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Animals are extremely adept at dynamic locomotion
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flat–terrain gait

Sandbot RHex robot; Li et al. PNAS 2009

optimized gait

zebra–tailed lizard; Li et al. JEB 2012
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Animal gaits exhibit surprising phenomena

Sam Burden Reduction & Robustness of Robot Gaits October 24, 2013 3

Reduction in degrees–of–freedom (DOF)

Cockroach dynamics ∼ 7 dimensional (Revzen & Guckenheimer JRSI 2011)

Near–simultaneous limb touchdown

Quadrupeds trot, hexapods alternate tripods (Golubitsky et al. Nature 1999)
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Mechanisms for reduction in neural or environmental models
Neural synchronization

Cohen et al. J. Math. Bio 1982

Physiological symmetry

Golubitsky et al. Nature 1999

Muscle activation synergy

Ting & Macpherson J. Neurosci. 2005

Granular media solidification

Li et al. Science 2013
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Mechanisms for reduction in neural or environmental models
Neural synchronization

Cohen et al. J. Math. Bio 1982

Physiological symmetry

Golubitsky et al. Nature 1999

Muscle activation synergy

Ting & Macpherson J. Neurosci. 2005

Granular media solidification

Li et al. Science 2013

Need model reduction tools for piecewise–defined (hybrid) dynamics
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Use reduced–order models to study animal and robot gaits
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10–100 DOF
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physical system

animal, robot

detailed model

10–100 DOF

reduced-order model

< 10 DOF
Full & Koditschek JEB 1999
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Use reduced–order models to study animal and robot gaits
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physical system

animal, robot

identification↓ synthesis ↑
detailed model

10–100 DOF

reduction ↓ robustness↑
reduced-order model

< 10 DOF



Motivation Reduction Identification Robustness Synthesis

Overview

Reduction
hybrid dynamics reduce dimensionality near periodic orbits

Identification
reduction enables scalable algorithm for parameter estimation

Robustness
near–simultaneous impacts lend robust stability to gaits

Synthesis
robustness enables synthesis of gaits and optimal maneuvers
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Model Reduction
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physical system

animal, robot

detailed model

10–100 DOF

reduction ↓
reduced-order model

< 10 DOF
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Dimension loss in vertical hopper
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Hybrid dynamical system
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Trajectory for a hybrid dynamical system
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Periodic orbit γ for a hybrid dynamical system
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Assumptions on hybrid periodic orbit γ
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Assumption (transversality)

periodic orbit γ passes transversely through each guard Gj
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Assumptions on hybrid periodic orbit γ
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Assumption (isolated transitions)

∃ε > 0 : periodic orbit γ spends at least ε time units in each domain Dj
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Poincaré map for periodic orbit γ
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Theorem (Grizzle et al. TAC 2002)

The Poincaré map P is smooth in a neighborhood of ξ.
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The Poincaré map P is smooth in a neighborhood of ξ.



Motivation Reduction Identification Robustness Synthesis Hybrid System Poincaré map Model Reduction Applications
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Model reduction near hybrid periodic orbit γ
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Theorem (Burden, Revzen, Sastry 2013 (arXiv:1308.4158))

Let n = minj dimDj − 1. If rankDPn = r near ξ, then trajectories
starting near γ contract to a collection of hybrid-invariant
(r + 1)−dimensional submanifolds Mj ⊂ Dj in finite time.
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Model reduction near hybrid periodic orbit γ
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Corollary (Burden, Revzen, Sastry 2013 (arXiv:1308.4158))

The submanifolds Mj determine a hybrid system with periodic orbit γ.

γ is asymptotically stable in the original hybrid system
⇐⇒ γ is asymptotically stable in the reduced hybrid system.
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Corollary (Burden, Revzen, Sastry 2013 (arXiv:1308.4158))

The submanifolds Mj determine a hybrid system with periodic orbit γ.
γ is asymptotically stable in the original hybrid system

⇐⇒ γ is asymptotically stable in the reduced hybrid system.
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Spontaneous reduction in vertical hopper
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Numerically linearizing Poincaré map P on ground,
we find DP (ξ) has eigenvalue ' 0.57,

therefore DP 2 is constant rank near ξ.

Corollary (Burden, Revzen, Sastry 2013 (arXiv:1308.4158))

2–DOF hopper contracts to 1–DOF hopper after one “hop”.

Interpretation

Holonomic ground contact constraint persists after liftoff.
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n–leg polyped reduces to Lateral Leg–Spring
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h

3 DOF Lateral Leg–Spring (LLS)

Controller (Burden, Revzen, Sastry 2013 (arXiv:1308.4158))

Smooth state feedback law reduces polyped to LLS after one stride.
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Parameter Identification
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physical system

animal, robot

identification↓

reduction ↓

detailed model

10–100 DOF

reduced-order model

< 10 DOF
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Identification of initial conditions

Y (φ(t, z)) = y(t) ηi = Y (φ(iT, z∗))+wi,
wi iid random variables

Identification problem

Solve arg min
z∈Dj

ε (z, {ηi}), where ε (z, {ηi}) :=
∑

i ‖Y (φ(iT, z))− ηi‖2.

Assumption (smooth observations)

Y is smooth along trajectories, i.e. Y (φ(t, z)) is a smooth function of t.
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Identification on original hybrid model vs. reduced model
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Identification on
⋃
j Dj

arg min
z∈Dj

ε (z, {ηi})

∇ε undefined on Gj ⊂ Dj

Rj not generally invertible

global optimization needed

Identification on
⋃
jMj

arg min
z∈Mj

ε (z, {ηi})

∇ε well-defined on Gj ∩Mj

Rj |Mj invertible

first–order algorithms applicable
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Identification on original hybrid model vs. reduced model
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Burden, Ohlsson, Sastry SysID 2012
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Novel quantitative predictions for biomechanics
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observation

neural feedback
appears at a delay

Revzen, Burden et al. BC 2013
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Novel quantitative predictions for biomechanics
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observation

neural feedback
appears at a delay

Revzen, Burden et al. BC 2013

identification↓↑
prediction

passive mechanics
sensitive to inertia

Full et al. 2002

Burden, Revzen, Moore, Sastry, Full SICB 2013
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Model-based design and control of dynamic robots
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design

minimal use
of actuators
Hoover et al. 2010

Hoover, Burden, Fu, Sastry, Fearing BIOROB 2010
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Model-based design and control of dynamic robots
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design

minimal use
of actuators
Hoover et al. 2010

identification ↓↑
control

asymmetric leg
stiffness change

Proctor & Holmes 2008

Hoover, Burden, Fu, Sastry, Fearing BIOROB 2010
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Robust Stability
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physical system

animal, robot

detailed model

10–100 DOF

reduced-order model

< 10 DOF

identification↓

reduction ↓ robustness↑
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Near–simultaneous hybrid transitions

Near–simultaneous limb touchdown typical for animal gaits
Alexander IJRR 1984; Golubitsky et al. Nature 1999; Holmes et al. SIAM 2006

(Consequently) also typical for polyped robot gaits
Saranli et al. IJRR 2001; Kim et al. IJRR 2006; Hoover et al. IROS 2008
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Depending on impact model, kinematic
trees admit 5 (!) distinct outcomes
Hürmüzlü and Marghitu IJRR 1994

Hürmüzlü and Marghitu JAM 1995
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Quadruped model possesses three
distinct near–simultaneous trot gaits
Remy et al. IJRR 2010
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Pathologies in models of rigid simultaneous impact

Sam Burden Reduction & Robustness of Robot Gaits October 24, 2013 26

Depending on impact model, kinematic
trees admit 5 (!) distinct outcomes
Hürmüzlü and Marghitu IJRR 1994

Hürmüzlü and Marghitu JAM 1995

Quadruped model possesses three
distinct near–simultaneous trot gaits
Remy et al. IJRR 2010

Need impact model that resolves inconsistencies and ambiguities
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Rapid limb deceleration

Sam Burden Reduction & Robustness of Robot Gaits October 24, 2013 27

U. Minnesota Equine Center www.naturhov.dk



www.naturhov.dk


Motivation Reduction Identification Robustness Synthesis Simultaneous Impact Additive Impulses Robust Stability

Rapid limb deceleration
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U. Minnesota Equine Center www.naturhov.dk

www.naturhov.dk
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Rapid limb deceleration =⇒ additive impulse on body

Sam Burden Reduction & Robustness of Robot Gaits October 24, 2013 27

U. Minnesota Equine Center www.naturhov.dk

⇒

www.naturhov.dk
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Example (reduced–order model for trot)
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⇒
Burden, Gonzalez, Vasudevan, Bajcsy, & Sastry 2013 (arXiv:1302.4402)
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Geometry of near–simultaneous limb touchdown
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Geometry of near–simultaneous limb touchdown
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Stabilization mechanism for kinematics

Near–simultaneous impacts stabilize rotation.
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Geometry of near–simultaneous limb touchdown
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Stabilization mechanism for kinematics

Near–simultaneous impacts stabilize rotation.

Extension to dynamics

Discontinuous forces stabilize velocity.
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Robust stability from non–smooth Poincaré map
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Near–simultaneous impact yields non–smooth Poincaré map

Recall: (isolated transitions ⇒ smooth); (rigid impact ⇒ discontinuous).
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−π/8 0 +π/8
θ

0.5

1.0

z

θ0 = 0θ0 = −0.2 θ0 = +0.2

Near–simultaneous impact yields non–smooth Poincaré map

Recall: (isolated transitions ⇒ smooth); (rigid impact ⇒ discontinuous).

Robustness to impact uncertainty

Poincaré map can be stable for range of impulses.
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γ

φ(t, x)

F(−1,+1)

F(+1,−1)
F−1

F+1

D+1D(−1,+1)

D(+1,−1)D−1

ψ(x)
ω

−ω

x

T

G

R

D

• State space D ⊂ Rn
• Orthant indices Bn = {−1,+1}n (|Bn| = 2n)
• Orthant defined for each b ∈ Db:

Db =
{
x ∈ D : bj = sign

(
xj
)}

• Piecewise–constant vector field:
x ∈ Db =⇒ ẋ = Fb
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• State space D ⊂ Rn
• Orthant indices Bn = {−1,+1}n (|Bn| = 2n)
• Orthant defined for each b ∈ Db:

Db =
{
x ∈ D : bj = sign

(
xj
)}

• Piecewise–constant vector field:
x ∈ Db =⇒ ẋ = Fb

• Input, output surfaces T,G
• Orthant sequences Sn (|Sn| = n!)
• Defining functions {ψσ : T → G}σ∈Sn

for
input / output map ψ : T → G
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F−1

F+1

D+1D(−1,+1)

D(+1,−1)D−1

ψ(x)
ω

−ω

x

T

G

R

D

• State space D ⊂ Rn
• Orthant indices Bn = {−1,+1}n (|Bn| = 2n)
• Orthant defined for each b ∈ Db:

Db =
{
x ∈ D : bj = sign

(
xj
)}

• Piecewise–constant vector field:
x ∈ Db =⇒ ẋ = Fb

• Input, output surfaces T,G
• Orthant sequences Sn (|Sn| = n!)
• Defining functions {ψσ : T → G}σ∈Sn

for
input / output map ψ : T → G

Theorem (Burden, Revzen, Sastry, Koditschek (in preparation))

ψ : T → G is continuous and piecewise–smooth; if ψσ : T → G is a
contraction for all σ ∈ Sn, then ψ : T → G is a contraction as well.
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γ
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F(+1,−1)
F−1

F+1

D+1D(−1,+1)

D(+1,−1)D−1

ψ(x)
ω

−ω

x

T

G

R

D

• State space D ⊂ Rn
• Orthant indices Bn = {−1,+1}n (|Bn| = 2n)
• Orthant defined for each b ∈ Db:

Db =
{
x ∈ D : bj = sign

(
xj
)}

• Piecewise–constant vector field:
x ∈ Db =⇒ ẋ = Fb

• Input, output surfaces T,G
• Orthant sequences Sn (|Sn| = n!)
• Defining functions {ψσ : T → G}σ∈Sn

for
input / output map ψ : T → G

Theorem (Burden, Revzen, Sastry, Koditschek (in preparation))

ψ : T → G is continuous and piecewise–smooth; if ψσ : T → G is a
contraction for all σ ∈ Sn, then ψ : T → G is a contraction as well.

Corollary (robustness to perturbations)

If Fb : Db → TDb is smooth, then contraction holds locally near −ω ∈ T .
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Gait Synthesis
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physical system

animal, robot

identification↓ synthesis ↑

reduction ↓ robustness↑
detailed model

10–100 DOF

reduced-order model

< 10 DOF
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Gaits designed via kinematic or virtual constraints
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RHex robot (KodLab, http://kodlab.seas.upenn.edu)

DynaROACH robot (Olin Robotics Lab, http://orb.olin.edu)



http://kodlab.seas.upenn.edu
http://orb.olin.edu
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Johnson & Koditschek IEEE 2013
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Johnson & Koditschek IEEE 2013

Smooth leg coordination

θ1

θ2

T 2 = S1 × S1
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Robust limb coordination for rough terrain
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Johnson & Koditschek IEEE 2013

Smooth leg coordination

θ1

θ2

T 2 = S1 × S1

Hybrid leg coordination

θ1

θ2

T 2 = S1 × S1

Revzen, Burden, Sastry, Koditschek DW 2013



Motivation Reduction Identification Robustness Synthesis Constrained Gaits Robust Coordination Optimal Maneuvers

Optimal maneuver synthesis
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X-RHex Lite (http://kodlab.seas.upenn.edu)


http://kodlab.seas.upenn.edu
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Optimal maneuver synthesis
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X-RHex Lite (http://kodlab.seas.upenn.edu) Johnson & Koditschek ICRA 2013

http://kodlab.seas.upenn.edu
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Optimal maneuver synthesis
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X-RHex Lite (http://kodlab.seas.upenn.edu) Johnson & Koditschek ICRA 2013

Reformulate combinatorial problem

Control yields footfall sequence; can search over continuous inputs.

http://kodlab.seas.upenn.edu
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Optimal maneuver synthesis
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X-RHex Lite (http://kodlab.seas.upenn.edu) Johnson & Koditschek ICRA 2013

Reformulate combinatorial problem

Control yields footfall sequence; can search over continuous inputs.

Dynamics are continuous and piecewise–smooth

Can compute first–order variation, apply nonlinear programming.

http://kodlab.seas.upenn.edu
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Models enable translation across scale and morphology
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physical system

animal, robot

identification synthesis↓ ↑
detailed model

10–100 DOF

reduction robustness↓ ↑
reduced-order model

< 10 DOF
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physical system

animal, robot

identification synthesis↓ ↑↑ ↓
detailed model

10–100 DOF

reduction robustness↓ ↑↑ ↓
reduced-order model

< 10 DOF
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Discussion & Questions — Thanks for your time!
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Reduction

– Reduced–order model emerges
from intermittent contact.
– Enables scalable algorithm for
parameter identification.

Robustness

– Robust stability arises from
simultaneous impact.
– Enables synthesis of robust
gaits and optimal maneuvers.
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