Bio–Inspired Reduction and Robustness of Dynamic Robot Gaits

Sam Burden

Department of Electrical Engineering and Computer Sciences University of California, Berkeley, CA, USA

October 24, 2013

Animals are extremely adept at dynamic locomotion

flat-terrain gait

Sandbot RHex robot; Li et al. PNAS 2009

optimized gait

zebra-tailed lizard; Li et al. JEB 2012

Animal gaits exhibit surprising phenomena

Animal gaits exhibit surprising phenomena

Reduction in degrees-of-freedom (DOF)

Cockroach dynamics ~ 7 dimensional (Revzen & Guckenheimer JRSI 2011)

Animal gaits exhibit surprising phenomena

Reduction in degrees-of-freedom (DOF)

Cockroach dynamics ~ 7 dimensional (Revzen & Guckenheimer JRSI 2011)

Near-simultaneous limb touchdown

Quadrupeds trot, hexapods alternate tripods (Golubitsky et al. Nature 1999)

Empirically, animals use few degrees-of-freedom

Empirically, animals use few degrees-of-freedom

Mechanisms for reduction in neural or environmental models

Neural synchronization

Cohen et al. J. Math. Bio 1982

Physiological symmetry

Golubitsky et al. Nature 1999

Muscle activation synergy Ting & Macpherson J. Neurosci. 2005 Granular media solidification Li et al. Science 2013

Empirically, animals use few degrees-of-freedom

Mechanisms for reduction in neural or environmental models

Neural synchronization

Cohen et al. J. Math. Bio 1982

Physiological symmetry

Golubitsky et al. Nature 1999

Muscle activation synergy

Ting & Macpherson J. Neurosci. 2005

Granular media solidification

Li et al. Science 2013

Need model reduction tools for piecewise-defined (hybrid) dynamics

Sam Burden

Reduction & Robustness of Robot Gaits

Full & Koditschek JEB 1999

Sam Burden

Overview

Reduction

hybrid dynamics reduce dimensionality near periodic orbits

Identification

reduction enables scalable algorithm for parameter estimation

Robustness

near-simultaneous impacts lend robust stability to gaits

Synthesis

robustness enables synthesis of gaits and optimal maneuvers

Model Reduction

Dimension loss in vertical hopper

Dimension loss in vertical hopper

Hybrid dynamical system

Sam Burden

Trajectory for a hybrid dynamical system

October 24, 2013 10

Trajectory for a hybrid dynamical system

Reduction & Robustness of Robot Gaits

Periodic orbit γ for a hybrid dynamical system

Sam Burden

Assumptions on hybrid periodic orbit γ

Assumption (transversality)

periodic orbit γ passes transversely through each guard G_j

Assumptions on hybrid periodic orbit γ

Assumption (isolated transitions)

 $\exists \varepsilon > 0$: periodic orbit γ spends at least ε time units in each domain D_j

Theorem (Grizzle et al. TAC 2002)

The Poincaré map P is smooth in a neighborhood of ξ .

Theorem (Burden, Revzen, Sastry 2013 (arXiv:1308.4158))

Let $n = \min_j \dim D_j - 1$. If rank $DP^n = r$ near ξ , then trajectories starting near γ contract to a collection of hybrid-invariant (r+1)-dimensional submanifolds $M_j \subset D_j$ in finite time.

Corollary (Burden, Revzen, Sastry 2013 (arXiv:1308.4158))

The submanifolds M_i determine a hybrid system with periodic orbit γ .

Corollary (Burden, Revzen, Sastry 2013 (arXiv:1308.4158))

The submanifolds M_j determine a hybrid system with periodic orbit γ . γ is asymptotically stable in the original hybrid system $\iff \gamma$ is asymptotically stable in the reduced hybrid system.
Spontaneous reduction in vertical hopper

Numerically linearizing Poincaré map P on ground, we find $DP(\xi)$ has eigenvalue $\simeq 0.57$, therefore DP^2 is constant rank near ξ .

Spontaneous reduction in vertical hopper

Numerically linearizing Poincaré map P on ground, we find $DP(\xi)$ has eigenvalue $\simeq 0.57$, therefore DP^2 is constant rank near ξ .

Corollary (Burden, Revzen, Sastry 2013 (arXiv:1308.4158)) 2–DOF hopper contracts to 1–DOF hopper after one "hop".

Spontaneous reduction in vertical hopper

Numerically linearizing Poincaré map P on ground, we find $DP(\xi)$ has eigenvalue $\simeq 0.57$, therefore DP^2 is constant rank near ξ .

Corollary (Burden, Revzen, Sastry 2013 (arXiv:1308.4158))

2-DOF hopper contracts to 1-DOF hopper after one "hop".

Interpretation

Holonomic ground contact constraint persists after liftoff.

n-leg polyped reduces to Lateral Leg-Spring

(3+2n) DOF polyped

3 DOF Lateral Leg-Spring (LLS)

n-leg polyped reduces to Lateral Leg-Spring

Controller (Burden, Revzen, Sastry 2013 (arXiv:1308.4158))

Smooth state feedback law reduces polyped to LLS after one stride.

Parameter Identification

$$Y(\phi(t,z)) = y(t)$$

$$Y(\phi(t,z)) = y(t) \qquad \eta_i = Y(\phi(iT,z^*)) + w_i,$$

$$w_i \text{ iid random variables}$$

$$Y(\phi(t,z)) = y(t)$$
 $\eta_i = Y(\phi(iT,z^*)) + w_i$,
 w_i iid random variables

Identification problem

Solve
$$\arg\min_{z\in D_j} \varepsilon(z, \{\eta_i\})$$
, where $\varepsilon(z, \{\eta_i\}) := \sum_i ||Y(\phi(iT, z)) - \eta_i||^2$.

$$Y(\phi(t,z)) = y(t)$$
 $\eta_i = Y(\phi(iT,z^*)) + w_i,$
 $w_i \text{ iid random variables}$

Identification problem

Solve
$$\arg\min_{z\in D_j} \varepsilon(z, \{\eta_i\})$$
, where $\varepsilon(z, \{\eta_i\}) := \sum_i ||Y(\phi(iT, z)) - \eta_i||^2$.

Assumption (smooth observations)

Y is smooth along trajectories, i.e. $Y(\phi(t,z))$ is a smooth function of t.

 $\arg\min_{z\in D_{j}}\varepsilon\left(z,\left\{\eta_{i}\right\}\right)$

 $\arg\min_{z\in D_{j}}\varepsilon\left(z,\left\{\eta_{i}\right\}\right)$

 $\nabla \varepsilon$ undefined on $G_j \subset D_j$ R_j not generally invertible

Identification on $\bigcup_j D_j$

 $\arg\min_{z\in D_j}\varepsilon\left(z,\{\eta_i\}\right)$

 $\nabla \varepsilon$ undefined on $G_j \subset D_j$ R_j not generally invertible

global optimization needed

 $\nabla \varepsilon$ undefined on $G_j \subset D_j$ R_j not generally invertible

global optimization needed

Burden, Ohlsson, Sastry SysID 2012

 $\nabla \varepsilon$ well-defined on $G_i \cap M_i$

 $R_j|_{M_i}$ invertible

Identification on original hybrid model vs. reduced model

 $\nabla \varepsilon$ undefined on $G_j \subset D_j$ R_j not generally invertible

global optimization needed

Burden, Ohlsson, Sastry SysID 2012

abla arepsilon undefined on $G_j \subset D_j$ R_j not generally invertible

global optimization needed

Burden, Ohlsson, Sastry SysID 2012

abla arepsilon well-defined on $G_j \cap M_j$ $R_j|_{M_j}$ invertible

first-order algorithms applicable

Novel quantitative predictions for biomechanics

Novel quantitative predictions for biomechanics

Model-based design and control of dynamic robots

minimal use of actuators Hoover et al. 2010

Hoover, Burden, Fu, Sastry, Fearing BIOROB 2010

Sam Burden

Model-based design and control of dynamic robots

Robust Stability

Near-simultaneous hybrid transitions

Near-simultaneous limb touchdown typical for animal gaits

Alexander IJRR 1984; Golubitsky et al. Nature 1999; Holmes et al. SIAM 2006

Near-simultaneous hybrid transitions

Near-simultaneous limb touchdown typical for animal gaits

Alexander IJRR 1984; Golubitsky et al. Nature 1999; Holmes et al. SIAM 2006

(Consequently) also typical for polyped robot gaits

Saranli et al. IJRR 2001; Kim et al. IJRR 2006; Hoover et al. IROS 2008

Need impact model that resolves inconsistencies and ambiguities

Rapid limb deceleration

U. Minnesota Equine Center

www.naturhov.dk

Rapid limb deceleration

U. Minnesota Equine Center

www.naturhov.dk

Rapid limb deceleration \implies additive impulse on body

U. Minnesota Equine Center

www.naturhov.dk

Example (reduced-order model for trot)

Stabilization mechanism for kinematics

Near-simultaneous impacts stabilize rotation.

Stabilization mechanism for kinematics

Near-simultaneous impacts stabilize rotation.

Extension to dynamics

Discontinuous forces stabilize velocity.
Robust stability from non-smooth Poincaré map

Robust stability from non-smooth Poincaré map

Near-simultaneous impact yields non-smooth Poincaré map

Recall: (isolated transitions \Rightarrow smooth); (rigid impact \Rightarrow discontinuous).

Robust stability from non-smooth Poincaré map

Near-simultaneous impact yields non-smooth Poincaré map

Recall: (isolated transitions \Rightarrow smooth); (rigid impact \Rightarrow discontinuous).

Robustness to impact uncertainty

Poincaré map can be stable for range of impulses.

- State space $D \subset \mathbb{R}^n$
- Orthant indices $B_n = \{-1, +1\}^n (|B_n| = 2^n)$
- Orthant defined for each $b \in D_b$:

$$D_b = \left\{ x \in D : b^j = \operatorname{sign}\left(x^j\right) \right\}$$

• Piecewise-constant vector field:

$$x \in D_b \implies \dot{x} = F_b$$

- State space $D \subset \mathbb{R}^n$
- Orthant indices $B_n = \{-1, +1\}^n (|B_n| = 2^n)$
- Orthant defined for each $b \in D_b$:

$$D_b = \left\{ x \in D : b^j = \operatorname{sign}\left(x^j\right) \right\}$$

• Piecewise-constant vector field:

$$x \in D_b \implies \dot{x} = F_b$$

- Input, output surfaces T, G
- Orthant sequences S_n ($|S_n| = n!$)
- Defining functions $\{\psi_\sigma:T\to G\}_{\sigma\in S_n}$ for input / output map $\psi:T\to G$

- State space $D \subset \mathbb{R}^n$
- Orthant indices $B_n = \{-1, +1\}^n (|B_n| = 2^n)$
- Orthant defined for each $b \in D_b$:

$$D_b = \left\{ x \in D : b^j = \operatorname{sign}\left(x^j\right) \right\}$$

• Piecewise-constant vector field:

$$x \in D_b \implies \dot{x} = F_b$$

- Input, output surfaces T, G
- Orthant sequences S_n ($|S_n| = n!$)
- Defining functions $\{\psi_{\sigma}: T \to G\}_{\sigma \in S_n}$ for input / output map $\psi: T \to G$

Theorem (Burden, Revzen, Sastry, Koditschek (in preparation))

 $\psi: T \to G$ is continuous and piecewise–smooth; if $\psi_{\sigma}: T \to G$ is a contraction for all $\sigma \in S_n$, then $\psi: T \to G$ is a contraction as well.

- State space $D \subset \mathbb{R}^n$
- Orthant indices $B_n = \{-1, +1\}^n (|B_n| = 2^n)$
- Orthant defined for each $b \in D_b$:

$$D_b = \left\{ x \in D : b^j = \operatorname{sign}\left(x^j\right) \right\}$$

• Piecewise-constant vector field:

$$x \in D_b \implies \dot{x} = F_b$$

- Input, output surfaces T, G
- Orthant sequences S_n ($|S_n| = n!$)
- Defining functions $\{\psi_{\sigma}: T \to G\}_{\sigma \in S_n}$ for input / output map $\psi: T \to G$

Theorem (Burden, Revzen, Sastry, Koditschek (in preparation))

 $\psi: T \to G$ is continuous and piecewise–smooth; if $\psi_{\sigma}: T \to G$ is a contraction for all $\sigma \in S_n$, then $\psi: T \to G$ is a contraction as well.

Corollary (robustness to perturbations)

If $F_b: D_b \to TD_b$ is smooth, then contraction holds locally near $-\omega \in T$.

Gait Synthesis

Gaits designed via kinematic or virtual constraints

RHex robot (KodLab, http://kodlab.seas.upenn.edu)

DynaROACH robot (Olin Robotics Lab, http://orb.olin.edu)

Robust limb coordination for rough terrain

Johnson & Koditschek IEEE 2013

Robust limb coordination for rough terrain

Johnson & Koditschek IEEE 2013

Smooth leg coordination

Robust limb coordination for rough terrain

Revzen, Burden, Sastry, Koditschek DW 2013

Johnson & Koditschek IEEE 2013

Sam Burden

X-RHex Lite (http://kodlab.seas.upenn.edu)

X-RHex Lite (http://kodlab.seas.upenn.edu)

Johnson & Koditschek ICRA 2013

Control yields footfall sequence; can search over continuous inputs.

Reformulate combinatorial problem

Control yields footfall sequence; can search over continuous inputs.

Dynamics are continuous and piecewise-smooth

Can compute first-order variation, apply nonlinear programming.

Models enable translation across scale and morphology

Models enable translation across scale and morphology

Discussion & Questions — Thanks for your time!

Reduction

- Reduced-order model emerges from intermittent contact.
- Enables scalable algorithm for parameter identification.

Collaborators

- Shankar Sastry (UCB)
- Robert Full (UCB)
- Dan Koditschek (UPenn)
- Shai Revzen (UMich)
- Aaron Hoover (Olin)
- Henrik Ohlsson (Linköping)

Funding

- NSF Fellowship
- ARL MAST CTA

Robustness

- Robust stability arises from simultaneous impact.
- Enables synthesis of robust gaits and optimal maneuvers.

