Metrization, Simulation, and First–Order Approximation for Networked CPS

Sam Burden

currently: Postdoctoral Researcher EECS Department University of California, Berkeley

from Fall 2015: Assistant Professor EE Department University of Washington, Seattle

Dynamics of CPS are nonclassical

Amin, Litrico, Sastry, Bayen 2013

Hiskens & Reddy 2007

Hiskens & Reddy 2007

New challenges require new tools

Metrization, Simulation, and First-Order Approximation

1. Metrization & Simulation

2. First-Order Approximation

Metrization & Simulation for networked CPS

1. Metrization & Simulation

2. First-Order Approximation

Metrization & Simulation for networked CPS

1. Metrization & Simulation

Using intrinsic state space metric, simulations converge uniformly and at a linear rate.

2. First-Order Approximation

Distance metric and simulation algorithm

Hybrid control systems comprised of distinct operating "modes"

- State of supervisory control ("on" or "off")
- Physical/dynamical regime (switches, shocks, & saturation)

Distance metric and simulation algorithm

Hybrid control systems comprised of distinct operating "modes"

- State of supervisory control ("on" or "off")
- Physical/dynamical regime (switches, shocks, & saturation)

Classical ODE system

- distance: d(x, y) = ||x y||
- simulation: $x_{k+1} = x_k + hF(x_k)$

Distance metric and simulation algorithm

Hybrid control systems comprised of distinct operating "modes"

- State of supervisory control ("on" or "off")
- Physical/dynamical regime (switches, shocks, & saturation)

Hybrid dynamical system

- distance: $d(x,y) = \infty$
- simulation: $x_k + hF(x_k) \notin D$

Classical ODE system

- distance: d(x, y) = ||x y||
- simulation: $x_{k+1} = x_k + hF(x_k)$

Remove discontinuities via topological quotient

Remove discontinuities via topological quotient

Remove discontinuities via topological quotient

Relax quotient space at discrete transitions

quotient space \mathcal{M}

Relax quotient space at discrete transitions

Relax quotient space at discrete transitions

Theorem (arXiv:1302.4402)

 $\mathcal{M}^{\varepsilon}$ is metrizable.

Relax quotient space at discrete transitions

Implications for networked CPS

Intrinsic state space metric and convergent numerical simulation

— Quantification of performance degradation through discrete transitions
— Reliable simulation for model-based design and predictive control

Contribution from metrization & simulation

1. Metrization & Simulation

Using intrinsic metric space $(M^{\varepsilon}, d^{\varepsilon})$, simulations converge: $\rho^{\varepsilon}(x^{\varepsilon}, z^{\varepsilon, h}) = O(\varepsilon) + O(h)$

2. First-Order Approximation

First–Order Approximation for networked CPS

2. First-Order Approximation

First-Order Approximation for networked CPS

$\begin{array}{ll} \mbox{1. Metrization \& Simulation}\\ \mbox{Using intrinsic metric space } (M^{\varepsilon},d^{\varepsilon}), \mbox{ simulations converge:}\\ \rho^{\varepsilon}(x^{\varepsilon},z^{\varepsilon,h})=O(\varepsilon)+O(h) \end{array}$

2. First-Order Approximation

Nonsmooth flow of networked CPS is piecewise–differentiable; can approximate it using a nonclassical "derivative".

Theorem (arXiv:1407.1775)

Discontinuous vector field $\dot{x} = F(x)$ yields nonsmooth flow $\phi : \mathcal{F} \to \mathbb{R}$: $\forall (t,x) \in \mathcal{F} \subset \mathbb{R} \times \mathbb{R}^d : \phi(t,x) = x + \int_0^t F(\phi(s,x)) \, ds.$

Nonsmooth flow $\phi : \mathcal{F} \to \mathbb{R}^d$ is piecewise–differentiable

Nonsmooth flow $\phi : \mathcal{F} \to \mathbb{R}^d$ is piecewise–differentiable

Theorem (arXiv:1407.1775)

 $\begin{array}{l} \phi \text{ possesses a nonclassical derivative } D\phi: T\mathcal{F} \to T\mathbb{R}^d \text{, i.e.} \\ \forall (t,x) \in \mathcal{F}: \lim_{\delta \to 0} \frac{1}{\|\delta\|} \left\| \phi((t,x) + \delta) - (\phi(t,x) + D\phi(t,x;\delta)) \right\| = 0. \end{array}$

Nonsmooth flow $\phi: \mathcal{F} \to \mathbb{R}^d$ is piecewise–differentiable

Implications for networked CPS

 Assess stability of nonsmooth Poincaré map P : S → Σ using nonclassical derivative DP(α)
evaluated at fixed point α = P(α). **2.** Compute sensitivity of trajectory (i.e. *Lyapunov exponents*) w.r.t. state x and parameters ξ using nonclassical derivatives $D_x\phi$, $D_\xi\phi$.

3. Determine controllability by applying implicit function theorem to nonclassical derivative $D\phi$ of flow.

4. Perform scalable optimization of control inputs *u* using first- or second-order descent algorithms.

Implications for networked CPS

 Assess stability of nonsmooth Poincaré map P : S → Σ using nonclassical derivative DP(α)
evaluated at fixed point α = P(α). **2.** Compute sensitivity of trajectory (i.e. *Lyapunov exponents*) w.r.t. state x and parameters ξ using nonclassical derivatives $D_x\phi$, $D_\xi\phi$.

3. Determine controllability by applying implicit function theorem to nonclassical derivative $D\phi$ of flow.

4. Perform scalable optimization of control inputs *u* using first- or second-order descent algorithms.

Contribution from first-order approximation

$\begin{array}{ll} \mbox{1. Metrization \& Simulation}\\ \mbox{Using intrinsic metric space } (M^{\varepsilon},d^{\varepsilon}), \mbox{ simulations converge:}\\ \rho^{\varepsilon}(x^{\varepsilon},z^{\varepsilon,h})=O(\varepsilon)+O(h) \end{array}$

2. First-Order Approximation

Nonsmooth flow $\phi : \mathcal{F} \to D$ is piecewise–differentiable: $\phi(t+u, x+v) = \phi(t, x) + D\phi(t, x; u, v) + O(|u|^2 + ||v||^2)$

Discussion & Questions — Thanks for your time!

1. Metrization & Simulation

Intrinsic state space metric and convergent simulation algorithm. (arXiv:1302.4402)

2. First-Order Approximation

Nonsmooth dynamics of networked CPS are piecewise–differentiable. (arXiv:1407.1775)

Collaborators

- Shankar Sastry (UCB)
- Ruzena Bajcsy (UCB)
- Dan Koditschek (UPenn)
- Shai Revzen (UMich)
- Humberto Gonzalez (WUSTL)
- Ram Vasudevan (UMich)

Sponsors

- NSF FORCES (CNS #1238959)
- ARL MAST CTA (W911NF-08-2-0004)

