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Dynamics of terrestrial locomotion
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americana

Periplaneta americana

video courtesy of Poly-PEDAL Lab, UC Berkeley


americana_1280x400.mp4
Media File (video/mp4)
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Empirically, animals use few degrees-of-freedom
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Cockroach dynamics ∼ 7 dimensional (Revzen & Guckenheimer 2011)

Mechanisms:

Neural synchronization

Cohen et al. 1982

Physiological symmetry

Golubitsky et al. 1999

Muscle activation synergy

Ting & Macpherson 2005

Granular media solidification

Li et al. 2009
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Reduced-order model describes dynamic locomotion
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physical system

animal, robot

| |↓ ↓
detailed model

10–100 DOF

| |↓ ↓
reduced-order model

< 10 DOF
Full & Koditschek 1999
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Mechanical self-stabilization in animals
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physical system

Blaberus discoidalis

Jindrich & Full 2002

↓
reduced model

Lateral Leg-Spring

Schmitt & Holmes 2000

blaberus

video courtesy of Poly-PEDAL Lab


jetpack_240x210.mp4
Media File (video/mp4)
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Fast & maneuverable dynamic robots
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physical system

RHex, DynaRoACH

↓
Saranli et al. 2001 Hoover, Burden et al. 2010

↓
reduced-order model

SLIP, LLS

Ghigliazza et al. 2003 Proctor & Holmes 2008
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Obstacles to using reduced-order models
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physical system

animal, robot

?

↓ ↓
detailed model

10–100 DOF

?

↓ ↓
reduced-order model

< 10 DOF

identification
Mazor et al. 1998
Ferrari-Trecate et al. 2003
Vidal 2008
reduction
Grizzle et al. 2002
Ames et al. 2006
Proctor et al. 2010
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Overview

Motivation
reduced-order models describe dynamic locomotion

Reduction
hybrid dynamics reduce dimensionality near periodic orbits

Identification
reduction enables scalable algorithm for parameter estimation

Conclusion
novel quantitative predictions for biomechanics
model-based design and control of dynamic robots
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Reduction

physical system

animal, robot

detailed model

10–100 DOF

reduction↓ ↓
reduced-order model

< 10 DOF
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Example (vertical hopper)
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Hybrid dynamical system
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Trajectory for a hybrid dynamical system
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Trajectory for a hybrid dynamical system
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Periodic orbit γ for a hybrid dynamical system
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Assumptions on hybrid periodic orbit γ

Assumption (transversality)

periodic orbit γ passes transversely through each guard Gj

Assumption (dwell time)

∃ε > 0 : periodic orbit γ spends at least ε time units in each domain Dj
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Poincaré map for periodic orbit γ
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smooth dynamical system hybrid dynamical system

Theorem (Hirsch and Smale 1974, Grizzle et al. 2002)

The Poincaré map P is smooth in a neighborhood of ξ.
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Poincaré map for periodic orbit γ
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Theorem (Hirsch and Smale 1974, Grizzle et al. 2002)

The Poincaré map P is smooth in a neighborhood of ξ.
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The Poincaré map P is smooth in a neighborhood of ξ.



Motivation Reduction Identification Conclusion Hybrid System Poincaré Map Exact Approximate
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The Poincaré map P is smooth in a neighborhood of ξ.



Motivation Reduction Identification Conclusion Hybrid System Poincaré Map Exact Approximate

Poincaré map for periodic orbit γ
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smooth dynamical system hybrid dynamical system

Theorem (Hirsch and Smale 1974, Grizzle et al. 2002)

The Poincaré map P is smooth in a neighborhood of ξ.
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Rank of Poincaré map P with fixed point P (ξ) = ξ
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smooth dynamical system hybrid dynamical system

rankDP (ξ) = dimD − 1
Hirsch and Smale 1974

rankDP (ξ) ≤ minj dimDj−1
Wendel and Ames 2010
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Example (rank-deficient Poincaré map)

If A ∈ Rn×n is nilpotent (i.e. An = 0n×n), then rankDPn = 0.
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Model reduction near hybrid periodic orbit γ
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Theorem (Burden, Revzen, Sastry CDC 2011)

Let n = minj dimDj − 1. If rankDPn = r near ξ, then trajectories
starting near γ contract to a collection of hybrid-invariant
(r + 1)−dimensional submanifolds Mj ⊂ Dj in finite time.
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Model reduction near hybrid periodic orbit γ
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Corollary (Burden, Revzen, Sastry CDC 2011)

The submanifolds Mj determine a hybrid system with periodic orbit γ.

γ is asymptotically stable in the original hybrid system
⇐⇒ γ is asymptotically stable in the reduced hybrid system.
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Example (exact model reduction in vertical hopper)

Numerically linearizing Poincaré map P on ground,
we find DP (ξ) has eigenvalues ' −0.25± 0.70j,

therefore DP 2 is constant rank near ξ.

Theorem =⇒ dynamics collapse to 1-DOF hopper

Interpretation: unilateral (Lagrangian) constraint
appears after one “hop”

Sam Burden Reduction and ID for Hybrid Models March 22, 2013 19
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Approximate model reduction near hybrid periodic orbit γ
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Theorem (Burden, Revzen, Sastry (in preparation))

If ξ is exponentially stable and rankDPn(ξ) = r, then trajectories
starting near γ contract super-exponentially to a collection of
hybrid-invariant (r + 1)−dimensional submanifolds Mj ⊂ Dj .
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Approximate model reduction near hybrid periodic orbit γ

Sam Burden Reduction and ID for Hybrid Models March 22, 2013 20

Theorem (Burden, Revzen, Sastry (in preparation))

If ξ is exponentially stable and rankDPn(ξ) = r, then trajectories
starting near γ contract super-exponentially to a collection of
hybrid-invariant (r + 1)−dimensional submanifolds Mj ⊂ Dj .



Motivation Reduction Identification Conclusion Hybrid System Poincaré Map Exact Approximate

Example (structural stability in vertical hopper)

There exists a deadbeat control for vertical hopper,
i.e. smooth actuator feedback law a(x, y, ẋ, ẏ) such that

hopper exactly tracks periodic orbit after one “hop”

Carver, Cowen, & Guckenheimer 2009

However, this is sensitive to parameter values:
perturbing parameters k, `0,m, µ, b increases rankDP

Theorem =⇒ hopper contracts to periodic orbit at
rate bounded by magnitude of perturbation
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Identification

physical system

animal, robot

identification↓ ↓
detailed model

10–100 DOF

reduced-order model

< 10 DOF
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Identification of initial conditions

Y (φ(t, z)) = y(t) ηi = Y (φ(iT, z∗))+wi,
wi iid random variables

Identification problem

Solve arg min
z∈Dj

ε (z, {ηi}), where ε (z, {ηi}) :=
∑

i ‖Y (φ(iT, z))− ηi‖2.

Sam Burden Reduction and ID for Hybrid Models March 22, 2013 23
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Identification on reduced hybrid model

Assumption (smooth observations)

Y is smooth along trajectories, i.e. Y (φ(t, z)) is a smooth function of t.

Identification on
⋃

j Dj

arg min
z∈Dj

ε (z, {ηi})

• ∇ε undefined on Gj ⊂ Dj

• Rj not generally invertible

global optimization needed

Identification on
⋃

j Mj

arg min
z∈Mj

ε (z, {ηi})

• ∇ε well-defined on Gj ∩Mj

• Rj |Mj invertible

first-order algorithms applicable

Sam Burden Reduction and ID for Hybrid Models March 22, 2013 24
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Example (initial condition for vertical hopper)

Observe position of upper mass at 20Hz,
additive noise with variance 0.2.

(σ0, y0, ẏ0) ≈ (8.0, 1.5, 1.1) : initial

(σ, y, ẏ) ≈ (4.7, 1.6, 1.0) : actual

(σ∗, y∗, ẏ∗) ≈ (4.6, 1.6, 1.1) : estimated

0.0 0.5 1.0 1.5 2.02
1
0
1
2
3

he
ig

ht

x y x0 y0 x ∗ y ∗ ηk

0.0 0.5 1.0 1.5 2.0
time (t)

6
4
2
0
2
4
6

ve
lo

ci
ty

Burden, Ohlsson, & Sastry IFAC SysID 2012
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Reduction & Identification

physical system

animal, robot

identification↓ ↓
detailed model

10–100 DOF

reduction↓ ↓
reduced-order model

< 10 DOF
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Novel quantitative predictions for biomechanics
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observation

neural feedback
appears at a delay

Revzen, Burden et al. 2013

identification↓↑
prediction

passive mechanics
sensitive to inertia

Full et al. 2002

lateral perturbation

Burden, Revzen, Moore, Sastry, & Full SICB 2013


latpert_600x660.mp4
Media File (video/mp4)
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Model-based design and control of dynamic robots
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design

minimal use
of actuators
Hoover et al. 2010

identification ↓↑
control

asymmetric leg
stiffness change

Proctor & Holmes 2008

Hoover, Burden, Fu, Sastry, & Fearing IEEE BIOROB 2010
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Model enables translation across morphology, scale
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physical system

animal, robot

identification↓ ↓
detailed model

10–100 DOF

reduction↓ ↓
reduced-order model
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physical system

animal, robot

identification↓ ↓↑ ↑

detailed model

10–100 DOF

reduction↓ ↓↑ ↑

reduced-order model

< 10 DOF
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Discussion & Questions — Thanks for your time!

Reduction

Hybrid dynamics reduce dimensionality near periodic orbits.

Identification

Reduction enables scalable algorithm for parameter estimation.

Collaborators

• Prof. Shankar Sastry

• Prof. Henrik Ohlsson

• Prof. Robert Full

• Prof. Aaron Hoover

• Prof. Shai Revzen

• Talia Moore
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Locomotion Approximate Reduction Smoothing

Locomotion is self-manipulation

Johnson, Haynes, & Koditschek, IROS 2012

Sam Burden Reduction and ID for Hybrid Models March 22, 2013 2



Locomotion Approximate Reduction Smoothing rankDPn

Example (rankDP n generically non-constant)

P (R2)

P 2(R2)

P (x, y) = (x2, x)

DP (x, y) =

(
2x 0
1 0

)
=⇒ rankDP = 1

DP 2(x, y) =

(
4x3 0
2x 0

)
=⇒ rankDP 2(x, y) =

{
0, x = y = 0
1, else

Note that P contracts superexponentially since DP (0, 0) is nilpotent:
for all ε > 0 there exists δ > 0 and ‖·‖ε such that
‖(x, y)‖ < δ =⇒ ‖P (x, y)‖ < ε ‖(x, y)‖ε

Sam Burden Reduction and ID for Hybrid Models March 22, 2013 3
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Gluing smooth dynamical systems

Lemma (Hirsch 1976)

Let Fj be a smooth vector field on n-dimensional manifold Mj , j ∈ {1, 2}.
If R : ∂M1 → ∂M2 is a diffeomorphism, F1 points outward on ∂M1, and F2

points inward on ∂M2, then the quotient M̃ = M1∪M2

∂M1'∂M2
is a smooth manifold,

Mj ⊂ M̃ is a smooth submanifold, and the vector field

F̃ (x) =

{
F1(x), x ∈M1;
F2(x), x ∈M2;

is smooth on M̃ .
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Smoothing reduced-order hybrid system

Corollary (Burden, Revzen, Sastry CDC 2011)

The topological quotient M̃ =
⋃

j Mj

(Gj∩Mj)'Rj(Gj∩Mj)
is a smooth manifold,

Mj ⊂ M̃ is a smooth submanifold, and the vector field

F̃ (x) =


F1(x), x ∈M1;
...

...
Fj(x), x ∈Mj ;
...

...

is smooth on M̃ .
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