Reduction and Identification for Hybrid Dynamical Models of Terrestrial Locomotion

Sam Burden

Department of Electrical Engineering and Computer Sciences University of California, Berkeley, CA, USA

March 22, 2013

Dynamics of terrestrial locomotion

americana

Periplaneta americana

video courtesy of Poly-PEDAL Lab, UC Berkeley

Empirically, animals use few degrees-of-freedom

Cockroach dynamics ~ 7 dimensional (Revzen & Guckenheimer 2011)

Empirically, animals use few degrees-of-freedom

Cockroach dynamics ~ 7 dimensional (

Mechanisms:

Neural synchronization Cohen et al. 1982 Physiological symmetry Golubitsky et al. 1999 (Revzen & Guckenheimer 2011) Muscle activation synergy

Ting & Macpherson 2005

Granular media solidification

Reduced-order model describes dynamic locomotion

blaberus

Mechanical self-stabilization in animals

video courtesy of Poly-PEDAL Lab

Fast & maneuverable dynamic robots

Overview

Motivation

reduced-order models describe dynamic locomotion

Reduction

hybrid dynamics reduce dimensionality near periodic orbits

Identification

reduction enables scalable algorithm for parameter estimation

Conclusion

novel quantitative predictions for biomechanics model-based design and control of dynamic robots

Reduction

Example (vertical hopper)

Trajectory for a hybrid dynamical system

Trajectory for a hybrid dynamical system

Periodic orbit γ for a hybrid dynamical system

Assumptions on hybrid periodic orbit γ

Assumptions on hybrid periodic orbit γ

Assumption (transversality)

periodic orbit γ passes transversely through each guard G_j

Assumptions on hybrid periodic orbit γ

Assumption (transversality)

periodic orbit γ passes transversely through each guard G_j

Assumption (dwell time)

 $\exists \varepsilon > 0$: periodic orbit γ spends at least ε time units in each domain D_j

smooth dynamical system D $\dot{x} = F(x)$

smooth dynamical system

smooth dynamical system

smooth dynamical system

hybrid dynamical system

Theorem (Hirsch and Smale 1974, Grizzle et al. 2002)

The Poincaré map P is smooth in a neighborhood of ξ .

Rank of Poincaré map P with fixed point $P(\xi) = \xi$

smooth dynamical system

Rank of Poincaré map P with fixed point $P(\xi) = \xi$

smooth dynamical system D Σ $\dot{x} = F(x)$ x_0

hybrid dynamical system

 $\operatorname{rank} DP(\xi) = \dim D - 1$ Hirsch and Smale 1974

Rank of Poincaré map P with fixed point $P(\xi) = \xi$

smooth dynamical system

hybrid dynamical system

 $\operatorname{rank} DP(\xi) = \dim D - 1$ Hirsch and Smale 1974 $\operatorname{rank} DP(\xi) \leq \min_j \dim D_j - 1$ Wendel and Ames 2010

Example (rank-deficient Poincaré map)

Example (rank-deficient Poincaré map)

If $A \in \mathbb{R}^{n \times n}$ is nilpotent (i.e. $A^n = 0_{n \times n}$), then rank $DP^n = 0$.

Theorem (Burden, Revzen, Sastry CDC 2011)

Let $n = \min_j \dim D_j - 1$. If rank $DP^n = r$ near ξ , then trajectories starting near γ contract to a collection of hybrid-invariant (r+1)-dimensional submanifolds $M_j \subset D_j$ in finite time.

Corollary (Burden, Revzen, Sastry CDC 2011)

The submanifolds M_i determine a hybrid system with periodic orbit γ .
Model reduction near hybrid periodic orbit γ

Corollary (Burden, Revzen, Sastry CDC 2011)

The submanifolds M_j determine a hybrid system with periodic orbit γ . γ is asymptotically stable in the original hybrid system $\iff \gamma$ is asymptotically stable in the reduced hybrid system.

Numerically linearizing Poincaré map P on ground, we find $DP(\xi)$ has eigenvalues $\simeq -0.25 \pm 0.70j$, therefore DP^2 is constant rank near ξ .

Numerically linearizing Poincaré map P on ground, we find $DP(\xi)$ has eigenvalues $\simeq -0.25 \pm 0.70j$, therefore DP^2 is constant rank near ξ .

Theorem \implies dynamics collapse to 1-DOF hopper

Numerically linearizing Poincaré map P on ground, we find $DP(\xi)$ has eigenvalues $\simeq -0.25 \pm 0.70j$, therefore DP^2 is constant rank near ξ .

Theorem \implies dynamics collapse to 1-DOF hopper

Interpretation: unilateral (Lagrangian) constraint appears after one "hop"

Approximate model reduction near hybrid periodic orbit γ

Approximate model reduction near hybrid periodic orbit γ

Theorem (Burden, Revzen, Sastry *(in preparation)*)

If ξ is exponentially stable and rank $DP^n(\xi) = r$, then trajectories starting near γ contract super-exponentially to a collection of hybrid-invariant (r+1)-dimensional submanifolds $M_i \subset D_j$.

There exists a deadbeat control for vertical hopper, i.e. smooth actuator feedback law $a(x,y,\dot{x},\dot{y})$ such that hopper exactly tracks periodic orbit after one "hop" Carver, Cowen, & Guckenheimer 2009

There exists a deadbeat control for vertical hopper, i.e. smooth actuator feedback law $a(x,y,\dot{x},\dot{y})$ such that hopper exactly tracks periodic orbit after one "hop" Carver, Cowen, & Guckenheimer 2009

However, this is sensitive to parameter values: perturbing parameters k, ℓ_0, m, μ, b increases rank DP

There exists a deadbeat control for vertical hopper, i.e. smooth actuator feedback law $a(x, y, \dot{x}, \dot{y})$ such that hopper exactly tracks periodic orbit after one "hop" Carver, Cowen, & Guckenheimer 2009

However, this is sensitive to parameter values: perturbing parameters k, ℓ_0, m, μ, b increases rank DP

Theorem \implies hopper contracts to periodic orbit at rate bounded by magnitude of perturbation

Identification

$$y(t)$$

$$y(t)$$

$$x(t)$$

$$y(\phi(t,z)) = y(t)$$

$$\eta_i = Y(\phi(iT,z^*)) + w_i,$$

$$w_i \text{ iid random variables}$$

Identification problem

Solve $\arg\min_{z\in D_j} \varepsilon(z, \{\eta_i\})$, where $\varepsilon(z, \{\eta_i\}) := \sum_i \|Y(\phi(iT, z)) - \eta_i\|^2$.

Assumption (smooth observations)

Y is smooth along trajectories, i.e. $Y(\phi(t,z))$ is a smooth function of t.

Assumption (smooth observations)

Y is smooth along trajectories, i.e. $Y(\phi(t,z))$ is a smooth function of t.

Identification on $\bigcup_{j} D_{j}$

 $\arg\min_{z\in D_j}\varepsilon\left(z,\{\eta_i\}\right)$

- $\nabla \varepsilon$ undefined on $G_j \subset D_j$
- R_j not generally invertible

Assumption (smooth observations)

Y is smooth along trajectories, i.e. $Y(\phi(t,z))$ is a smooth function of t.

Identification on $\bigcup_{j} D_{j}$

 $\arg\min_{z\in D_j}\varepsilon\left(z,\{\eta_i\}\right)$

- $\nabla \varepsilon$ undefined on $G_j \subset D_j$
- R_j not generally invertible

global optimization needed

Assumption (smooth observations)

Y is smooth along trajectories, i.e. $Y(\phi(t,z))$ is a smooth function of t.

Identification on $\bigcup_{j} D_{j}$

 $\arg\min_{z\in D_j}\varepsilon\left(z,\{\eta_i\}\right)$

- $\nabla \varepsilon$ undefined on $G_j \subset D_j$
- R_j not generally invertible

global optimization needed

Identification on $\bigcup_{j} M_{j}$

$$\arg\min_{z\in M_j}\varepsilon\left(z,\{\eta_i\}\right)$$

- $\nabla \varepsilon$ well-defined on $G_j \cap M_j$
- $R_j|_{M_j}$ invertible

Assumption (smooth observations)

Y is smooth along trajectories, i.e. $Y(\phi(t,z))$ is a smooth function of t.

Identification on $\bigcup_{j} D_{j}$

 $\arg\min_{z\in D_j}\varepsilon\left(z,\{\eta_i\}\right)$

- $\nabla \varepsilon$ undefined on $G_j \subset D_j$
- R_j not generally invertible

global optimization needed

Identification on $\bigcup_{j} M_{j}$

$$\arg\min_{z\in M_{j}}\varepsilon\left(z,\left\{\eta_{i}\right\}\right)$$

- $\nabla \varepsilon$ well-defined on $G_j \cap M_j$
- $R_j|_{M_j}$ invertible

first-order algorithms applicable

Example (initial condition for vertical hopper)

Observe position of upper mass at 20Hz, additive noise with variance 0.2.

Reduction & Identification

Novel quantitative predictions for biomechanics

lateral perturbation

Model-based design and control of dynamic robots

Hoover, Burden, Fu, Sastry, & Fearing IEEE BIOROB 2010

Model enables translation across morphology, scale

Model enables translation across morphology, scale

Discussion & Questions — Thanks for your time!

Reduction

Hybrid dynamics reduce dimensionality near periodic orbits.

Identification

Reduction enables scalable algorithm for parameter estimation.

Collaborators

- Prof. Shankar Sastry
- Prof. Henrik Ohlsson
- Prof. Robert Full
- Prof. Aaron Hoover
- Prof. Shai Revzen
- Talia Moore

Locomotion is self-manipulation

Johnson, Haynes, & Koditschek, IROS 2012

Example (rank DP^n generically non-constant)

$$P(x,y) = (x^2, x)$$

$$P^2(\mathbb{R}^2)$$

$$P(\mathbb{R}^2)$$

 $\operatorname{rank} DP^n$

Example (rank DP^n generically non-constant)

$$P(x,y) = (x^2, x)$$

$$P^2(\mathbb{R}^2)$$

$$P(\mathbb{R}^2)$$

$$DP(x, y) = \begin{pmatrix} 2x & 0 \\ 1 & 0 \end{pmatrix}$$

$$\implies \operatorname{rank} DP = 1$$

$$DP^{2}(x, y) = \begin{pmatrix} 4x^{3} & 0 \\ 2x & 0 \end{pmatrix}$$

$$\Rightarrow \operatorname{rank} DP^{2}(x, y) = \begin{cases} 0, & x = y = 0 \\ 1, & else \end{cases}$$

Example (rank DP^n generically non-constant)

$$P(x,y) = (x^{2},x)$$

$$DP(x,y) = \begin{pmatrix} 2x & 0 \\ 1 & 0 \end{pmatrix}$$

$$\Rightarrow \operatorname{rank} DP = 1$$

$$DP^{2}(x,y) = \begin{pmatrix} 4x^{3} & 0 \\ 2x & 0 \end{pmatrix}$$

$$\Rightarrow \operatorname{rank} DP^{2}(x,y) = \begin{cases} 0, & x = y = 0 \\ 1, & else \end{cases}$$

Note that P contracts superexponentially since DP(0,0) is nilpotent: for all $\varepsilon > 0$ there exists $\delta > 0$ and $\|\cdot\|_{\varepsilon}$ such that $\|(x,y)\| < \delta \implies \|P(x,y)\| < \varepsilon \|(x,y)\|_{\varepsilon}$

Gluing smooth dynamical systems

Gluing smooth dynamical systems

Gluing smooth dynamical systems

Gluing smooth dynamical systems

Lemma (Hirsch 1976)

Let F_j be a smooth vector field on *n*-dimensional manifold M_j , $j \in \{1, 2\}$. If $R : \partial M_1 \to \partial M_2$ is a diffeomorphism, F_1 points outward on ∂M_1 , and F_2 points inward on ∂M_2 , then the quotient $\widehat{M} = \frac{M_1 \cup M_2}{\partial M_1 \simeq \partial M_2}$ is a smooth manifold, $M_j \subset \widetilde{M}$ is a smooth submanifold, and the vector field $\widetilde{F}(x) = \begin{cases} F_1(x), & x \in M_1; \\ F_2(x), & x \in M_2; \end{cases}$ is smooth on \widetilde{M} .

Corollary (Burden, Revzen, Sastry CDC 2011)

The topological quotient $\widetilde{M} = \frac{\bigcup_{j} M_{j}}{(G_{j} \cap M_{j}) \simeq R_{j}(G_{j} \cap M_{j})}$ is a smooth manifold, $M_{j} \subset \widetilde{M}$ is a smooth submanifold, and the vector field $\widetilde{F}(x) = \begin{cases} F_{1}(x), & x \in M_{1}; \\ \vdots & \vdots \\ F_{j}(x), & x \in M_{j}; \\ \vdots & \vdots \end{cases}$ is smooth on \widetilde{M} .