# **From Templates to Anchors:** Exact and Approximate Reduction in Models of Legged Locomotion Sam Burden, Shai Revzen, and S. Shankar Sastry

# Hybrid Systems Exhibit Model Reduction

**Definition 3.** A hybrid dynamical system is specified by a tuple H = (D, F, G, R) where:

 $D = \prod_{j \in J} D_j$  is a smooth hybrid manifold;  $F : D \to TD$  is a smooth vector field;

- $G \subset \partial D$  is open;
- $R : G \rightarrow D$  is a smooth map.

#### Vertical hopper loses 1 DOF -- we formalize & generalize

### thm: Exact Reduction to a Hybrid Subsystem

**Theorem 1.** Let  $\gamma$  be a periodic orbit for a hybrid dynamical system H = (D, F, G, R),  $P : U \to \Sigma$  a Poincaré map for  $\gamma$ ,  $n = \min_j \dim D_j - 1$ , and suppose rank  $DP^n \equiv r \in \mathbb{N}$ . Then there exists an (r+1)-dimensional hybrid-invariant submanifold  $M \subset D$  and a hybrid open set  $W \subset D$  for which  $\gamma \subset M \cap W$  and trajectories starting in W contract to M in finite time.

**Corollary 2.**  $H|_M = (M, F|_M, G \cap M, R|_{G \cap M})$  is a hybrid dynamical system with periodic orbit  $\gamma$ .



# If periodic orbit is exponentially stable, dynamics generically reduce approximately

[1] R Full and D Koditschek. Templates and Anchors: Neuromechanical Hypothesis of Legged Locomotion on Land. Journal of Experimental Biology, 1999. [2] S Burden, S Revzen, S Sastry. Dimension Reduction Near Periodic Orbits of Hybrid Systems. IEEE CDC, 2011. [3] S Burden, S Revzen, S Sastry. Model Reduction Near Periodic Orbits in Hybrid Dynamical Systems. ArXiv e-print \_\_\_\_\_, 2013. [4] S Revzen, S Burden, D Koditschek, S Sastry. Pinned Equilibria Provide Robustly Stable Multilegged Locomotion. Dynamic Walking, 2013.







#### ex: n-leg polyped reduces to 3-DOF LLS

#### thm: Transitions can be Smoothed

**Theorem 3.** Let H = (M, F, G, R) be a hybrid dynamical system with  $M = \coprod_{i \in J} M_j$ . Suppose dim  $M_j = n$  for all  $j \in J$ ,  $R(G) \subset \partial M$ ,  $\partial M = G \coprod R(G)$ , R is a hybrid diffeomorphism onto its image, and F is inward-pointing along R(G). Then the topological quotient  $\widetilde{M} = \frac{M}{G^{\frac{R}{\sim}}R(G)}$  may be endowed with the structure of a smooth manifold: 1) the quotient projection  $\pi: M \to \widetilde{M}$  restricts to a smooth embedding  $\pi|_{M_j}: M_j \to \widetilde{M}$  for each  $j \in J$ ; 2) there is a smooth vector field  $\tilde{F} \in \mathcal{T}(M)$  such that any execution  $x: T \to M$  of H descends to an integral curve of  $\tilde{F}$  on  $\tilde{M}$  via  $\pi: M \to \tilde{M}$ :  $\forall t \in T : \frac{\partial}{\partial t} \pi \circ x(t) = \widetilde{F} \left( \pi \circ x(t) \right).$ 























