Reduction and Identification for Hybrid Dynamical Models of Terrestrial Locomotion

Sam Burden

Department of Electrical Engineering and Computer Sciences University of California, Berkeley, CA, USA

SPIE May 2013

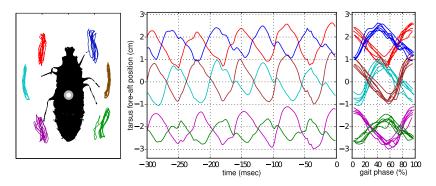
Dynamics of terrestrial locomotion

americana

Periplaneta americana

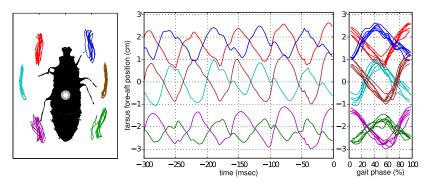
video courtesy of Poly-PEDAL Lab, UC Berkeley

Empirically, animals use few degrees-of-freedom



Cockroach dynamics ~ 7 dimensional (Revzen & Guckenheimer 2011)

Empirically, animals use few degrees-of-freedom



Cockroach dynamics ~ 7 dimensional (I

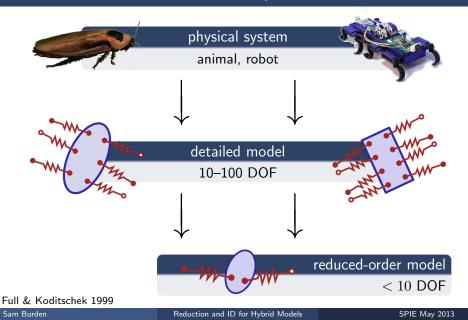
Mechanisms:

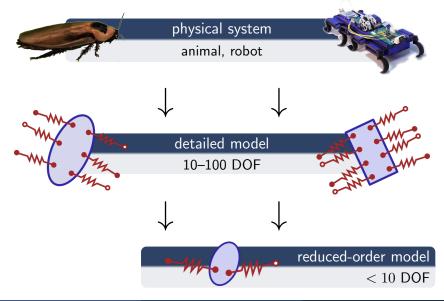
Neural synchronization Cohen et al. 1982 Physiological symmetry Golubitsky et al. 1999 (Revzen & Guckenheimer 2011)

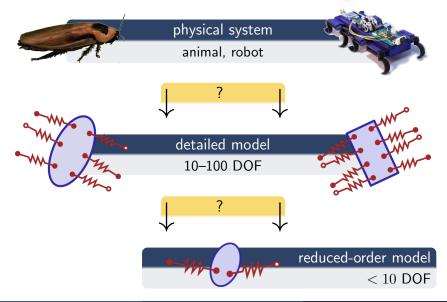
Muscle activation synergy Ting & Macpherson 2005

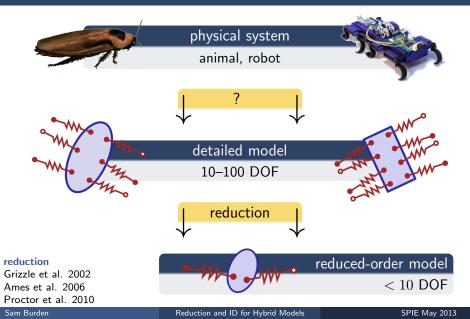
Granular media solidification

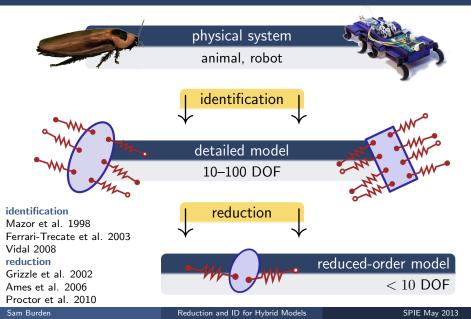
Reduced-order model describes dynamic locomotion











Overview

Motivation

reduced-order models describe dynamic locomotion

Reduction

hybrid dynamics reduce dimensionality near periodic orbits

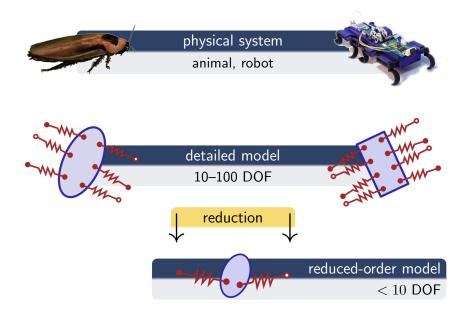
Identification

reduction enables scalable algorithm for parameter estimation

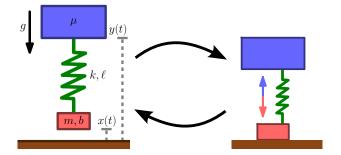
Conclusion

novel quantitative predictions for biomechanics model-based design and control of dynamic robots

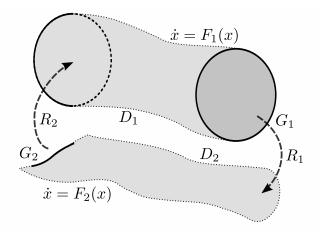
Reduction



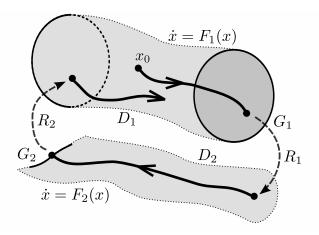
Example (vertical hopper)



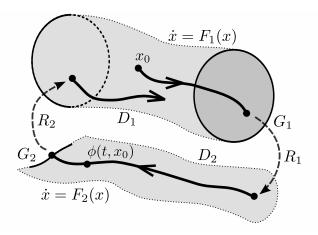
Hybrid dynamical system



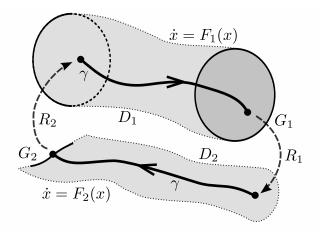
Trajectory for a hybrid dynamical system



Trajectory for a hybrid dynamical system

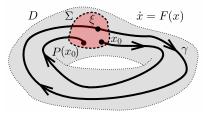


Periodic orbit γ for a hybrid dynamical system

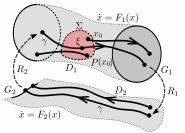


Poincaré map for periodic orbit γ

smooth dynamical system

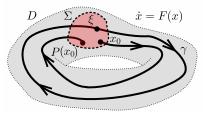


hybrid dynamical system

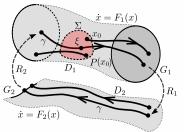


Poincaré map for periodic orbit γ

smooth dynamical system



hybrid dynamical system

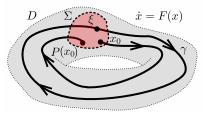


Theorem (Hirsch and Smale 1974, Grizzle et al. 2002)

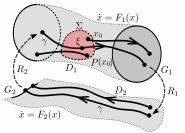
The Poincaré map P is smooth in a neighborhood of ξ .

Rank of Poincaré map P with fixed point $P(\xi) = \xi$

smooth dynamical system

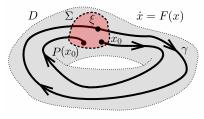


hybrid dynamical system

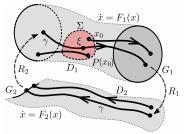


Rank of Poincaré map P with fixed point $P(\xi) = \xi$

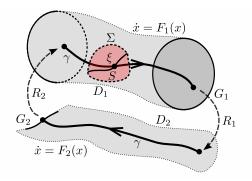
smooth dynamical system

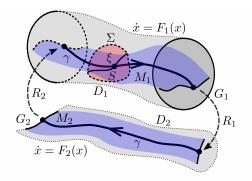


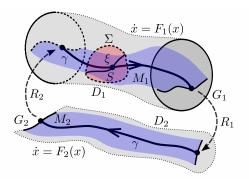
hybrid dynamical system



 $\operatorname{rank} DP(\xi) = \dim D - 1$ Hirsch and Smale 1974
$$\label{eq:prod} \begin{split} \mathrm{rank}\, DP(\xi) &\leq \mathrm{min}_j \dim D_j \!-\! 1 \\ \mathrm{Wendel} \text{ and } \mathrm{Ames} \text{ 2010} \end{split}$$

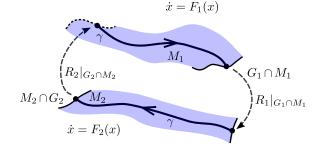






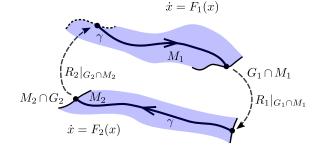
Theorem (Burden, Revzen, Sastry CDC 2011)

Let $n = \min_j \dim D_j - 1$. If rank $DP^n = r$ near ξ , then trajectories starting near γ contract to a collection of hybrid-invariant (r+1)-dimensional submanifolds $M_j \subset D_j$ in finite time.



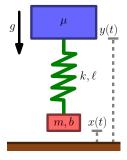
Corollary

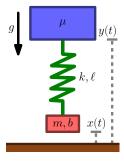
The submanifolds M_i determine a hybrid system with periodic orbit γ .



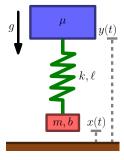
Corollary

The submanifolds M_j determine a hybrid system with periodic orbit γ . γ is stable in the original hybrid system $\iff \gamma$ is stable in the reduced hybrid system.



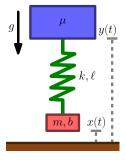


Numerically linearizing Poincaré map P on ground, we find $DP(\xi)$ has eigenvalue $\simeq 0.57$, therefore DP^2 is constant rank near ξ .



Numerically linearizing Poincaré map P on ground, we find $DP(\xi)$ has eigenvalue $\simeq 0.57$, therefore DP^2 is constant rank near ξ .

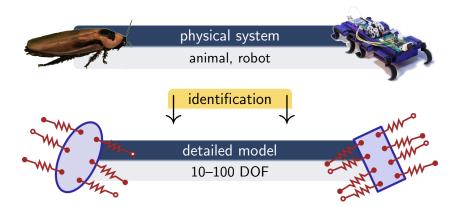
Theorem \implies dynamics collapse to 1-DOF hopper

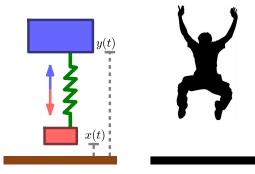


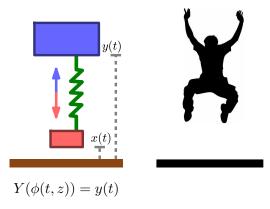
Numerically linearizing Poincaré map P on ground, we find $DP(\xi)$ has eigenvalue $\simeq 0.57$, therefore DP^2 is constant rank near ξ . Theorem \implies dynamics collapse to 1-DOF hopper

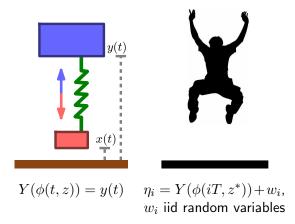
Interpretation: unilateral (Lagrangian) constraint appears after one "hop"

Identification









$$y(t)$$

$$y(t)$$

$$x(t)$$

$$y(\phi(t,z)) = y(t)$$

$$\eta_i = Y(\phi(iT,z^*)) + w_i,$$

$$w_i \text{ iid random variables}$$

Identification problem

Solve $\arg\min_{z\in D_j} \varepsilon(z, \{\eta_i\})$, where $\varepsilon(z, \{\eta_i\}) := \sum_i \|Y(\phi(iT, z)) - \eta_i\|^2$.

Identification on reduced hybrid model

Assumption (smooth observations)

Y is smooth along trajectories, i.e. $Y(\phi(t,z))$ is a smooth function of t.

Identification on reduced hybrid model

Assumption (smooth observations)

Y is smooth along trajectories, i.e. $Y(\phi(t,z))$ is a smooth function of t.

Identification on $\bigcup_{j} D_{j}$

 $\arg\min_{z\in D_j}\varepsilon\left(z,\{\eta_i\}\right)$

- $\nabla \varepsilon$ undefined on $G_j \subset D_j$
- R_j not generally invertible

Assumption (smooth observations)

Y is smooth along trajectories, i.e. $Y(\phi(t,z))$ is a smooth function of t.

Identification on $\bigcup_{j} D_{j}$

 $\arg\min_{z\in D_j}\varepsilon\left(z,\{\eta_i\}\right)$

- $\nabla \varepsilon$ undefined on $G_j \subset D_j$
- R_j not generally invertible

global optimization needed

Assumption (smooth observations)

Y is smooth along trajectories, i.e. $Y(\phi(t,z))$ is a smooth function of t.

Identification on
$$\bigcup_j D_j$$
Identification on $\bigcup_j M_j$ $\arg\min_{z\in D_j} \varepsilon(z, \{\eta_i\})$ $\arg\min_{z\in M_j} \varepsilon(z, \{\eta_i\})$

- $\nabla \varepsilon$ undefined on $G_j \subset D_j$
- R_j not generally invertible

global optimization needed

- $\nabla \varepsilon$ well-defined on $G_j \cap M_j$
- $R_j|_{M_j}$ invertible

Assumption (smooth observations)

Y is smooth along trajectories, i.e. $Y(\phi(t,z))$ is a smooth function of t.

Identification on $\bigcup_i D_j$

 $\arg\min_{z\in D_j}\varepsilon\left(z,\{\eta_i\}\right)$

- $\nabla \varepsilon$ undefined on $G_j \subset D_j$
- R_j not generally invertible

global optimization needed

Identification on $\bigcup_{i} M_{j}$

 $\arg\min_{z\in M_j}\varepsilon\left(z,\{\eta_i\}\right)$

- $\nabla \varepsilon$ well-defined on $G_j \cap M_j$
- $R_j|_{M_j}$ invertible

first-order algorithms applicable

Assumption (smooth observations)

Y is smooth along trajectories, i.e. $Y(\phi(t,z))$ is a smooth function of t.

Identification on $\bigcup_i D_j$

 $\arg\min_{z\in D_j}\varepsilon\left(z,\{\eta_i\}\right)$

- $\nabla \varepsilon$ undefined on $G_j \subset D_j$
- R_j not generally invertible

global optimization needed

Identification on $\bigcup_{i} M_{i}$

 $\arg\min_{z\in M_{j}}\varepsilon\left(z,\left\{\eta_{i}\right\}\right)$

- $\nabla \varepsilon$ well-defined on $G_j \cap M_j$
- $R_j|_{M_j}$ invertible

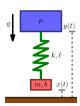
first-order algorithms applicable

Identification on $\bigcup_{i} M_{j}$ in practice

For any $z \in M$ there exists $(t, u) \in \mathbb{R}_{>0} \times \Sigma \cap M$ such that $\phi(t, u) = z$.

Motivation Reduction Identification Conclusion

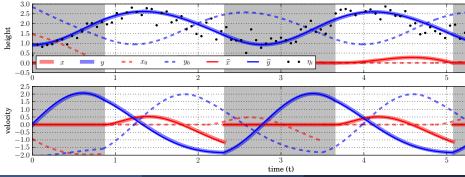
Example (initial condition for vertical hopper)



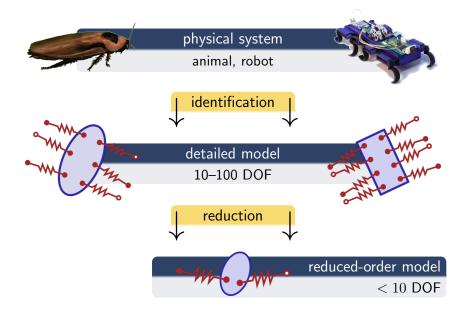
Observe position of upper mass at 20Hz, additive noise with variance 0.3.

 $(t_0, y_0) \approx (2.29, 0.03)$: initial

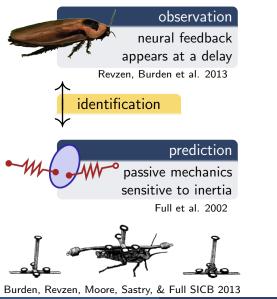
- $(t,y)\approx(3.41,0.14)$: actual
- $(\hat{t}, \hat{y}) \approx (3.42, 0.16)$: estimated



Reduction & Identification

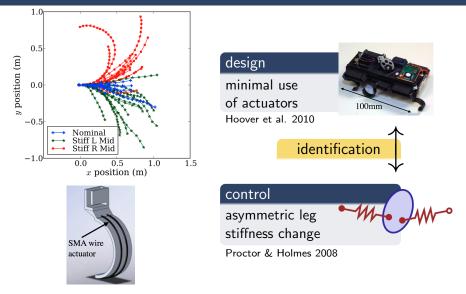


Novel quantitative predictions for biomechanics



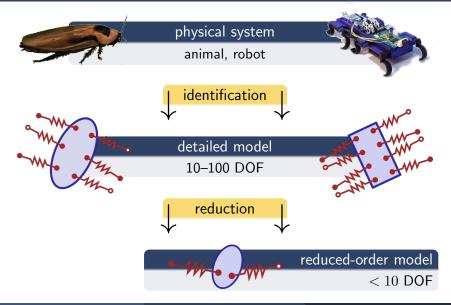
lateral perturbation

Model-based design and control of dynamic robots

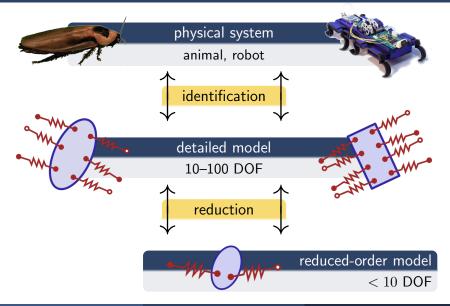


Hoover, Burden, Fu, Sastry, & Fearing IEEE BIOROB 2010

Model enables translation across morphology, scale



Model enables translation across morphology, scale



Discussion & Questions — Thanks for your time!

Reduction

Hybrid dynamics reduce dimensionality near periodic orbits.

Identification

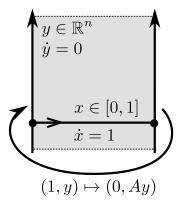
Reduction enables scalable algorithm for parameter estimation.

Collaborators

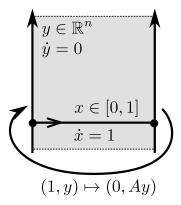
- Prof. Shankar Sastry
- Prof. Shai Revzen

- Prof. Robert Full
- Prof. Aaron Hoover
- Prof. Ron Fearing
- Talia Moore

Example (rank-deficient Poincaré map)



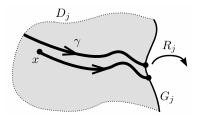
Example (rank-deficient Poincaré map)

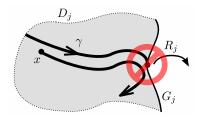


If $A \in \mathbb{R}^{n \times n}$ is nilpotent (i.e. $A^n = 0_{n \times n}$), then rank $DP^n = 0$.

Assumptions on hybrid periodic orbit γ

Assumptions on hybrid periodic orbit γ

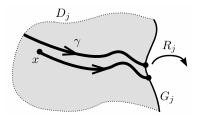


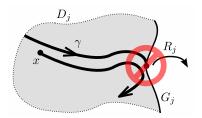


Assumption (transversality)

periodic orbit γ passes transversely through each guard G_j

Assumptions on hybrid periodic orbit γ_1





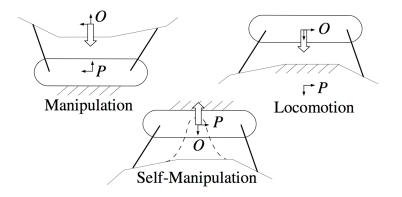
Assumption (transversality)

periodic orbit γ passes transversely through each guard G_j

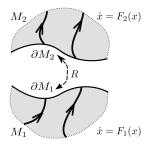
Assumption (dwell time)

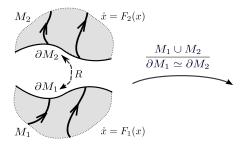
 $\exists \varepsilon > 0$: periodic orbit γ spends at least ε time units in each domain D_j

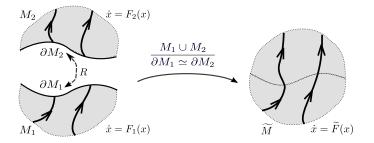
Locomotion is self-manipulation

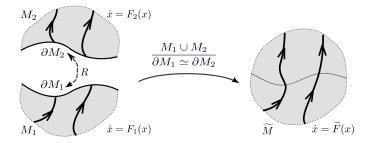


Johnson, Haynes, & Koditschek, IROS 2012





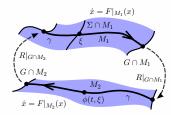


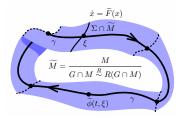


Lemma (Hirsch 1976)

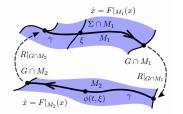
Let F_j be a smooth vector field on *n*-dimensional manifold M_j , $j \in \{1, 2\}$. If $R : \partial M_1 \to \partial M_2$ is a diffeomorphism, F_1 points outward on ∂M_1 , and F_2 points inward on ∂M_2 , then the quotient $\widehat{M} = \frac{M_1 \cup M_2}{\partial M_1 \simeq \partial M_2}$ is a smooth manifold, $M_j \subset \widetilde{M}$ is a smooth submanifold, and the vector field $\widetilde{F}(x) = \begin{cases} F_1(x), & x \in M_1; \\ F_2(x), & x \in M_2; \end{cases}$ is smooth on \widetilde{M} .

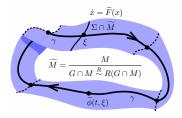
Smoothing reduced-order hybrid system





Smoothing reduced-order hybrid system





Corollary (Burden, Revzen, Sastry CDC 2011)

 $\begin{array}{l} \text{The topological quotient } \widetilde{M} = \frac{\bigcup_{j} M_{j}}{(G_{j} \cap M_{j}) \cong R_{j}(G_{j} \cap M_{j})} \text{ is a smooth manifold,} \\ M_{j} \subset \widetilde{M} \text{ is a smooth submanifold, and the vector field} \\ \widetilde{F}(x) = \begin{cases} F_{1}(x), & x \in M_{1}; \\ \vdots & \vdots \\ F_{j}(x), & x \in M_{j}; \\ \vdots & \vdots \end{cases} \text{ is smooth on } \widetilde{M}. \\ \vdots & \vdots \end{cases}$