)$ has eigenvalues $\simeq -0.25 \pm 0.70j$, therefore DP^2 is constant rank near ξ .

Theorem \implies dynamics collapse to 1-DOF hopper

Interpretation: unilateral (Lagrangian) constraint appears after one "hop"

Example (rank DP^n generically non-constant)

$$P(x,y) = (x^2, x)$$

$$P^2(\mathbb{R}^2)$$

$$P(\mathbb{R}^2)$$

Example (rank DP^n generically non-constant)

$$P(x,y) = (x^{2}, x)$$

$$P^{2}(\mathbb{R}^{2})$$

$$P^{2}(\mathbb{R}^{2})$$

$$P^{2}(\mathbb{R}^{2})$$

$$P^{2}(\mathbb{R}^{2})$$

$$P^{2}(\mathbb{R}^{2})$$

$$P^{2}(\mathbb{R}^{2})$$

$$DP(x,y) = \begin{pmatrix} 2x & 0 \\ 1 & 0 \end{pmatrix}$$

$$\implies \operatorname{rank} DP = 1$$

$$DP^{2}(x,y) = \begin{pmatrix} 4x^{3} & 0 \\ 2x & 0 \end{pmatrix}$$

$$\operatorname{rank} DP^{2}(x,y) = \begin{cases} 0, \ x = y = 0 \\ 1, \ else \end{cases}$$

Example $(\operatorname{rank} DP^n \text{ generically non-constant})$

$$P(x,y) = (x^{2},x)$$

$$DP(x,y) = \begin{pmatrix} 2x & 0 \\ 1 & 0 \end{pmatrix}$$

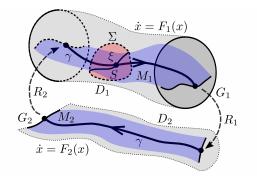
$$\Rightarrow \operatorname{rank} DP = 1$$

$$DP^{2}(x,y) = \begin{pmatrix} 4x^{3} & 0 \\ 2x & 0 \end{pmatrix}$$

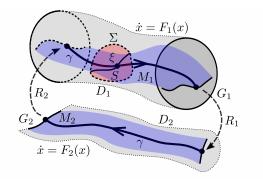
$$\Rightarrow \operatorname{rank} DP^{2}(x,y) = \begin{cases} 0, & x = y = 0 \\ 1, & else \end{cases}$$

Note that P contracts arbitrarily rapidly since DP(0,0) is nilpotent: for all $\varepsilon > 0$ there exists $\delta > 0$ and $\|\cdot\|_{\varepsilon}$ such that $\|(x,y)\| < \delta \implies \|P(x,y)\| < \varepsilon \|(x,y)\|_{\varepsilon}$

Approximate model reduction near hybrid periodic orbit γ

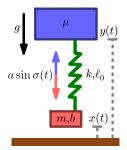


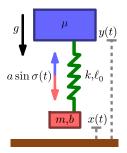
Approximate model reduction near hybrid periodic orbit γ



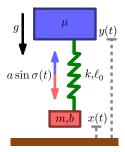
Theorem (Burden, Revzen, Sastry (in preparation))

If rank $DP^n(\xi) = r$ and spec $DP(\xi) \subset B_1(0) \subset \mathbb{C}$, then for any $\varepsilon > 0$ trajectories starting sufficiently near γ contract exponentially fast with rate ε to a collection of (r+1)-dimensional submanifolds $M_j \subset D_j$.



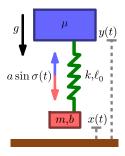


There exists a deadbeat control for vertical hopper, i.e. smooth actuator feedback law $a(x, y, \dot{x}, \dot{y})$ such that hopper exactly tracks periodic orbit after one "hop" Carver, Cowen, & Guckenheimer, Chaos 2009



There exists a deadbeat control for vertical hopper, i.e. smooth actuator feedback law $a(x,y,\dot{x},\dot{y})$ such that hopper exactly tracks periodic orbit after one "hop" Carver, Cowen, & Guckenheimer, Chaos 2009

However, this is sensitive to parameter values: perturbing parameters k, ℓ_0, m, μ, b yields rank DP = 2



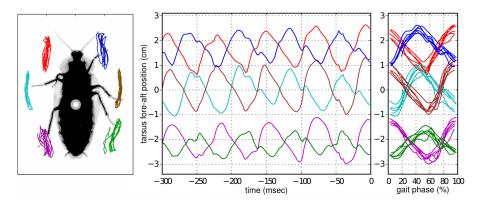
There exists a deadbeat control for vertical hopper, i.e. smooth actuator feedback law $a(x, y, \dot{x}, \dot{y})$ such that hopper exactly tracks periodic orbit after one "hop" Carver, Cowen, & Guckenheimer, Chaos 2009

However, this is sensitive to parameter values: perturbing parameters k, ℓ_0, m, μ, b yields rank DP = 2

Theorem \implies hopper contracts to orbit at rate bounded by size of parameter perturbation

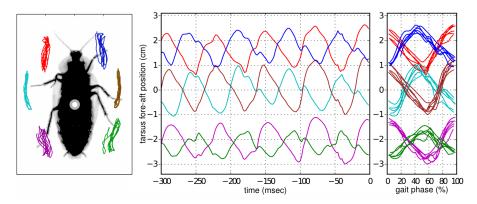
Robustness

Simultaneous hybrid transitions



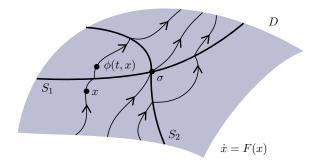
Empirically, simultaneous limb touchdown typical for animal gaits Golubitsky *et al.* Nature 1999

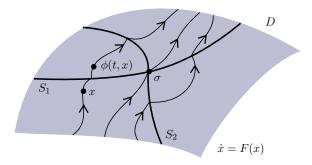
Simultaneous hybrid transitions



Empirically, simultaneous limb touchdown typical for animal gaits Golubitsky *et al.* Nature 1999

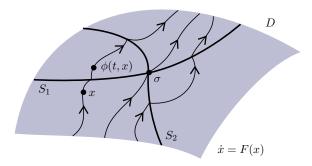
(Consequently) also typical for polyped robot gaits Saranli *et al.* IJRR 2001; Kim *et al.* IJRR 2006; Hoover *et al.* IROS 2008





Assumption (transversality)

 $n = \dim D$ transition surfaces $\{S_j\}_1^n$ intersect transversely at $\sigma \in D$.

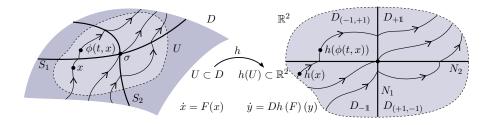


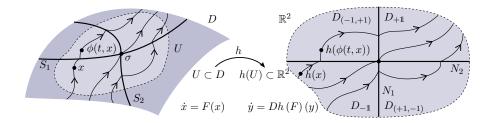
Assumption (transversality)

 $n = \dim D$ transition surfaces $\{S_j\}_1^n$ intersect transversely at $\sigma \in D$.

Assumption (piecewise smooth vector field)

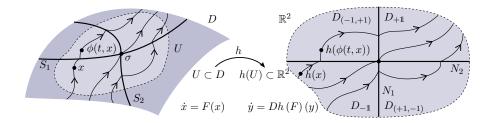
All points where F is discontinuous or nonsmooth are contained in $\bigcup_{j} S_{j}$.





Assumption (no sliding modes)

For $q \in \{-1,+1\}^n$, let $F_q = \lim_{\substack{y \to 0 \\ y \in D_q}} Dh(F)(y)$ and assume $F_q \in \operatorname{Int} D_{+1}$.



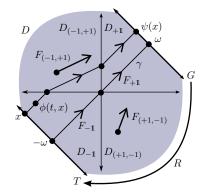
Assumption (no sliding modes)

For $q \in \{-1,+1\}^n$, let $F_q = \lim_{\substack{y \to 0 \\ y \in D_q}} Dh(F)(y)$ and assume $F_q \in \operatorname{Int} D_{+1}$.

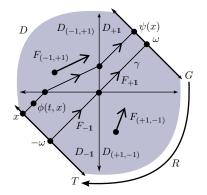
Theorem (Fillipov 1988)

The flow ϕ is well-defined and continuous in a neighborhood of σ .

Normal form for simultaneous hybrid transitions

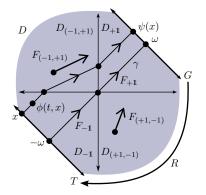


Normal form for simultaneous hybrid transitions



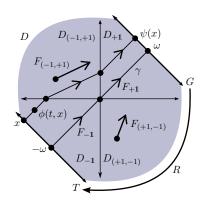
 $R:G \to T$ continuous, $\psi:T \to G$ obtained by integrating flow $\phi.$

Normal form for simultaneous hybrid transitions

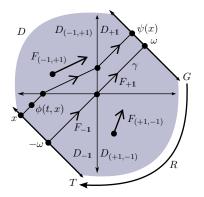


$$\begin{split} R:G \to T \text{ continuous, } \psi:T \to G \text{ obtained by integrating flow } \phi. \\ \text{With } \omega:= \tfrac{1}{\sqrt{n}}\mathbb{1} \text{, let } \Pi:=I-\omega\omega^T \text{ be orthogonal projection onto } \ker\omega^T. \end{split}$$

Sufficient condition for stability

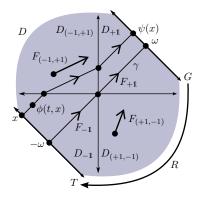


Sufficient condition for stability

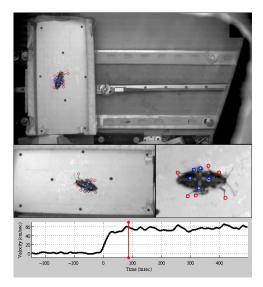


Theorem (Burden, Revzen, Koditschek, Sastry (in preparation)) $\Pi F_q \in \operatorname{Int} D_{-q}$ for all $q \neq \pm \mathbb{1} \implies \exists c \in (0,1) : \|\Pi \psi(x)\| < c \|\Pi x\|.$

Sufficient condition for stability

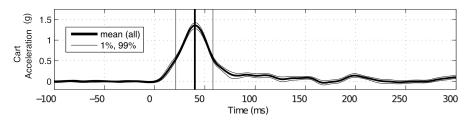


Theorem (Burden, Revzen, Koditschek, Sastry (in preparation)) $\Pi F_q \in \operatorname{Int} D_{-q}$ for all $q \neq \pm 1 \implies \exists c \in (0,1) : \|\Pi \psi(x)\| < c \|\Pi x\|$. If R Lipschitz with constant 1/c and $R(\omega) = -\omega$ then γ exp. stable. Applications

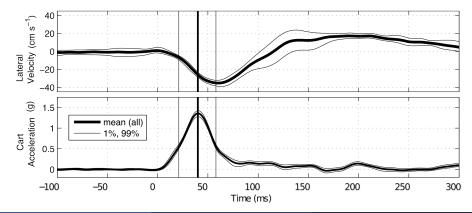


Revzen et al. (in review) 2012

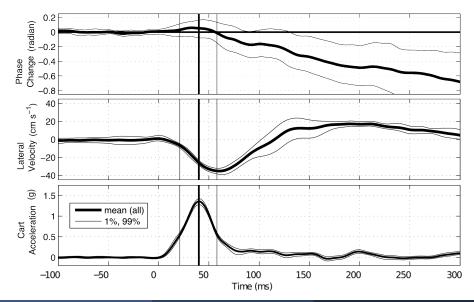
Mechanical self-stabilization vs. neural feedback

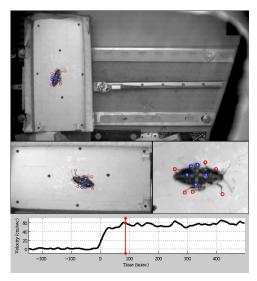


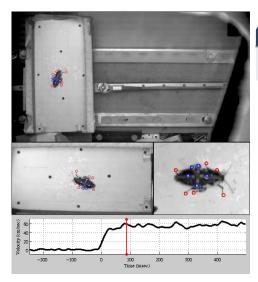
Mechanical self-stabilization vs. neural feedback



Mechanical self-stabilization vs. neural feedback

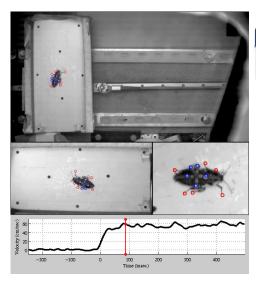






Identification problem

$$\arg\min_{z\in D_j}\varepsilon\left(z,\{\eta_i\}\right)$$

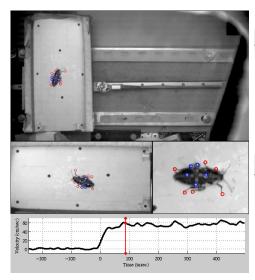


Identification problem

$$\arg\min_{z\in D_j}\varepsilon\left(z,\{\eta_i\}\right)$$

•
$$\nabla \varepsilon$$
 undefined on $G_j \subset D_j$

global optimization needed



Identification problem

$$\arg\min_{z\in D_j}\varepsilon\left(z,\{\eta_i\}\right)$$

• $\nabla \varepsilon$ undefined on $G_j \subset D_j$

global optimization needed

Identification on $\bigcup_{i} M_{j}$

 $\arg\min_{z\in M_j}\varepsilon\left(z,\{\eta_i\}\right)$

• $\nabla \varepsilon$ defined on $G_j \cap M_j$

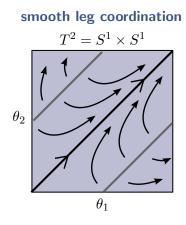
first-order methods apply

Design and optimize gaits and maneuvers for robots

RHex robot

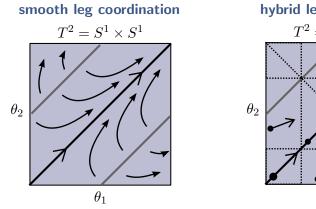
video courtesy of KodLab, http://kodlab.seas.upenn.edu/

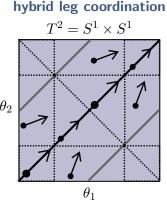
Exploit hybrid transitions for robust stability of gaits



Burden et al. (in preparation)

Exploit hybrid transitions for robust stability of gaits





Burden et al. (in preparation)

Discussion & Questions — Thanks for your time!

Reduction

Hybrid dynamics generically reduce dimensionality near a periodic orbit.

Robustness

Simultaneous hybrid transitions can lend robust stability to a periodic orbit.

Collaborators

- Prof. Shankar Sastry
- Prof. Dan Koditschek
- Prof. Shai Revzen
- Prof. Robert Full
 - Prof. Henrik Ohlsson
 - Prof. Aaron Hoover

- Talia Moore
- Justin Starr
- Mike Choi

Sam Burden

Reduction & Robustness via Contact