Hybrid Models for Dynamic and Dexterous Robots

Sam Burden

Postdoctoral Researcher Department of Electrical Engineering and Computer Sciences University of California, Berkeley, CA, USA

October 24, 2014

Future directions

Dynamic and dexterous robots

Hodgins & Raibert IJRR 1990

Johnson & Koditschek ICRA 2013

Dynamic and dexterous robots vs. animals

Hodgins & Raibert IJRR 1990

Bill Roth 1996 US Gymnastics Championship

Libby, Moore, Chang–Siu, Li, Cohen, Jusufi, Full Nature 2012

Locomotion, manipulation arise from intermittent contact

Johnson & Koditschek ICRA 2013

Senoo, Yamakawa, Mizusawa, Namiki, Ishikawa, Shimojo IROS 2009

Parsimonious models for intermittent contact

Johnson & Koditschek ICRA 2013

Parsimonious models for intermittent contact

Johnson & Koditschek ICRA 2013

Dynamics with $n \in \mathbb{N}$ limbs, intrinsic coordinates $q \in Q$

Each subset of contact limbs J ⊂ {1,...,n} determine continuous dynamics q̃ = f(q, q̃) + λ_J(q, q̃)Da_J(q) subject to constraints a_J(q) ≡ 0.
At impact into mode J, velocities update discontinuously: q̃⁺ = Δ_Jq̃⁻.

Johnson, Burden, Koditschek (*in prep*) A Hybrid Systems Model for Simple Manipulation and Self–Manipulation Systems

Parsimonious models for intermittent contact

Johnson & Koditschek ICRA 2013

Dynamics with $n \in \mathbb{N}$ limbs, intrinsic coordinates $q \in Q$

Each subset of contact limbs J ⊂ {1,...,n} determine continuous dynamics q̃ = f(q, q̃) + λ_J(q, q̃)Da_J(q) subject to constraints a_J(q) ≡ 0.
At impact into mode J, velocities update discontinuously: q̃⁺ = Δ_Jq̃⁻.

Yields a piecewise-defined ("hybrid") model for (self-)manipulation.

Johnson, Burden, Koditschek (*in prep*) A Hybrid Systems Model for Simple Manipulation and Self–Manipulation Systems Sam Burden (http://purl.org/sburden) Models for Dynamic & Dexterous Robots

Pathologies in hybrid models for intermittent contact

Pathologies in hybrid models for intermittent contact

1. Discontinuities

equations-of-motion and states change abruptly at impact

Pathologies in hybrid models for intermittent contact

1. Discontinuities

equations-of-motion and states change abruptly at impact

2. Inconsistencies

restitution laws lead to nondeterminism at impact

Pathologies are not "natural"

Libby, Moore, Chang-Siu, Li, Cohen, Jusufi, Full Nature 2012

1. Discontinuities

Pathologies are not "natural"

Libby, Moore, Chang-Siu, Li, Cohen, Jusufi, Full Nature 2012

Mathematical models approximate the physical world

Pathologies indicate bad models or deficient analysis.

1. Discontinuities

2. Inconsistencies

Pathologies are not "natural"

Libby, Moore, Chang-Siu, Li, Cohen, Jusufi, Full Nature 2012

Mathematical models approximate the physical world

Pathologies indicate bad models or deficient analysis.

1. Remove discontinuities

construct intrinsic state space that removes discontinuities

2. Inconsistencies

Pathologies are not "natural"

Libby, Moore, Chang-Siu, Li, Cohen, Jusufi, Full Nature 2012

Mathematical models approximate the physical world

Pathologies indicate bad models or deficient analysis.

1. Remove discontinuities

construct intrinsic state space that removes discontinuities

2. Resolve inconsistencies

restrict restitution laws to obtain piecewise-differentiable flow

Motivation: animals possess rich behavioral repertoire robots lack Progress hampered by pathologies in parsimonious models.

- 1. Topological quotient removes discontinuities Enables convergent numerical simulation for legged locomotion.
- 2. Restricting impact restitution resolves inconsistencies Enables scalable nonsmooth optimization and control of locomotion.

Future directions: towards sensorimotor control theory Synthesis and stabilization of rhythmic behaviors, aperiodic maneuvers.

Hybrid models for dynamic and dexterous robots

Future directions

Discontinuities in vertical hopping

Discontinuities in vertical hopping

Hybrid dynamical system

Trajectory for a hybrid dynamical system

Trajectory for a hybrid dynamical system

Distance metric and simulation algorithm

Hybrid control systems comprised of distinct operating "modes"

- Digital controller state ("on" or "off")
- Physical/dynamical regime ("reach" or "grasp")

Distance metric and simulation algorithm

Hybrid control systems comprised of distinct operating "modes"

- Digital controller state ("on" or "off")
- Physical/dynamical regime ("reach" or "grasp")

Classical ODE system

- distance: $d(x,y) = \|x y\|$
- simulation: $x_{k+1} = x_k + hF(x_k)$

Distance metric and simulation algorithm

Hybrid control systems comprised of distinct operating "modes"

- Digital controller state ("on" or "off")
- Physical/dynamical regime ("reach" or "grasp")

Hybrid dynamical system

- distance: $d(x,y) = \infty$
- simulation: $x_k + hF(x_k) \notin D$

Classical ODE system

- distance: $d(x,y) = \|x y\|$
- simulation: $x_{k+1} = x_k + hF(x_k)$

Remove discontinuities via topological quotient

Remove discontinuities via topological quotient

Remove discontinuities via topological quotient

quotient space \mathcal{M}

Theorem (arXiv:1302.4402)

 $\mathcal{M}^{\varepsilon}$ is metrizable.

Implication for controlling dynamic and dexterous robots

3 degrees–of–freedom Schmit & Holmes 2001

Implication for controlling dynamic and dexterous robots

Controlled reduction (arXiv:1308.4158)

Smooth feedback law reduces 2n degrees-of-freedom after one stride.

Contribution from removal of discontinuities

Motivation: animals possess rich behavioral repertoire robots lack Progress hampered by pathologies in parsimonious models.

- 1. Topological quotient removes discontinuities Enables convergent numerical simulation for legged locomotion.
- 2. Restricting impact restitution resolves inconsistencies Enables scalable nonsmooth optimization and control of locomotion.

Future directions: towards sensorimotor control theory Synthesis and stabilization of rhythmic behaviors, aperiodic maneuvers.

Hybrid models for dynamic and dexterous robots

Near-simultaneous limb touchdown in animal gaits

Near-simultaneous limb touchdown in robot gaits

Galloway, Haynes, Ilhan, Johnson, Knopf, Lynch, Plotnick, White, Koditschek UPenn 2010

Hyun, Seok, Lee, Kim IJRR 2014

Rigidity leads to inconsistencies at impact

Rigidity leads to inconsistencies at impact

Rigidity leads to inconsistencies at impact

Theorem (arXiv:1407.1775)

Discontinuous vector field $\dot{x} = F(x)$ yields nonsmooth flow $\phi : \mathcal{F} \to \mathbb{R}$: $\forall (t,x) \in \mathcal{F} \subset \mathbb{R} \times \mathbb{R}^d : \phi(t,x) = x + \int_0^t F(\phi(s,x)) \, ds.$

Nonsmooth flow $\phi : \mathcal{F} \to \mathbb{R}^d$ is piecewise–differentiable

Nonsmooth flow $\phi : \mathcal{F} \to \mathbb{R}^d$ is piecewise–differentiable

Theorem (arXiv:1407.1775)

 $\begin{array}{l} \phi \text{ possesses a nonclassical derivative } D\phi: T\mathcal{F} \to T\mathbb{R}^d \text{, i.e.} \\ \forall (t,x) \in \mathcal{F}: \lim_{\delta \to 0} \frac{1}{\|\delta\|} \left\| \phi((t,x) + \delta) - (\phi(t,x) + D\phi(t,x;\delta)) \right\| = 0. \end{array}$

Nonsmooth flow $\phi : \mathcal{F} \to \mathbb{R}^d$ is piecewise–differentiable

Implications for controlling dynamic and dexterous robots

1. Assess stability of nonsmooth Poincaré map $P: S \to \Sigma$ using nonclassical derivative $DP(\alpha)$ evaluated at fixed point $\alpha = P(\alpha)$.

3. Determine controllability by applying implicit function theorem to nonclassical derivative $D\phi$ of flow.

2. Compute sensitivity of trajectory (i.e. *Lyapunov exponents*) w.r.t. state x and parameters ξ using nonclassical derivatives $D_x\phi$, $D_\xi\phi$.

4. Perform scalable optimization of control inputs *u* using first- or second-order descent algorithms.

Implications for controlling dynamic and dexterous robots

1. Assess stability of nonsmooth Poincaré map $P: S \to \Sigma$ using nonclassical derivative $DP(\alpha)$ evaluated at fixed point $\alpha = P(\alpha)$. **2.** Compute sensitivity of trajectory (i.e. *Lyapunov exponents*) w.r.t. state x and parameters ξ using nonclassical derivatives $D_x\phi$, $D_\xi\phi$.

- **3. Determine controllability** by applying implicit function theorem to nonclassical derivative $D\phi$ of flow.
- **4.** Perform scalable optimization of control inputs *u* using first- or second-order descent algorithms.

Contribution from resolution of inconsistencies

Motivation: animals possess rich behavioral repertoire robots lack Progress hampered by pathologies in parsimonious models.

- Topological quotient removes discontinuities Enables convergent numerical simulation for legged locomotion.
- 2. Restricting impact restitution resolves inconsistencies Enables scalable nonsmooth optimization and control of locomotion.

Future directions: towards sensorimotor control theory Synthesis and stabilization of rhythmic behaviors, aperiodic maneuvers.

Towards sensorimotor control theory

Motivation: animals possess rich behavioral repertoire robots lack Progress hampered by pathologies in parsimonious models.

- Topological quotient removes discontinuities Enables convergent numerical simulation for legged locomotion.
- 2. Restricting impact restitution resolves inconsistencies Enables scalable nonsmooth optimization and control of locomotion.

Future directions: towards sensorimotor control theory Synthesis and stabilization of rhythmic behaviors, aperiodic maneuvers.

Future directions

Dynamic & dexterous (self-)manipulation

Johnson & Koditschek ICRA 2013

Dynamics with $n \in \mathbb{N}$ limbs, intrinsic coordinates $q \in Q$

continuous: $\ddot{q} = f(q, \dot{q}) + \lambda_J(q, \dot{q}) Da_J(q)$ discrete: $\dot{q}^+ = \Delta_J \dot{q}^-$

Johnson, Burden, Koditschek (in prep) A Hybrid Systems Model for Simple Manipulation and Self–Manipulation Systems

Future directions

Dynamic & dexterous (self-)manipulation

Johnson & Koditschek ICRA 2013

Dynamics with $n \in \mathbb{N}$ limbs, intrinsic coordinates $q \in Q$

continuous: $\ddot{q} = f(q, \dot{q}) + \lambda_J(q, \dot{q})Da_J(q)$ discrete: $\dot{q}^+ = \Delta_J \dot{q}^-$ General framework accommodates variety of modeling assumptions.

Johnson, Burden, Koditschek (*in prep*) A Hybrid Systems Model for Simple Manipulation and Self–Manipulation Systems

Future directions

Dynamic & dexterous (self-)manipulation

Johnson & Koditschek ICRA 2013

Dynamics with $n \in \mathbb{N}$ limbs, intrinsic coordinates $q \in Q$

continuous: $\ddot{q} = f(q, \dot{q}) + \lambda_J(q, \dot{q})Da_J(q)$ discrete: $\dot{q}^+ = \Delta_J \dot{q}^-$ General framework accommodates variety of modeling assumptions.

Removing discontinuities and resolving inconsistencies enables new approaches to control, optimization, and planning.

Johnson, Burden, Koditschek (*in prep*) A Hybrid Systems Model for Simple Manipulation and Self–Manipulation Systems

Robost gaits exploit impact mechanics

Exploit impacts to synchronize tripods

Introduce piecewise-constant feedback to enforce alternating-tripod gait.

Kenneally, Burden, Revzen, Koditschek (in prep)

1. Remove discontinuitie

2. Resolve inconsistencies

Future directions

Collaborative manipulation

Kinematic model improves handoff

Dynamic model and intrinsic state space metric supports collaborative manipulation

Bestick, Burden, Willits, Naikal, Bajcsy, Sastry (submitted to ICRA 2015)

Discussion & Questions — Thanks for your time!

Discontinuities

Removed discontinuities from interaction betwen limbs and terrain.

Inconsistencies

Resolved inconsistencies from near-simultaneous limb touchdown.

Collaborators

- Shankar Sastry (UCB)
- Robert Full (UCB)
- Ruzena Bajcsy (UCB)
- Nikhil Naikal (UCB)
- Aaron Bestick (UCB)
- Giorgia Willits (UCB)
- Dan Koditschek (UPenn)
- Aaron Johnson (UPenn)
- Gavin Kenneally (UPenn)
- Shai Revzen (UMich)

Funding

- NSF (Award #1427260)
- ONR MURI (ONR N000141310341)
- ARL MAST CTA (W911NF-08-2-0004)